BOREL-MOORE HOMOLOGY AND THE SPRINGER
CORRESPONDENCE BY RESTRICTION

SIMON RICHE

1. INTRODUCTION

The modular Springer correspondence was first studied by Juteau [Ju], as an
analogue of the “ordinay” (i.e. characteristic zero) Springer correspondence due to
Springer [Spr]. This theory relates simple objects of the category Pervg (N, k) of
G-equivariant perverse sheaves on the nilpotent cone A of a complex reductive
algebraic group G (with coefficients in a field k) and of the category Rep(W, k) of
k-representations of the Weyl group W of GG. This correspondence was extended to
noetherian rings of finite global dimension in [AHJR].

The main player of this correspondence is the Springer sheaf Spr, a certain
object of Pervg (N, k) endowed with an action of W. More precisely, there exist
two natural ways of defining this action: one “by restriction”, and one via a Fourier
transform. The action considered in [Ju, AHJR] was the one defined by Fourier
transform. The main goal of this note is to explain that one can also define a
Springer correspondence (for general coefficients) using the action by restriction.
The main point is to show that this action induces an algebra isomorphism

(*) k[W] l> EndPervc(N,k) (E)

(The analogous property for the action by Fourier transform is immediate.) Then,
the observation that Spr is a projective object in Pervg (N, k) (as proved in [AHR))
readily implies that there exists a Springer correspondence over k, see §3.2 for a
precise statement.

Note that isomorphism (x) was also proved in [AHJR] by comparing the two
actions of W on Spr. Here we do not use the Fourier action at all. Instead we use
an interpretation of the space Endper, (A7) (Spr) in terms of Borel-Moore homology
due to Ginzburg, see e.g. [CG]. In fact, our proof is essentially a reformulation of
some considerations in [CG, §3.4]. For this reason, this text will not be published.

2. REMINDER ON BOREL-MOORE HOMOLOGY

We begin with some generalities on (equivariant) Borel-Moore homology, from
the sheaf-theoretic point of view. Let k be a noetherian ring of finite global di-
mension. All our sheaves will have coefficients in k. We fix a connected complex
algebraic group A. By a “variety” we mean a complex algebraic variety. By an
“A-variety” we mean a variety endowed with an algebraic action of A.

2.1. Notation. If X is an A-variety, we denote by 25(X,k) the constructible A-
equivariant derived category of X with coeflicients in k, as defined in [BL]. We
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let ky € 25(X,k), respectively Dy € 25(X,k), denote the constant sheaf, re-
spectively the dualizing sheaf, of X. Then the A-equivariant n-th Borel-Moore
homology of X (with coefficients in k) is defined by

Hfll(Xa k) = Homég(XJk) (kaDX)'

As usual, when A = {1} we omit it from the notation.

We will use the same conventions as in [MR2, Appendix Al: if XY, Z are A-
varieties and f : X =Y, g:Y — Z are A-equivariant morphisms, then there exist
canonical “composition” isomorphisms

gufs 2 (go fs, gfi=(gofh, Fg"=(gof), fg'=(gof),

which we will all indicate by (Co). Similarly, given a cartesian square

X/ fH Y/

g'i O lg
x—t.vy

of A-varieties and A-equivariant morphisms, there exist canonical “base change”
isomorphisms

Fa=gf” fg.=g.f"
which we will indicate by (BC). Finally, if f : X — Y is an A-equivariant morphism
of A-varieties, there exist natural adjunction morphisms

id — fof*, ffe—id, id— A, Af —id,

which we will indicate by (Adj).

Below we will use some results of [MR2] which are stated in loc. cit. only in the
case k = C. One can easily check that this assumption is not used in the proof of
these results, so that they hold in our level of generality.

2.2. Proper pushforward. Let f: X — Y be an A-equivariant proper morphism
of A-varieties. Then the adjunction morphism fif' — id applied to Dy induces,
via the canonical isomorphism f'Dy = Dy, a morphism fiDy — Dy. Taking
cohomology we deduce a “pushforward” morphism

PF(X,Y) : HA(X;k) — HA(Y; k).

2.3. Open restriction. Let X be an A-variety, and let U C X be an A-stable open
subvariety. Denote by j : U — X the inclusion. Then the adjunction morphism
id — j.j* applied to Dy induces, via the canonical isomorphism j*Dy = Dy, a
morphism Dy — j.D;;. Taking cohomology we deduce a “pullback” morphism

PB(X,U) : HA(X;k) — HA(U; k).

2.4. Long exact sequence. Let X be an A-variety, and let U C X be an A-stable
open subvariety, with complement Y. Consider the inclusions

UC_j> X <~y

x 1

Then the canonical triangle of functors iyi' — id — j.j* — applied to Dy induces

a long exact sequence

S HAY ) PO A ) PP A k) S HA (Vi) S -

n—1
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2.5. Restriction with supports. Let X be a smooth A-variety of dimension d,
and X’ C X be a smooth A-stable locally closed subvariety of dimension d’. Note
that there exist canonical isomorphisms Dy = C[2d] and Dy, = Cy/[2d'], so that
we obtain a canonical isomorphism

(2.1) F'Dy = F*Cxl2d) = Cy[2d] = Dy [2d - 2d].

Let Z C X be a non necessarily smooth A-stable closed subvariety, and set Z’ :=
Z N X'. Consider the cartesian diagram

7 x
f’i O if
Z—=X
The adjunction morphism id — f, f* induces a morphism of functors i* — ' f, f*.
Applying the base change theorem we obtain a canonical morphism of functors
it — L'
Applying this morphism to Dy and using isomorphism (2.1) we obtain a canonical
morphism
(2.2) Dy = fiDy [2d —2d].
Applying equivariant cohomology we obtain a “restriction with supports” morphism
RS(Z, X, X') : Hi(Z; k) = Hi o —2a(Z'5 ).

Note that this morphism depends on f (and not only on f).
Later we will need the following easy result. Let V be an A-module and Vi, V;
be submodules of V. We denote by g : V3 N V5 — V5 the inclusion

Lemma 2.1. If V; + Vo =V, the morphism
ky, [2dim(V2)] = g.ky, v, (2 dim(V2)]

obtained from (2.2) (in the case X =V, X' = Vi, Z = V3) using the canonical
isomorphisms Dy, = ky, [2dim(V2)] and Dy, oy, = ky, qy, [2dim(Vy N V2)] coincides
with the shift by 2dim(Va) of the morphism ky, — g.ky,ny, obtained from the
adjunction (g*, g« ).

Proof. Using a standard reduction (see [BL, Theorem 3.7.3]) we can assume A is
reductive, hence V is completely reducible. Then, using the compatibility of our
constructions with exterior products, one can assume that either V; =V or Vo = V;
in both cases the result is obvious. O

2.6. Compatibility with closed inclusion. Let us use the same notation as in
§2.5. Let also Z. C Z be an A-stable closed subvariety, and set Z, := Z. N X'.
Consider the following diagram, where all squares are cartesian and all triangles
are commutative:

ky,
e
C ZIC i/
g d v
Z, Z i X
w
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The following lemma is a generalization of [MR2, Lemma A.5.3] (where the case
Z = X is counsidered).

Lemma 2.2. For any n € Z the following diagram is commutative:

PF(Z.,2)

H (Zei k) H (Z:K)

RS(ZC,X,X’)i

Hﬁ+2d'—2d(Z(/;§ k)

lRS(Z,X,X’)
PF(ZZ)Z/)

Hf+2d/—2d(zl§ k).

Proof. Consider the following diagram, where unlabelled arrows are induced by the
natural identifications f.. = f/ and f. = f/:

(Adj) (BC)

ik, ——>igk! f. f* — il [l kL f* ——— i flk,
<Co>l zi(cw () (c0>j/z (CO)iz
eriyd' Sl ievigd fuf* (B*NCL ievig fLi" f* (L9> Go [l i [ —— i Lyl
~i<00>
(Adj) (Adj) (Adj) A
(1) i/(Adj)
;! (Adj) i p (BNC) 1 _ il g

The commutativity of part (f) of the diagram follows from [AHR, Lemma B.7(c)].
The commutativity of part (1) follows from [MR2, Lemma A.4.4]. The commuta-
tivity of other parts of the diagram is obvious. Hence the diagram as a whole is
commutative. Now we observe that (when applied to D) this diagram describes
the morphisms of the lemma. (In this argument we also use [AHR, Lemma B.4],
which implies that one can forget about “(Co)” isomorphisms for (-). functors if
they are followed by taking cohomology, and similar isomorphisms for (-)' functors
when they are applied to dualizing sheaves.) 0

2.7. Compatibility with open inclusion. Let us use the same notation as in
§2.5. Let also Z, C Z be an A-stable open subvariety, and set Z! := Z, N X’.
Consider the following diagram, where all squares are cartesian and all triangles
are commutative:

ko
Z, ~ zZ' - X’
Jo g
g | if
ko

The proof of the following lemma is easy and left to the reader.
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Lemma 2.3. For any n € Z the following diagram is commutative:

PB(Z,Z,)

H (Z; k) H(Zo: k)

RS(Z,XJ(’)\L \LRS(Z(,?X,X’)

PB(Z',Z.)
H£+2d’—2d(Zl; k) ———— Hﬁ+2d’—2d(Zg§ k)

3. RESTRICTION FOR SPRINGER AND GROTHENDIECK SHEAVES

3.1. Notation. In this section we consider a complex connected reductive group
G, and we choose a Borel subgroup B C G and a maximal torus T C B. We denote
by U and U~ the unipotent radical of B and of the opposite Borel subgroup (with
respect to T'), and by g, b, t,u the Lie algebras of G, B,T,U. If « is a root of G, we
denote by U, the corresponding root subgroup (either in U or in U ™).

We let #Z := G/B be the flag variety of G. We will consider the following vector
bundles over £:

N = {(fvgB) € g* X G/B | §|g~b = 0}7 Ag = {(fagB) € g* X G/B | glg-u = O},

called respectively the Springer resolution and the Grothendieck resolution. We
choose a non-degenerate G-invariant bilinear form on g, and denote by A C g* the
image of the nilpotent cone of G under the associated isomorphism g = g*. Then
there exist natural morphisms

piN =N, m:ig—g

induced by projection on the first factor. We set d := dim(g) = dim(g) and
N :=dim(N)/2, and let r be the rank of G, so that we have d = 2N +r. The main
players of this section will be the k-perverse sheaves

Spr:= wk[2N],  Groth := mkg[d].

Let iz : N < g and in : N <= g* be the inclusions; then the following diagram
is cartesian:

N3
Ml [} ifr
FoY
N ——g*.
Hence using the base change isomorphism ¢},m = mi}/ we obtain a canonical
isomorphism
(3.1) iz Groth = Spr(r].

3.2. Statement and the Springer correspondence. Let A be a connected
closed subgroup of G x C* which satisfies the following condition:

(3.2) Hi (pt;k) =0  if i is odd.

Note that this condition is automatically satisfied if the reductive part A,.q of A is

a torus, or more generally if torsion primes for A,.q are invertible in k; see [Bo].
The group G x C* (hence also its subgroup A) acts on N and on g*, where G

acts by the coadjoint action and C* acts by = - & = 272¢ for x € C* and & € g*.
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Isomorphism (3.1) holds in the equivariant derived category 2% (N k), so that the
functor i},[—r| induces a morphism

@ : Hom'gz(g*yk)(Groth, Groth) — Hom.@jg(/\ﬁk) (Spr, Spr).
The main result of this note is the following.

Theorem 3.1. Assume that condition (3.2) is satisfied. Then the morphism ¢ is
an isomorphism.

Consider in particular the case A = {1}, and denote by Pervg (N, k) C 2°(N, k)
the category of G-equivariant perverse sheaves sheaves on N. Let also W be the
Weyl group of (G, T'), and denote by Rep(W, k) the category of k-representations of
W. There exists a natural action of W on Groth (induced by the natural W-action
on the regular semi-simple part of g), which induces a ring isomorphism

r: k[W] = Endgp g+ 1) (Groth).
see e.g. [AHJR, §3.4]. Composing r with ¢ (or more precisely its restriction to
degree 0 morphisms) we obtain a ring morphism

¢ k[W] — Endpen (v k) (Spr)
(or in other words an action of W on Spr “by restriction”). The following is an
immediate corollary of Theorem 3.1. This result is well known (and was first proved

in [BM]) in the case k is a field of characteristic 0. It was already proved in this
level of generality, using completely different methods, in [AHJR].

Corollary 3.2. The morphism ¢ is an isomorphism.

Note that the arguments in [AHJR, §5.1] show that Corollary 3.2 (together
with the fact that Spr is a projective object of Pervg (N, k), as proved in [AHR,
Proposition 7.10]) implies that there exists a “Springer correspondence over k”,
i.e. that the assignment

M — HomPervc (N k) (mv M)

induces a bijection between isomorphism classes of simples objects M of Pervg (N, k)
such that Homper (k) (Spr, M) # 0 and isomorphism classes of simple objects of
the category Rep(W, k) of k-representations of W.

3.3. Reinterpretation in terms of Borel-Moore homology. To prove The-
orem 3.1 we will re-interpret the morphism ¢ in terms of Borel-Moore homology.
Consider the varieties

Z' =N xnx N, Z =g X4 g.

We observe that we also have Z’ := g X g- N. In other words the following diagram
is cartesian, where all maps are the natural inclusions:

7 ——1g x N
| = |
Z ——=gxg.
Hence the construction of §2.5 provides a “restriction with supports” morphism

Res := RS(Z,8 x 8,8 x V) : HI(Z:k) = HIL,, (Z'5K).

o—2r
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Proposition 3.3. There exist canonical isomorphisms

. ~ A . ~
Homgg(g*k)(Groth,Groth) ~H o (Z5k), Hom@u (v 1 (Spr, Spr) = Hiv_o(Z;k),
such that the following diagram commutes:

Homzzg(21*7]1()(Groth7 Groth) — == H%, ,(Z;k)

Hom®y (g (Spr, Spr) ——— Hily_,(Z":k).
Proof. By [MR2, Lemma A.4.6], the morphism
Groth % in«05Groth Ei)% in«Sprir]

coincides with the morphism

Groth = mCqld] 2 i i kg [d] = mi e ld] = inr,Spr(r]

where the final isomorphism is induced by miﬁ* = w*iﬁ* @ TN s = TA -
By adjunction (and isomorphism (3.1)) there exists an isomorphism
Hom?%u ) (Spr, Spr) = Homzjz(g%)(Groth, in=Sprlr])
which identifies the morphism ¢ with the morphism
(3.3) Hom'@E‘(g*)k)(Groth, Groth) — Hom'gz(g*k)(Groth, in«Sprlr])

induced by the morphism Groth — ixr.Spr(r] considered above.
Now in [MR2, §1.3] we recall (following [CG]) the construction of canonical
isomorphisms

Hom.@z(g*,k) (M? M) = H?d—o(a Xg* 57 k)7
Homg, (g 5 (Groth, inSpr) = Hily (3 xg- NiK)
such that the following diagram commutes (see [MR2, Proposition 2.2.1(1)]):

. (3.3) . .
Hom%p (. 1 (Groth, Groth) ———— Hom%p (o 1 (Groth, i Spr)

Hiy_o (@ %o B:K) Hiv—o(@ xg- N3 K).

The proposition follows. ([l

Using Proposition 3.3 we see that Theorem 3.1 follows from the following result,
which will be proved in §3.5.

Theorem 3.4. Assume that condition (3.2) is satisfied. Then the morphism Res
is an isomorphism.

Remark 3.5. (1) We have explained in §3.2 the interpretation of Theorem 3.4
in terms of the Springer correspondence. But there are also other cases
where HA(Z';k) can be described explicitly, at least in the case k = C.
For instance it is proved in [DR] that H,(Z’; C) is isomorphic to the smash
product C[W]#C¢ where Cc = S(t)/S(t)V is the coinvariant algebra of
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W, and in [Ka, Theorem 3.1] that HS(Z’;C) is isomorphic to the smash
product C[W]#S(t). It is also known that HE*C™ (Z/;C) is isomorphic to
Lusztig’s graded affine Hecke algebra, see [L1, L2].

(2) See [MR1, Lemma 5.2] for a sketch of proof (based on the same ideas) of a
similar claim in equivariant K-theory.

3.4. A preliminary lemma. Consider the (Bruhat) decomposition of # x £ into
G-orbits:
BxB= || Xu
weW
where X, := G- (B/B,wB/B). For all w € W we denote by Z,, (respectively Z))
the restriction of Z (respectively Z’) to the orbit X,,. Note that Z,, and Z], are
vector bundles over X,,. The following diagram is cartesian:

v
?

AR v > GxN

fooe s

Zy ——3 <3,

where all morphisms are the natural inclusions. Hence we can consider the corre-
sponding “restriction with supports” morphism

Resy := RS(Zw, § % 8,8 X N) : HA(Zw: k) — HA(Z.: k).
Lemma 3.6. The morphism Res,, is an isomorphism.

Proof. By construction (see §2.5), the morphism Res,, is obtained by taking equi-
variant cohomology from a morphism

Dy, — fw*DZ,{U [2r]

in 25(Z,,k). Now both Z, and Z! are smooth (of respective dimension d and
2N), so that we have canonical isomorphisms D, =k, [2d], D, =k, [4N]. It
follows that the preceding morphism can also be interpreted as a morphism

(3.4) ky [2d] = fusky [2d]

in 25(Zw,k). We claim that (3.4) is the shift by 2d of the morphism k, SN
fws+ky induced by adjunction (fF, fu«). This will imply the lemma: indeed the
following diagram commutes, where all morphisms are restriction in equivariant
cohomology:

H% (Zw;i k) H% (Z: k)

\ /

HY (X k).

(Here X, is considered as the zero-section in Z, and Z!.) By our claim the
morphism on the upper line identifies in the natural way with Res,, (up to changing
the grading), and the other morphisms are isomorphisms since Z,, and Z/, are vector
bundles over X,,; the invertibility of Res,, follows.

By compatibility of all our constructions with forgetful functors (see [AHR,
§B.10.1 & Lemma B.11]), it is enough to prove the claim in the case A = G x C*.
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Now let
2" ={(& (n.gB)) € (g/6)" xN' | £ =n}, Z :={(& (n.9B)) € (8/u)* 7 | £ =n},

so that we have 2’ = G xf ', respectively Z = G xB %, as subvarieties of
G xB ((g/0)* x N) 2 N x N, respectively G xZ ((g/u)* x §) =g x g. We define
Z! and %, as the restrictions of 2’ and 2 to 2, := BwB/B C %, and denote

by gw @ Z. — % the inclusion. Then we have an “induction equivalence” (see
[BL, §2.6.3] or [AHR, §B.17])

P8 Zw, k) = DR (%o, k),
and the forgetful functor
D3 (% k) = Dp(Zo,K)

is fully faithful (see [BL, Theorem 3.7.3]). As these functors commute with adjunc-
tion morphisms and base change, to prove the claim about morphism (3.4) it is
enough to prove that the morphism

(3.5) Dy — guDg [2r]
in 2%(Z,,,k) obtained by the constructions of §2.5 from the cartesian diagram

7 (g < N

Ko .~
Z (g/u)" x g

(where all morphisms are natural inclusions) coincides, via the canonical isomor-
phisms Dy, = kg [2d —2N] and Dy, = kg [2N], with a shift of the morphism
ko — guw«kg induced by the adjunction (g;,, guw«)-

Consider the projections

P g/ x N =N, p:i(g/u) xg—8

Then p o ky, and p’ o k!, are locally closed inclusions, and the following diagram is
cartesian:

L v
(3.6) gl o li -
7, P g
Moreover, the morphism
Dio/uy x5 2 940" Dig )3 % 9+ gy w5727

coincides with the composition

oo, A o (BO)
Dy /x5 = P D5 — PligiyDg — 9-0"i3Dg

(2.1) : N
7 90" Dgl2r] = 0. Dy (271

~
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Using the compatibility of the base change isomorphism with composition (see
[AHR, Lemma B.7(c)]) we deduce that our morphism (3.5) coincides with the sim-
ilar morphism defined using the cartesian square (3.6).

Now consider the open subset %, := wU~ B/B C %, and let ?ZJ, respectively
%), be the restriction of g, respectively N, to %,. Let also
Ur= J] UecU U;= ][] UacU"
a>0,w1a<0 a<0,w—la<0

(where we have fixed an arbitrary order on each set of roots). Then %, C %,, and
we have an isomorphism %, = U,; x U,} which identifies 2, with {1} x U;}. Since
%, is included (via p o k) in %,, it is easy to check that (3.5) coincides with the
similar morphism defined using the the cartesian square

g/

i !

Gy ——— Uy

u,

Identifying the latter diagram with the following one:
Ut x (g/u+wb)* —= U, x U}t x (g/wb)*

Lo
Ug x (g/u+wu)* —=Uy x Uy x (g/wu)*

in the natural way, we conclude using Lemma 2.1. O

3.5. Proof of Theorem 3.4. For any subset I C W, we denote by Z;, respectively
Z1, the restriction of Z, respectively Z’, to | |,,c; Xw. Then as above the following
diagram is cartesian, where all morphisms are natural inclusions:

Zh—=Gx N

ZI E—— a X E
so that one can define a “restriction with supports” morphism
Resr : H (Z1;k) — HL,, (Z7: k).

We will prove by induction on #1I that Resy is an isomorphism for any I C W; the
case I = W will prove Theorem 3.4.

The case #I = 1 is proved in Lemma 3.6. Now let I C W be a subset of
cardinality at least 2, and let w € I be maximal. Let J = I \ {w}. We claim
that the Borel-Moore homology groups HZ(Z;;k) and HZ(Z};k) are concentrated
in even degrees. Indeed, this claim holds if A = {1} since Z; and Z; have affine
pavings. The general case follows, using the fact that the natural spectral sequence

EP? = HE (pt;k) @ H_,(Z1;k) = HA_ (Z1;k)

-p—q
degenerates by a parity vanishing argument using (3.2), and similarly for Z;. A
similar claim holds also for Z;, Z’;, Z, and Z}; it follows that the long exact
sequence of §2.4 associated with the decompositions Z; = Z,,lUZ; and Z} = Z UZ,
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are in fact collections of short exact sequences. Moreover, by Lemma 2.2 and Lemma
2.3 the following diagram commutes:

H‘:‘(ZJ;]k)C—> Hf(ZI;k) - H‘.“(Zw;]k)
RS(ZJ,EXE,EXK/)i RS(ZI,EXE,EXK/)\L RS(zw,axa,axN)l
HM(Z); k) ——— H} (2] k) —————H(Z),; k).

The right and left vertical morphisms are isomorphisms by induction; using the
five-lemma it follows that the middle one is also an isomorphism, which finishes the
proof.
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