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Introduction

0.1. Representation theory of reductive algebraic groups. Represen-
tation theory of (connected) reductive algebraic groups over general algebraically
closed field is a classical subject, whose study began in the 1950’s with work of
Chevalley which provided (among other things) a classification of simple represen-
tations. Namely, consider an algebraically closed field k and a connected reductive
algebraic group G over k, in which we choose a Borel subgroup B and a maximal
torus T ⊂ B, and denote by Rep(G) the category of finite-dimensional algebraic
G-modules. For each λ in the character lattice X of T, or equivalently of B, we
have a G-module N(λ) in Rep(G), obtained by induction from the 1-dimensional
B-module associated with λ, and whose character is given by Weyl’s character for-
mula. This module vanishes unless λ lies in the cone X+ ⊂ X of dominant weights,
and in the latter case it contains a unique simple submodule L(λ) ⊂ N(λ). With
this notation, Chevalley’s classification states that the assignment λ 7→ L(λ) in-
duces a bijection between X+ and the set of isomorphism classes of simple objects
in Rep(G).

In case k has characteristic 0, the embedding L(λ) ⊂ N(λ) is an equality;
one might therefore consider the problem of understanding simple representations
solved, and move to finer questions. In case char(k) = p > 0 however, these
embeddings are often strict. The next question one might try to solve is therefore
to describe the character of L(λ), or at least its dimension. It turns out that, as of
now, this question is still not understood in a reasonable way.

0.2. The linkage principle and the affine Weyl group. This question
is usually attacked from a different angle. Namely, instead of parametrizing the
simple objects by X+, one uses a different parametrization which takes into account
the structure of the category Rep(G). As first suggested by Verma, and then
proved in increasing levels of generality by Humphreys, Jantzen, Carter–Lusztig
(for G = GLn(k)) and finally Andersen, this category decomposes into “blocks”
parametrized by the orbits (for a “dilated” and “shifted” action) of the affine Weyl
group Waff of (G,T) (i.e. the semi-direct product of the Weyl group of (G,T)
with the corresponding root lattice) on X. A fundamental domain for this action
is provided by the intersection of X with the “fundamental alcove,” and the simple
objects in the block attached to a given orbit are naturally parametrized by a
certain subset of Waff which is characterized in terms of the natural Coxeter group
structure onWaff . In this block one might try to express the simple objects in terms
of induced modules which, since these induced module have a known character, is
a way to express the characters of simple modules. Moreover, in view of several
previous examples in Representation Theory (in particular, the Kazhdan–Lusztig
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conjecture for complex semisimple Lie algebras), it seems natural to expect that
this expression might be written in terms of Kazhdan–Lusztig polynomials forWaff .

Another observation to take into account is that connected reductive algebraic
groups come in families over all fields, these families being parametrized by “com-
binatorial” data called root data. The affine Weyl group is described only in terms
of this root datum, but the action on weights considered above depends the char-
acteristic p of k. Examples in small rank seem to suggest that, with the prime
number p so incorporated in the parametrization of simple objects, the character
formulas for simple objects (expressed as above in terms of the affine Weyl group)
might be independent of p, at least if this characteristic is not too small, e.g. larger
than the Coxeter number of G.

0.3. Lusztig’s character formula. This point of view emerged in work of
Jantzen and Andersen in the 1970’s, and culminated in the formulation of Lusztig’s
conjectural character formula for simple modules in 1980, which indeed is inde-
pendent of the characteristic p. This formula drove a large part of the research
on this subject in the following years, and was finally proved in the mid-1990’s
by the combination of deep works of Kazhdan–Lusztig, Kashiwara–Tanisaki and
Andersen–Jantzen–Soergel (following a strategy outlined by Lusztig and involving
the study of a similar problem for quantum groups at a root of unity). But this
proof was obtained “only” under the assumption that the characteristic of the base
field is large, i.e. larger than a nonexplicit bound depending on the root datum
of the group. Later work by Fiebig allowed to give an explicit lower bound for
how large the characteristic should be, which was however much bigger than the
expected bound (namely, the Coxeter number).

0.4. Williamson’s counterexamples and formulas involving the p-ca-
nonical basis. The next step in this story came as a surprise for many experts. In
2013, Williamson announced a proof that, in the case of the group GLn (for which
the Coxeter number is n), Lusztig’s formula cannot be true under any assumption of
the form p ≥ P (n) where P is a fixed polynomial. In other words, Lusztig’s formula
is only an asymptotic answer to the question of computing simple characters for a
reductive algebraic group, but a general answer has to be more subtle.

The goal of these notes is to explain the construction of these counterexamples,
and present an alternative approach to the study of the representation theory of
reductive algebraic groups over algebraically closed fields of positive characteristic,
in particular to the problem of character computation, that has emerged in the
following years, and to which we have contributed. This approach was proposed
as part of a joint work with Geordie Williamson in [RW1], and was implemented
in the following years involving joint work with various collaborators, in particular
Geordie Williamson and Pramod Achar.

The basic idea at the heart of this approach is that the combinatorics that
should be used to express these character formulas is not the Kazhdan–Lusztig
combinatorics of Waff as predicted by Lusztig, but rather its “p-canonical” version
that was introduced in joint work of Williamson with Juteau and Mautner on
parity complexes on the one hand, and with Elias on a presentation of categories of
Soergel bimodules by generators and relations on the other hand. (The equivalence
between the two approaches was morally clear, and was proved explicitly in [RW1].)
This combinatorics gives rise to “p-Kazhdan–Lusztig polynomials” which do depend
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on the characteristic p, but stabilize in large characteristic to ordinary Kazhdan–
Lusztig polynomials, explaining Lusztig’s character formulas in these cases.

A first hint at this idea can be found (retrospectively) in work of Soergel [S5],
where the author studied an analogue of the Bernstein–Gelfand–Gelfand category
O of a complex semisimple Lie algebra, defined as a subquotient of a regular block
of Rep(G), whose simple objects have highest weight “around the Steinberg weight”
(p−1)ρ. Soergel showed that the combinatorics of this category is encoded in certain
complexes on the flag variety of the corresponding complex reductive group, which
were later identified as the parity complexes on this flag variety.

0.5. Tilting characters. To make this idea concrete one should switch per-
spective a bit; instead of giving an explicit character formula for simple modules as
proposed by Lusztig, one needs instead to look for a character formula for another
family of modules, namely the indecomposable tilting modules, from which the
characters of simples can be obtained in theory. (The observation that characters
of tilting modules determine characters of simple modules is due to Andersen.) Ex-
plicitly, in [RW1] we proposed a conjectural character formula for indecomposable
tilting modules in regular blocks (i.e. blocks corresponding to free orbits of Waff)
in terms of (antispherical) p-Kazhdan–Lusztig polynomials under the assumption
that p is larger than the Coxeter number, and a more general formula (which we
initially thought might be more hazardous) for all blocks, in all characteristics. The
proposed formula for regular block was a modification of an earlier conjectural for-
mula due to Andersen, which was expressed in terms of ordinary Kazhdan–Lusztig
polynomials.

It turned out that our guesses were correct, and these formulas now have several
independent proofs. The first one was obtained for regular blocks in joint work with
Achar, Makisumi and Williamson [AMRW]; this case was later reproved using
different approaches by Ciappara [Ci] and in joint work with Bezrukavnikov [BaR].
Finally the general formula was obtained in joint work with Williamson [RW3].

0.6. What this book might be good for. Our hope in writing this book
is that it can serve as a guide for the reader interested in these topics to go from
the classical approach on this subject on which Lusztig’s formula is based, which is
summarized in a marvelous way in Jantzen’s classical book [J3], to the recent liter-
ature on this subject, in particular Williamson’s construction of counterexamples to
Lusztig’s formula [W3] and the proofs of the tilting character formula in [AMRW]
and [RW3]. We will not give detailed proofs of any deep result in this direction,
but what we have tried to do is to explain the main constructions involved with
all relevant details, state the most important results in the largest reasonable gen-
erality that is available in the literature, and clarify some results that are usually
considered “well-known” but whose explicit proofs are difficult to find. We have
also tried to give precise references for all the results we require, sometimes pointing
some gaps in the original literature that have been filled by later work.

0.7. Contents.
0.7.1. Overview. In Chapter 1 we summarize the classical theory of representa-

tions of reductive algebraic groups over algebraically closed fields of positive charac-
teristic, as presented in Jantzen’s book [J3]. Then in Chapters 2 and 3 we explain
several points of view (algebraic, diagrammatic, topological) on the basic objects
that allow to make sense of the p-canonical basis, namely Soergel bimodules. In
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Chapter 4 we come back to representation theory of algebraic groups, and explain
the theory of tilting modules as developed by Donkin and Andersen in the 1990’s.
The new point of view on character computations is discussed in Chapters 5, where
we explain Williamson’s construction of counterexamples to the expected bound
in Lusztig’s conjecture, and 6, where we explain the character formulas for inde-
composable tilting modules in terms of the p-canonical basis, and briefly discuss
their proofs. In Appendix A we review our prefered point of view on highest weight
categories, and finally Appendix B contains exercises for each chapter.

0.7.2. Chapter 1. Chapter 1 gives an overview of classical results in the repre-
sentation theory of reductive algebraic groups over fields of positive characteristic,
including Chevalley’s classification of simple modules, Weyl’s character formula for
induced modules, Steinberg’s tensor product formula, the linkage principle and ba-
sic properties of translation functors. We also discuss in detail how the Coxeter
combinatorics of the affine Weyl group intervenes in the parametrization of simple
modules, review Soergel’s construction of his “modular category O” and its main
properties, and discuss Lusztig’s character formula and some of its proofs.

0.7.3. Chapter 2. In Chapter 2 we introduce Soergel bimodules. We review the
classical approach developed by Soergel in terms of bimodules over a polynomial
ring attached to a reflection faithful representation of a Coxeter group. We then
explain the construction by Elias–Williamson of a category defined by generators
and relations expressed in terms of a diagrammatic calculus. This category is
obtained from a Coxeter system and a collection of data called a “realization.”
In case this realization comes from a reflection faithful representation it recovers
Soergel’s original category, but this category makes sense, and has the expected
properties, in a larger generally, that includes in particular some natural realizations
associated with Kac–Moody groups. This generality allows to give a first definition
of the p-canonical basis attached to a crystallographic Coxeter system and a prime
number p. We also discuss a different incarnation of this construction due to Abe,
which is closer to Soergel’s original construction but works in the same generality
as the one of Elias–Williamson.

0.7.4. Chapter 3. In Chapter 3 we explain the theory of parity complexes in-
troduced by Juteau–Mautner–Williamson, and discuss in detail the case of flag
varieties of Kac–Moody groups and affine flag varieties. In these cases this the-
ory provides an alternative incarnation of diagrammatic categories attached to
crystallographic Coxeter systems (and Kac–Moody realizations), and an equiva-
lent construction of the p-canonical basis. (The latter fact is a modular analogue
of the result of Kazhdan–Lusztig computating dimensions of stalks of intersection
cohomology complexes on flag varieties in terms of classical Kazhdan–Lusztig poly-
nomials.

0.7.5. Chapter 4. Chapter 4 provides a review of the theory of tilting modules
for reductive algebraic groups, and their relation with representations of Frobe-
nius kernels. We discuss basic structural results (classification of indecomposable
objects, Donkin’s tensor product formula), explain how the understanding of in-
decomposable tilting modules leads to character formulas for simple modules, and
discuss Andersen’s conjecture proposing a character formula for some indecompos-
able tilting modules.
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0.7.6. Chapter 5. In Chapter 5 we explain Williamson’s construction of coun-
terexamples to Lusztig’s character formula from the point of view of the diagram-
matic category. More specifically, what Williamson manages to contradict is a con-
sequence of Lusztig’s formula that can be observed in Soergel’s modular category
O, namely that the p-canonical basis of the (finite) Weyl group should coincide
with the Kazhdan–Lusztig basis for values of p above the Coxeter number (or a
linear bound depending on this number, depending on the versions).

0.7.7. Chapter 6. Chapter 6 presents the new character formula for indecom-
posable tilting modules in terms of the p-canonical basis. We state this formula,
explain some categorical considerations that lead us it, and outline some proofs of
this formula and its categorical counterpart.

0.7.8. Appendices. The book finishes with two appendices. Appendix A is a
review of a point of view on highest weight categories that emerged from work
of Bĕılinson–Ginzburg–Soergel. Appendix B contains exercises (often with hints)
related to the content of each chapter, and indications on where to find additional
exercises on some of this content.

0.8. Prerequisites. We will assume that the reader is familiar with the struc-
ture theory of connected reductive algebraic groups over algebraically closed fields,
as explained e.g. in the classical books of Borel [Bo], Humphreys [H3] and Sprin-
ger [Sp2]. All the results from representation theory of algebraic groups that
we will need will be recalled, usually with the appropriate reference to Jantzen’s
book [J3], but very few proofs are given. We will also rely on the basic theory of
Coxeter groups, for which we refer to the book by Humphreys [H4] or to Michel’s
notes [Mi], and use the standard basic constructions of homological algebra (addi-
tive categories, abelian categories, triangulated categories, t-structures) as reviewed
e.g. in [Ac, Appendix]. Finally, Chapter 3 uses in an essential way the formalism of
derived categories of contructible sheaves on algebraic varieties and the equivariant
versions, and of perverse sheaves. This theory can e.g. be learnt in the book [Ac]
by Achar.

0.9. Some notation and conventions.
0.9.1. Grothendieck groups. If A is an essential small additive, resp. abelian,

resp. triangulated, category, we denote by

[A]⊕, resp. [A], resp. [A]∆,

its split Grothendieck group, resp. its Grothendieck group, resp. its Grothendieck
group. In each case, the class of an object M ∈ A will be denoted [M ]. A brief
discussion of these constructions can be found in [Ac, §A.9].

0.9.2. Modules and bimodules. If A is a ring, we will denote by

A-Mod, resp. Mod-A,

the category of left A-modules, resp. of right A-modules, and by

A-Modfg, resp. Modfg-A,

the subcategory of finitely generated modules.
If A is a k-algebra for some commutative ring k, by an A-bimodule we will mean

a left A-module endowed with a commuting right action of A such that the left and
right actions of k coincide; in other words, an A-bimodule is an A⊗k Aop-module.
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The choice of k is of course not unique, but it will always be the obvious one (in
general the base field). The category of A-bimodules will be denoted

A-Mod-A.

0.9.3. Coxeter groups. For all Coxeter systems (W,S) considered in this book,
the set S is assumed to be finite.

Given a Coxeter system (W,S), we will denote by ℓ : W → Z≥0 the length
function, such that ℓ(w) is the minimal possible number of terms occurring when
writing w as a product of elements in S. We will denote by ≤ the Bruhat order on
W, i.e. the order generated by

w ≤ wt if t ∈ {xsx−1 : x ∈ W, s ∈ S} and ℓ(wt) > ℓ(w).

Recall that for any subset I ⊂ S, if we denote by WI the subgroup of W generated
by I, then (WI , I) is a Coxeter system. A subgroup of the form WI (or sometimes
the corresponding pair (WI , I)) will be called a parabolic subgroup. (Note that the
term “parabolic subgroup” is sometimes used for something more general in the
theory of Coxeter groups.)

We will call expression a word in S, or in other words an r-tuple (s1, . . . , sr) of
elements in S. (The case r = 0 is allowed, corresponding to the empty word.) The
length ℓ(w) of an expression w is its length as a word, i.e. the number of letters
appearing in it (counting repetitions). The expression (s1, . . . , sr) is called reduced
if ℓ(s1 · · · sr) = r (where s1 · · · sr is the product of these elements in W). We will
denote by S2◦ ⊂ S2 the subset consisting of pairs (s, t) with s ̸= t generating a finite
subgroup of W. If (s, t) ∈ S2, we will denote by ⟨s, t⟩ the subgroup generated by s
and t, and if (s, t) ∈ S2◦ we will denote by ms,t the order of the product st.

0.9.4. Algebraic groups. If k is an algebraically closed field, by a k-algebraic
group we mean a smooth affine group scheme of finite type over k. (This terminol-
ogy is that of [Bo, H3, Sp2].) By an algebraic subgroup we mean a smooth closed
subgroup. By a reductive algebraic group we mean a not necessarily connected alge-
braic group whose neutral component has no nontrivial connected normal unipotent
algebraic subgroup.

0.10. Acknowledgements. This book grew out of handwritten notes pre-
pared for a minicourse given at the University of Córdoba (Argentina) in July
2017, which were then typed by Nicolás Andruskiewitsch, Iván Angiono, Agustin
Garćıa Iglesias and Cristian Vay. These notes were later enriched in preparation for
other minicourses, given in Freiburg in July 2018 (joint with Shotaro Makisumi),
in Oberwolfach in November 2018 (joint with Pramod Achar and Laura Rider),
in V. Lunts’ datcha somewhere in Russia (joint with Daniel Juteau, Carl Mautner
and Geordie Williamson) in July 2019, and in Birmingham in July 2023. We thank
Nicolás for the original invitation and the repeated encouragements to polish these
notes, Iván, Agustin and Cristian for their work, Shotaro, Pramod, Laura, Daniel,
Carl and Geordie for the inspiring contributions they provided, and the participants
of these different events for their questions and comments.

Our point of view on this subject was greatly influenced by our collaborations
with Geordie Williamson and Pramod Achar; we thank them for their generosity
and hope our collaboration will continue for many more years! We also thank
Noriyuki Abe, Ben Elias, Shrawan Kumar and Geordie Williamson for answering
various questions about this material.
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CHAPTER 1

Modular representation theory of reductive groups

The goal of this chapter is twofold. First, we aim at recalling the main classi-
cal results from the representation theory of connected reductive algebraic groups.
Most of the proofs will be omitted; they can e.g. be found in [J3]. Second, we will
try to explain how to reinterpret, or sometimes restate, some of these results in a
way that will be more convenient for the point of view we want to emphasize in the
later chapters. This new point of view will often involve the affine Weyl group and
its Coxeter group structure.

Historically, the importance of the affine Weyl group for the description of the
representation theory of connected reductive algebraic groups was first suggested
by Verma [Ve]. A more concrete incarnation of this idea, which greatly influenced
the later study of these questions, was given by Lusztig [L1]. In a sense, the main
idea of the approach to character formulas presented in these lectures is that this
idea should be taken at the level of categories rather than combinatorics. This will
be made more concrete in Chapter 6.

1. Representations of reductive algebraic groups

1.1. Definitions. We will denote by k an algebraically closed field of charac-
teristic p. (For us the most interesting case is when p > 0, but for now the case
p = 0 is also allowed.) Let G be a connected reductive algebraic group over k, and
let us choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. We will denote
by X = X∗(T) the lattice of characters of T, i.e. morphisms of algebraic groups
from T to Gm,k = k×. Elements of X will usually be called weights. If U ⊂ B is
the unipotent radical of B, then multiplication induces an isomorphism of algebraic
groups

T⋉U
∼−→ B.

In particular, it follows that any λ ∈ X extends in a unique way to a morphism
of algebraic groups from B to k×, which will again be denoted λ. We will also
denote by B+ the Borel subgroup opposite to B with respect to T, and by U+ its
unipotent radical.

We will denote by R ⊂ X the root system of (G,T), i.e. the set of nonzero
T-weights in Lie(G). The subset of positive roots consisting of the T-weights in
Lie(U+) will be denoted R+, and the associated system of simple roots will be
denoted Rs ⊂ R+. We will also denote by X∨ := X∗(T) the cocharacter lattice of

T, and by R∨ ⊂ X∨ the coroots of (G,T). There is a canonical bijection R
∼−→ R∨,

which we denote as usual by α 7→ α∨. Our choice of basis of R determines a subset
of dominant weights in X, defined by

X+ = {λ ∈ X | ∀α ∈ R+, ⟨λ, α∨⟩ ≥ 0},

13
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and an order ⪯ on X defined by

λ ⪯ µ ⇔ µ− λ ∈ Z≥0R
+.

We will denote byW = NG(T)/T the Weyl group of (G,T), and by S ⊂W the
set of simple reflections, so that S = {sα : α ∈ Rs}. It is well known that the pair
(W,S) is a Coxeter system. The longest element with respect to that structure will
be denoted w0. Since T is its own centralizer in G, W identifies with a subgroup
of the group of automorphisms of T (as a k-algebraic group), or equivalently of X
(as an abelian group).

Example 1.1. The main example the reader should keep in mind is G =
SLn(k). In this case one can choose

B =

{(
∗ 0

. . .
∗ ∗

)}
⊂ G

as the subgroup of lower triangular matrices and

T =

{(
∗ 0

. . .
0 ∗

)}
⊂ B

as the subgroup of diagonal matrices.
In this case we have a canonical identification X = Zn/Z(1, . . . , 1), where the

class [λ1, . . . , λn] of an n-tuple (λ1, . . . , λn) corresponds to the morphism(
x1 0

. . .
0 xn

)
7→

n∏
i=1

xλi
i .

If we denote (for i ∈ {1, · · · , n}) by ϵi ∈ Zn/Z(1, . . . , 1) the class of the vector
whose only nonzero entry is 1 in the ith position, then we have

R = {ϵi − ϵj : 1 ≤ i ̸= j ≤ n},
R+ = {ϵi − ϵj : 1 ≤ i < j ≤ n},
Rs = {ϵi − ϵi+1 : i ∈ {1, · · · , n− 1}},
X+ = {[λ1, . . . , λn] ∈ Zn/Z(1, . . . , 1) | λ1 ≥ · · · ≥ λn}.

If we set, for any i ∈ {1, · · · , n− 1}, ϖi := ϵ1 + · · ·+ ϵi, then we have

X+ = {a1ϖ1 + · · ·+ an−1ϖn−1 : a1, · · · , an−1 ∈ Z≥0}.
(The weights ϖ1, · · · , ϖn are the fundamental weights of (G,B,T).) We also have

a natural identification W
∼−→ Sn, where Sn acts on T by permuting the entries,

and in this way S identifies with {(i, i+1) : i ∈ {1, · · · , n−1}}. Moreover, we have

w0 =
(
1 2 ··· n−1 n
n n−1 ··· 2 1

)
.

(See Exercise 1.2 for the closely related example of G = GLn(k).)

For some aspects of the theory it is important to notice that one can consider
“the same group” for various values of the field k. One way of making sense of
this idea is by using the classification of connected reductive algebraic groups over
algebraically closed fields. Namely, such a group is uniquely determined (up to iso-
morphism) by its root datum, i.e. the quadruple (X,X∨,R,R∨) (implicitly, together
with the pairing between X and X∨ and the bijection between roots and coroots).
Root data do not involve k in any way. Fixing a root datum, we therefore obtain
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an attached connected reductive algebraic group over any algebraically closed field,
which we can consider as “the same group” over different fields. By construction,
the character lattice X∗(T) is the same for all these groups. Soon we will construct
some families of G-modules parametrized by (dominant) weights; using this point
of view we will be able to consider “the same” module over different fields k: by
this we will mean the modules attached to the same weight for each k. Most of
the questions we will consider will not really depend on k itself, but only on its
characteristic p.

Remark 1.2. A more subtle way of expressing the idea of “the same group
over different fields” is by using the notion of reductive group schemes over rings.
Namely, any connected reductive algebraic group G over k can be obtained by
base change from a split reductive group scheme GZ over Z. After fixing such GZ
(which is unique up to isomorphism), one obtains for any field k′ a “version” of G
over k′, namely Spec(k′) ×Spec(Z) GZ. Here the subgroups B and T can also be
obtained by base change from subgroups of GZ, which give rise to subgroups of
Spec(k′)×Spec(Z) GZ.

Remark 1.3. For simplicity we have chosen a Borel subgroup and a maximal
torus in G. In order to avoid these noncanonical choices, one can instead work with
the “universal maximal torus.” Namely, given any two Borel subgroups B1,B2 ⊂
G, whose unipotent radicals will be denoted U1 and U2, there exists a canonical
isomorphism of k-tori

B1/U1
∼= B2/U2.

In fact all Borel subgroups are conjugate; hence there exists g ∈ G such that
B2 = gB1g

−1. Any two choices for this element g differ by right multiplication
by an element in B1; since the B1-action on B1/U1 by conjugation is trivial, it

follows that the isomorphism B1/U1
∼−→ B2/U2 induced by conjugation by such a

g does not depend on the choice of element, which provides the desired canonical
isomorphism. The universal maximal torus is then defined as the torus A = B/U,
for any choice of Borel subgroup B ⊂ G, whose unipotent radical is denoted U. (As
explained above, this torus is canonically independent of the choice of B.) Note
that A is not a subgroup of G. Given an arbitrary maximal torus T ⊂ G, for
any choice of Borel subgroup B containing T we have a canonical identification
T

∼−→ A, provided by the composition T ↪→ B ↠ A. (This identification does
depend on the choice of B.)

To continue in this vein, we can then define X as the lattice of characters of
A; in this way, for any Borel subgroup B ⊂ G we have a canonical identification
of X with the lattice of algebraic group morphisms B → k×, sending a character
A → k× to its composition with the projection B → A. The root system R, and
its positive system R+, can also be defined universally, as the image in X of the
T-weights in Lie(G) and in Lie(G)/Lie(B) respectively, for any choice of a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B, where we identify X with the lattice
of characters of T using the canonical isomorphism T

∼−→ A considered above.

1.2. Categories of representations and induction functor. For any k-
algebraic group H, we will denote by Rep(H) the category of finite dimensional
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algebraic H-modules, and by Rep∞(H) the category of all (not necessarily finite-
dimensional) algebraic H-modules. In other words, the algebra O(H) has a canon-
ical structure of Hopf algebra over k (with comultiplication defined by the multi-
plication morphism H ×H → H), and an algebraic H-module is nothing but an
O(H)-comodule.

Recall that for any V ∈ Rep(G), the dual vector space V ∗ has a canonical
structure of object in Rep(G) with action defined by

(h · f)(v) = f(h−1 · v)
for h ∈ H, f ∈ V ∗ and v ∈ V . Recall also that for any algebraic subgroup K ⊂ H,
we have an “induction functor”

IndHK : Rep∞(K)→ Rep∞(H),

see [J3, Chap. I.3]. This functor sends a representation (M,ϱ) (where ϱ : K →
GL(M) is the morphism defining the K-action) to the space of algebraic functions
f : H→M (i.e. elements of O(H)⊗M) which satisfy

f(hk) = ϱ(k−1)(f(h))

for any h ∈ H and k ∈ K, the action of H being induced by left multiplication on
itself. This functor is left exact, and is right adjoint to the restriction functor

ForHK : Rep∞(H)→ Rep∞(K).

(This property is usually called “Frobenius reciprocity” see [J3, Proposition I.3.4].)

In general, it is not true that IndHK restricts to a functor from Rep(K) to Rep(H):
the image of a finite-dimensional module might be infinite-dimensional.

Below we will also consider the derived functors

RiIndHK : Rep∞(K)→ Rep∞(H) (i ≥ 0)

of the functor IndHK. (Note that the category of algebraic representations of a k-
algebraic group always has enough injectives, see [J3, Proposition I.3.9], so that
these functors are well defined.)

Remark 1.4. The definition of the functor IndHK can be “localized” in the
following way. (For details on all of this, see [J3, §§I.5-8–9].) Consider the quotient
H/K (a separated k-scheme of finite type, whose construction is explained e.g. [Mil,
Chap. 7]) and the projection morphism p : H→ H/K. Given (M,ϱ) as above, for
any open subvariety V ⊂ H/K one can consider the vector space consisting of the
functions f ∈ O(p−1(V ))⊗M , seen as maps V →M , which satisfy

f(hk) = ϱ(k−1)(f(h))

for any h ∈ p−1(V ) and k ∈ K. (Note that in this setting hk belongs to p−1(V ),
so that this equality makes sense.) This space admits a natural action of O(V )
(by composition with p and multiplication), and can easily be seen to define a
quasi-coherent OH/K-module denoted LH/K(M). By construction we then have

IndHK(M) = Γ(H/K,LH/K(M)).

In fact, LH/K(M) has a canonical structure of H-equivariant quasi-coherent
sheaf on H/K (in the sense that its pullbacks under the projection and action mor-
phisms H×H/K→ H/K are canonically isomorphic, with this isomorphism sat-
isfying a certain “cocycle” condition), and this construction induces an equivalence
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of categories between Rep(K) and the category of H-equivariant quasi-coherent
sheaves on H/K (see e.g. [Bri, §2]).

Remark 1.5. As an application of the description of the induction functor
in Remark 1.4 and general facts about cohomology of schemes, one obtains the
following properties:

• for any V in Rep∞(K), we have RiIndHK(V ) = 0 for any i > dim(H/K)
([J3, Proposition I.5.12(b)]);

• if the quotient H/K is affine then the functor IndHK is exact; in other

words we have RiIndHK = 0 for any i > 0 ([J3, Corollary I.5.13]);
• if the quotient H/K is projective, for any V ∈ Rep(K) and any i ≥ 0 the

H-module RiIndHK(V ) is finite-dimensional ([J3, Proposition I.5.12(c)]).

Note that in case H is reductive, the fact that H/K is affine is equivalent to the
fact that K is reductive, see [Rd].

1.3. Induced and Weyl G-modules. The main player of this book will be
the category Rep(G). It is a general scheme in Representation Theory that in order
to construct interesting representations of a group (or module over an algebra) one
should start with some “simple enough” representations of a “large” subgroup (or
module over a “large” subalgebra) and then induce to the whole group (or algebra).
In the setting of representations of reductive groups, such a “large” subgroup can
be chosen as the Borel subgroup B, and the “simple enough” representations can
be chosen to the 1-dimensional representations kB(λ) associated with the weights
λ ∈ X, considered as morphisms from B to k.1

Definition 1.6 (Induced or co-Weyl modules). For λ ∈ X, the induced module
N(λ) associated with λ is defined as

N(λ) := IndGB (kB(λ)) = {f ∈ O(G) | ∀b ∈ B, ∀g ∈ G, f(gb) = λ(b)−1f(g)},
with the G-action given by (g · f)(h) = f(g−1h) for g, h ∈ G and f ∈ N(λ).

Example 1.7. In case λ = 0, one finds that

N(0) = O(G/B) = k
since G/B is an irreducible projective variety (see [H3, §21.3]), so that any mor-
phism G/B → k must be constant (see e.g. [H3, §6.1]). More generally, if λ ∈ X
satisfies ⟨λ, α∨⟩ = 0 for any α ∈ R, then λ extends uniquely to a character G→ k×,
hence defines a 1-dimensional G-module kG(λ). (In fact, it is a classical fact that
restriction to T induces an isomorphism between the lattice of algebraic group
morphisms G → k× and the subset of X consisting of weights orthogonal to all
coroots.) By the tensor identity (see [J3, Proposition I.3.6]) we deduce that

N(λ) = IndGB (kB(λ)) ∼= IndGB (kB(0))⊗ kG(λ) = kG(λ).

Remark 1.8. In the case considered in Definition 1.6, using the fact that the
projection morphism G→ G/B locally has sections (in fact it has a natural section
on the “big cell” U+B/B ∼= U+, and then one obtains further local sections by
translation) one sees that the sheaf Lλ := LG/B(kB(λ)) considered in Remark 1.4
is a line bundle (i.e. a locally free sheaf of rank 1) on G/B.

1In fact, every irreducible representation of B is 1-dimensional, hence of the form kB(λ) for
some λ ∈ X.
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In the special case G = SL2(k), the flag variety G/B identifies with the pro-
jective space P1. Under this identification, for any a ∈ Z the line bundle Laϖ1

identifies with the line bundle OP1(a).

It turns out that the module N(λ) is finite-dimensional and algebraic, for any
λ ∈ X. (One possible way of proving this fact is to use Remark 1.8 and classical facts
on sections of coherent sheaves on proper schemes, see [J3, Proposition I.5.12(c)].)
In particular, the dual G-modules are also finite-dimensional and algebraic, and
will be called Weyl modules.

Definition 1.9 (Weyl modules). For λ ∈ X, the Weyl module M(λ) is defined
as

M(λ) = (N(−w0λ))
∗
.

Remark 1.10. The definition of induced and Weyl modules we have given
above seems to depend on the choice of Borel subgroup B and maximal torus
T. In fact these modules are uniquely defined up to isomorphism, if one uses the
“universal” constructions considered in Remark 1.3. Namely, with X defined as in
this remark, if λ ∈ X and if B′ ⊂ G is any Borel subgroup, the weight λ defines a
morphism λB′ : B′ → k×, and one can consider the module IndGB′(kB′(λB′)). Now if
B′′ ⊂ G is any other Borel subgroup, then we also have a character λB′′ : B′′ → k×,
and if g ∈ G is any element such that gB′g−1 = B′′, we have λB′′(gbg−1) = λB′(b)
for any b ∈ B′. We therefore obtain an isomorphism of G-modules

IndGB′(kB′(λB′))
∼−→ IndGB′′(kB′′(λB′′))

which sends a function f : G→ k in the left-hand side to the function h 7→ f(hg).
(This isomorphism does depend on the choice of g.)

1.4. Examples in classical groups.
1.4.1. Special linear groups. Let us consider the case G = SLn(k), with the

conventions and notations of Example 1.1, and consider the natural action of G on
V = kn. It is not difficult (see Exercise 1.6) to show that for any i ∈ {1, · · · , n− 1}
we have ∧

iV ∼= N(ωi).

It is known also that for any r ≥ 0 we have

N(rωn−1) ∼= Symr(V ∗) and N(rω1) ∼= Symr(V )

see [J3, §II.2.16]. (For r = 1, this is equivalent to the description above since∧
nV ∼= k, so that

∧
n−1V ∼= V ∗.)

In particular, when n = 2, we deduce that N(rω1) identifies with the space
k[X,Y ]r of homogeneous polynomials in two variables X and Y of degree r, with
the natural action of SL2(k) obtained by viewing a polynomial in X,Y as a function
on A2.

1.4.2. Symplectic groups. Now, let us assume that G = Sp2n(k), with the con-
ventions and notations of Exercise 1.3. We consider the natural action of G on
V = k2n, which we equip with the standard basis (e1, · · · , e2n). In this basis, the
associated alternating form is given by

ω(ei, ej) =


1 if i ∈ {1, · · · , n} and j = i+ n;

−1 if j ∈ {1, · · · , n} and i = j + n;

0 otherwise.
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For m ∈ {1, · · · , n}, we denote by Mm the G-submodule of
∧m

V generated by
the vector e1 ∧ . . . ∧ em. (By Witt’s theorem, Mm is spanned as a vector space by
the vectors v1 ∧ . . . ∧ vm such that span(v1, . . . , vm) is an isotropic subspace of V .)
Then it is proved in [PS] that we have

Mm
∼= M(ωm).

(In [PS] it is assumed that p ̸= 2, but this restriction is not necessary for this
particular claim; see [AdRy, p. 20].) In particular this shows that there exists an
embedding M(ωm) ↪→

∧m
V . Dualizing, and using the canonical isomorphisms

(1.1)
(∧

mV
)∗ ∼−→

∧
mV ∗ ∼−→

∧
mV

(here the first isomorphism is induced by the pairing (
∧m

V )×(
∧m

V ∗)→ k defined
by (φ1 ∧ · · · ∧ φm, v1 ∧ · · · ∧ vm) 7→ det(φi(vj))i,j , and the second one is induced

by the isomorphism V
∼−→ V ∗ defined by v 7→ ω(v,−) where ω is as above) and the

fact that w0 acts on X as − id we deduce a surjection

(1.2)
∧
mV ↠ N(ωm).

If m = 1, this surjection has to be an isomorphism since dim(N(ω1)) = 2n (which
can e.g. be derived from Theorem 1.21 below and [FH, Exercise 24.21]). On the
other hand, if m ≥ 2 there exists a G-equivariant embedding∧

m−2V ↪→
∧
mV

defined by x 7→ (
∑n
i=1 ei ∧ en+i) ∧ x. (Here, the element

∑n
i=1 ei ∧ en+i is the

image under the isomorphism (1.1)—in case m = 2—of the aternating form ω.) By
Frobenius reciprocity, the composition of this embedding with (1.2) vanishes. Since

dim(N(ωm)) =

(
2n

m

)
−
(

2n

m− 2

)
(again by Theorem 1.21 below and [FH, Exercise 24.21]) we deduce an isomorphism

N(ωm) ∼=
∧
mV

/∧
m−2V.

1.4.3. Even orthogonal groups. Now we turn to the case G = SO2n(k) (with
p ̸= 2), with the conventions and notations of Exercise 1.4. We consider the natural
action of G on V = k2n, which we equip with the standard basis (e1, · · · , e2n). In
this basis, the associated symmetric bilinear form is given by

ω(ei, ej) =

{
1 if i ∈ {1, · · · , n} and j = i+ n or j ∈ {1, · · · , n} and i = j + n;

0 otherwise.

If m ≤ n− 2, then by Frobenius reciprocity there exists a G-equivariant morphism∧
mV → N(ωm),

or dually a G-equivariant morphism

M(ωm)→
∧
mV.

(Here again we use the identification of
∧m

V with its dual, and the fact that
w0(ωm) = −ωm.) Now, as noticed e.g. in [AdRy, p. 20], the G-module

∧m
V

is generated by its weight-subspace of weight ωm; this morphism must therefore
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be surjective. Since dim(N(ωm)) =
(
2n
m

)
(e.g. by Theorem 1.21 below and [FH,

Exercise 24.43]), this surjection must be an isomorphism, and we deduce that

N(ωm) ∼=
∧
mV.

Similar considerations show that we also have

N(ε1 + · · ·+ εn−1) ∼=
∧
n−1V.

In fact, all of these modules are simple.

1.4.4. Odd orthogonal groups. Finally we consider the case G = SO2n+1(k)
(with p ̸= 2), with the conventions and notations of Exercise 1.5. We consider
the natural action of G on V = k2n+1, which we equip with the standard basis
(e1, · · · , e2n+1). In this basis, the associated symmetric bilinear form is given by

ω(ei, ej) =


1 if i ∈ {1, · · · , n} and j = i+ n or j ∈ {1, · · · , n} and i = j + n;

1 if i = j = 2n+ 1;

0 otherwise.

If m ≤ n−1, then the same considerations as in §1.4.3 (using [FH, Exercise 24.31])
show that we have

N(ωm) ∼=
∧
mV,

and that similarly we have

N(ε1 + · · ·+ εn) ∼=
∧
nV.

Once again, all of these modules are simple.

1.5. Weights and characters of G-modules. The representation theory of
tori is particularly simple, in that each algebraic representation is a direct sum of
1-dimensional representations. In more concrete terms, in our situation this means
that for any algebraic T-module M we have

M =
⊕
λ∈X

Mλ,

where for λ ∈ X we set

Mλ := {m ∈M | ∀t ∈ T, t ·m = λ(t)m}.
The set of weights of M is the subset

wt(M) = {λ ∈ X |Mλ ̸= 0} ⊂ X.

In case dim(Mλ) < ∞ for any λ ∈ X, a more interesting invariant is given by the
character ch(M) of M , defined by

ch(M) =
∑
λ∈X

dim(Mλ) · eλ ∈ Z[X].

We will mainly consider weights and characters in case M = ForGT (M ′) for
some M ′ ∈ Rep∞(G). (In this case we will write wt(M ′) and ch(M ′) for wt(M)
and ch(M) respectively.)

Lemma 1.11. In case M ∈ Rep∞(G), the subset wt(M) ⊂ X is invariant under
the action of W . In fact, if moreover dim(Mλ) < ∞ for any λ ∈ X, the element
ch(M) is invariant under the action of W .
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Proof. Both claims follow from the observation that if w ∈W and n ∈ NG(T)
is a lift of w, then for any v ∈M and λ ∈ X we have v ∈Mλ iff n · v ∈Mw(λ). □

The weights of the modules N(λ) considered in §1.3 have the following property.

Lemma 1.12. For any λ ∈ X we have

µ ∈ wt(N(λ)) ⇒ µ ⪯ λ.

Moreover, if N(λ) ̸= 0 we have

dim(N(λ)λ) = 1.

Proof. It is a standard consequence of the Bruhat decomposition that multi-
plication induces an open (dense) embedding

U+ ×B ↪→ G.

We deduce an embedding of U+-modules

N(λ) ↪→ O(U+),

where the right-hand side is the algebra of (algebraic) functions on U+, with the
action of U+ induced by left multiplication on itself. In fact this embedding can
be also seen as an embedding of T-modules

N(λ) ↪→ O(U+)⊗ kT(λ),

where the action on O(U+) is induced by the action on U+ by conjugation. Now
we have

wt(O(U+)) = Z≥0(−R+),

which implies that wt(N(λ)) ⊂ {µ ∈ X | µ ⪯ λ}.
Now, let us assume that N(λ) ̸= 0. Since O(U+)0 has dimension 1, the consid-

erations above imply that

dim(N(λ)λ) ≤ 1.

On the other hand, by Frobenius reciprocity we have

HomG(N(λ),N(λ)) ∼= HomB(N(λ),kB(λ)).

Our assumption implies that this space is nonzero; hence there exists a nonzero
morphism of B-modules (in particular, of T-modules) from N(λ) to kB(λ), which
implies that N(λ)λ ̸= 0. □

Remark 1.13. As noted in the proof of Lemma 1.12 we have

HomG(N(λ),N(λ)) ∼= HomB(N(λ),kB(λ)) ⊂ HomT(N(λ),kT(λ)) ∼= (N(λ)λ)
∗.

Since the right-hand side is 1-dimensional, we deduce that HomG(N(λ),N(λ)) =
k · id.

Note that Lemma 1.11 and Lemma 1.12 also imply that

(1.3) µ ∈ wt(N(λ)) ⇒ µ ⪰ w0λ.

These two simple observations already have the following interesting conse-
quence.

Corollary 1.14. For λ ∈ X, if N(λ) ̸= 0 then λ ∈ X+.
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Proof. Assume that λ ∈ X∖X+. Then there exists α ∈ Rs such that ⟨λ, α∨⟩ <
0, i.e. such that sα(λ) ⪰ λ. By Lemma 1.12, if N(λ) were nonzero we would have
λ ∈ wt(N(λ)), hence (by Lemma 1.11) sα(λ) ∈ wt(N(λ)). This would contradict
the fact that wt(N(λ)) ⊂ {µ ∈ X | µ ⪯ λ} (see Lemma 1.12). □

It turns out that the converse of the implication of Corollary 1.14 is also true,
see [J3, Proposition II.2.6]. The proof is more subtle, and will not be reviewed
here. Of course, this also implies that M(λ) ̸= 0 iff λ ∈ X+.

1.6. Classification of simple modules. The next task we consider is the
classification of the simple objects of the category Rep(G). (These will also be the
simple objects in Rep∞(G).) The answer is given in the following statement, whose
first proof is due to Chevalley.

Theorem 1.15. For any λ ∈ X+, the G-module N(λ) admits a unique simple
submodule, which we will denote L(λ). Moreover, the assignment λ 7→ L(λ) induces
a bijection between X+ and the set of isomorphism classes of simple algebraic G-
modules.

This theorem says in particular that if M is a simple G-module, then there
exists a unique λ ∈ X+ such that M ∼= L(λ). This dominant weight is called the
highest weight of M . (See below for a justification of this terminology.)

The proof of Theorem 1.15 turns out to be quite simple. Namely, we start with
the following observation.

Lemma 1.16. For any λ ∈ X+, we have (N(λ))U
+

= N(λ)λ.

Proof. Recall the embedding ofU+-modules N(λ) ⊂ O(U+) considered in the

proof of Lemma 1.12. Since O(U+)U
+

= k, this embedding shows that (N(λ))U
+ ⊂

N(λ)λ. On the other hand N(λ)λ is 1-dimensional (see Lemma 1.12), and by the

group version of Engel’s theorem (see [H3, Theorem 17.5]) we have (N(λ))U
+ ̸= 0

since N(λ) ̸= 0 and U+ is unipotent. The equality follows. □

Proof of Theorem 1.15. Lemma 1.16 is already enough to show that the
socle of N(λ) is simple. In fact, if V ⊂ N(λ) is any submodule then as in the proof

of the lemma we must have V U+ ̸= 0, so that V ⊃ N(λ)λ. Hence N(λ) cannot have
two distinct simple submodules.

If we denote by L(λ) this simple socle, then T acts on L(λ)U
+

with weight λ,
which implies that L(λ) is not isomorphic to L(µ) if λ ̸= µ. Finally, let V be a
simple G-module. Then the (nonzero) subspace (V ∗)U ⊂ V ∗ is a direct sum of
modules of the form kB(λ) with λ ∈ X. In particular there exists λ ∈ X and a
nonzero morphism kB(−λ) → V ∗, hence a nonzero morphism V → kB(λ). By
Frobenius reciprocity there exists a nonzero morphism V → N(λ), which must
then be injective by simplicity of V , and therefore identify V with L(λ). (Here we
necessarily have λ ∈ X+ since N(λ) ̸= 0.) □

Remark 1.17. By Schur’s lemma we have HomG(L(λ), L(λ)) = k · id.

Lemma 1.12 implies that wt(L(λ)) ⊂ {µ ∈ X | µ ⪯ λ}, and as seen in the
proof of Theorem 1.15 we have L(λ)λ ̸= 0. Hence λ is the unique maximal element
in wt(L(λ)) with respect to ⪯, which justifies the terminology of “highest weight.”
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Using Lemma 1.11 we deduce that w0(λ) is the unique minimal element in wt(L(λ)),
and then that for any λ ∈ X+ we have

(1.4) L(λ)∗ ∼= L(−w0(λ)).

This shows that L(λ) is also isomorphic to the unique simple quotient of M(λ).

Example 1.18. Consider the case G = SL2(k), with p > 0. As explained
in §1.4.1, N([p, 0]) identifies with the space k[X,Y ]p of homogeneous polynomials
of degree p in two variables X and Y , with the obvious action of SL2(k). Using the
fact that the map x 7→ xp is additive in k[X,Y ], it is not difficult to see that the
subspace

k ·Xp ⊕ k · Y p ⊂ k[X,Y ]p

is stable under the action of SL2(k). In fact, under the identification N([p, 0]) =
k[X,Y ]p this subspace is exactly L([p, 0]).

Theorem 1.15 provides a classification of simple algebraicG-modules. However,
the construction of these simple modules is far from explicit; even though the
induced modules N(λ) are relatively well understood (see, in particular, §1.9 below),
this theorem does not explain how “big” the submodule L(λ) is. A very important
problem in this area (which is one of the main topics of this book, and is still not
solved in any satisfactory way in general) is therefore to understand what these
simple modules “look like.” To make this problem more precise, one can e.g. ask
for the description of the characters ch(L(λ)). Given M ∈ Rep(G) and λ ∈ X+, we
will denote by

[M : L(λ)]

the multiplicity of L(λ) as a composition factor of M .
To finish this subsection we note the following result for later use.

Lemma 1.19. For λ ∈ X+, we have dim(L(λ)) = 1 if and only if ⟨λ, α∨⟩ = 0
for any α ∈ R.

Proof. As noted in Example 1.7, if λ satisfies ⟨λ, α∨⟩ = 0 for any α ∈ R, then
dim(N(λ)) = 1, so that we must have L(λ) = N(λ), hence dim(L(λ)) = 1. On the
other hand, if dim(L(λ)) = 1 then λ must be the restriction of a group morphism
G→ k×, so that ⟨λ, α∨⟩ = 0 for any α ∈ R. □

1.7. Central characters. Let Z(G) be the scheme-theoretic center of G, as
defined in [J3, §I.2.6]. This group scheme can be described very explicitly: we
have Z(G) ⊂ T, and Z(G) identifies with the diagonalizable group scheme (in
the sense of [J3, §I.2.5]) associated with the quotient X/ZR of X. (Here, ZR is
the sublattice in X generated by R, or equivalently by Rs.) In particular, this
group scheme might not be smooth if p > 0, but its representations are still very
easy to describe: the category of representations of Z(G) is semi-simple, with
simple objects (up to isomorphism) in bijection with X/ZR, and all of them are
1-dimensional. In other words, the datum of a representation of Z(G) is equivalent
to that of a X/ZR-graded k-vector space. (These facts are special cases of general
results about representations of diagonalizable group schemes, see [J3, §I.2.11].)

Every V ∈ Rep∞(G) can be seen as a representation of Z(G) by restriction.
For any x ∈ X/ZR we will denote by VZ=x the subspace consisting of vectors on
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which Z(G) acts via the character x. Then we have

V =
⊕

x∈X/ZR

VZ=x,

and each VZ=x is a G-stable subspace of V . If V ′ is another object of Rep∞(G),
then any morphism f ∈ HomG(V, V ′) must send VZ=x to V ′

Z=x for any x ∈ X/ZR.
Hence we have a decomposition of the category Rep∞(G) as

(1.5) Rep∞(G) =
⊕

x∈X/ZR

Rep∞(G)Z=x

where Rep(G)∞Z=x is the full subcategory of Rep∞(G) whose objects are the repre-
sentations V such that V = VZ=x.

Each indecomposable object in Rep∞(G) (in particular, each object L(λ), N(λ)
or M(λ) for λ ∈ X+) must belong to one of the summands Rep∞(G)Z=x. In fact,
considering the action of Z(G) on the highest-weight line one sees that for any
λ ∈ X+, L(λ), N(λ) and M(λ) belong to the summand corresponding to the image
of λ in X/ZR.

1.8. Characters and the Grothendieck group. Consider now the Gro-
thendieck group [Rep(G)] of the abelian category Rep(G). This abelian group
admits as a basis the classes ([L(λ)] : λ ∈ X+) of the simple modules. For M ∈
Rep(G), the expansion of the class [M ] in this basis is given by

[M ] =
∑
λ∈X+

[M : L(λ)] · [L(λ)].

Any short exact sequence V ′ ↪→ V ↠ V ′′ in Rep(G) induces, for any µ ∈ X, an
exact sequence of vector spaces

(V ′)µ ↪→ Vµ ↠ (V ′′)µ.

It follows that the map V 7→ ch(V ) induces a group morphism

[Rep(G)]→ Z[X]

which we will also denote ch, Moreover, it follows from Lemma 1.11 that this
morphism takes values in Z[X]W .

Proposition 1.20. The morphism

ch : [Rep(G)]→ Z[X]W

is an isomorphism.

Proof. As seen above the classes ([L(λ)] : λ ∈ X+) form a basis of the Z-
module [Rep(G)]. On the other hand, since X+ is a system of representatives for
the W -orbits on X, the Z-module Z[X]W is free, with a basis consisting of the
elements oλ :=

∑
µ∈W (λ) e

µ where λ runs over X+. Since L(λ) is a submodule of

N(λ) containing N(λ)λ, we deduce from Lemma 1.12 that

ch(L(λ)) ∈ oλ +
∑
µ∈X+

µ≺λ

Z · oµ.

This observation shows that (ch(L(λ)) : λ ∈ X+) forms a basis of Z[X]W , which
implies that our morphism is an isomorphism. □
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This proposition and its proof show that the composition factors of a finite-
dimensional algebraic G-module are determined by its character. Moreover, if one
knows the characters of the modules L(λ) for λ ∈ X+, then the determination of
these composition factors is equivalent to the determination of the coefficients of
this character in the basis (ch(L(λ)) : λ ∈ X+) of Z[X]W .

In fact, as mentioned in §1.6, the determination of the characters of the sim-
ple G-modules is a very delicate question. We will therefore also consider other
bases of [Rep(G)]. Namely, with the notation in the proof of Proposition 1.20, by
Lemma 1.12 we also have

ch(N(λ)) ∈ oλ +
∑
µ∈X+

µ≺λ

Z · oµ.

Therefore the classes [N(λ)] for λ ∈ X+ also constitute a basis of [Rep(G)]. (The
main difference with the basis ([L(λ)] : λ ∈ X+) is that in this basis the coefficients
of the class of an object of Rep(G) are not necessarily nonnegative.)

The tensor product of G-modules endows the category Rep(G) with a structure
of monoidal category, which in turns induces a ring structure on the Grothendieck
group [Rep(G)]. For V, V ′ in Rep(G) and λ ∈ X we have

(V ⊗ V ′)λ =
⊕
µ,ν∈X
µ+ν=λ

Vµ ⊗ (V ′)ν ;

it follows that the morphism of Proposition 1.20 is a ring isomorphism.

1.9. Weyl’s character formula. The next statement we will consider is an
analogue in the setting of (algebraic) representations of algebraic groups of Weyl’s
character formula, originally discovered in the setting of compact Lie groups. It is
usually also referred to as Weyl’s character formula. Here we denote by

ρ =
1

2

∑
α∈R+

α ∈ Q⊗Z X

the half sum of the positive roots. Given w ∈W and λ ∈ X we set

w • λ = w(λ+ ρ)− ρ.

It is a standard fact that the right-hand side always belongs to X, and that this
formula defines an action of W on X.

For the proof of the following theorem, we refer to [J3, Proposition II.5.10].
(This statement involves a quotient of two elements in Z[X]. It is a classical fact that
this fraction belongs to Z[X], i.e. that its numerator is divisible by its denominator
in the domain Z[X].)

Theorem 1.21. For every λ ∈ X+ we have

ch(N(λ)) =

∑
w∈W (−1)ℓ(w) · ew•λ∑
w∈W (−1)ℓ(w) · ew•0 .

Using this formula one can check that

ch(M(λ)) = ch(N(λ))
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for any λ ∈ X+. (This equality can also be seen more directly, see [J3, §II.2.13].)
In view of Proposition 1.20, this implies that we also have

(1.6) [M(λ)] = [N(λ)]

in [Rep(G)], or in other words that

(1.7) [M(λ) : L(µ)] = [N(λ) : L(µ)]

for any µ ∈ X+.
The fraction appearing in Weyl’s character formula can be difficult to compute,

but it appears in several other contexts (in particular, compact Lie groups and
complex semisimple Lie algebras), and has been extensively studied. (For explicit
examples of how to compute this fraction for classical groups, see e.g. [FH, §24.2].)
For us, we will hence considered that the characters (ch(N(λ)) : λ ∈ X+) are
understood. In view of Proposition 1.20, we will therefore consider that computing
the character of a G-moduleM is equivalent to expressing [M ] in the basis ([N(λ)] :
λ ∈ X+) of [Rep(G)].2 From this point of view, the problem evoked in §1.6 asks for
the description, for each λ ∈ X+, of the expansion of the element [L(λ)] ∈ [Rep(G)]
in the basis ([N(µ)] : µ ∈ X+).

The formula in Theorem 1.21 does not involve the field k (or its characteristic
p) in any way. From the point of view described in §1.1, we will therefore consider
that induced and Weyl modules are independent of k (or of p).

Remark 1.22. Once ch(N(λ)) is known, one can in particular compute the
dimension dimN(λ) by evaluating each eµ to 1. The result one gets in this way is
well known from the representation theory of complex semisimple Lie algebras (or
of compact Lie groups): we obtain that

dimN(λ) =

∏
α∈R+⟨λ+ ρ, α∨⟩∏
α∈R+⟨ρ, α∨⟩

;

see [H2, Corollary in §24.3].

2. Structure of the category Rep(G)

In this section we recall (mostly without proof) some important structural
results on the category Rep(G) that will allow us to explain the way in which one
can try to answer the problem considered in §1.9.

2.1. Kempf’s vanishing theorem. Another useful statement that we will
require below is the following theorem due to Kempf, and called Kempf’s vanishing
theorem.

Theorem 2.1. For any λ ∈ X+ and any i ∈ Z>0, we have

RiIndGB (kB(λ)) = 0.

For the proof, see [J3, Theorem II.4.5].

2We are not saying that there does not exist any other interesting way of computing charac-
ters; but this point of view is the one which is adopted in most works on the subject, and which

will be considered in these notes.
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Remark 2.2. Recall the notation of Remark 1.4. For any H-equivariant quasi-
coherent sheaf F on H/K, and any i ≥ 0, the space Hi(H/K,F ) has a canonical
structure of H-module. For and i ≥ 0 and M ∈ Rep∞(K), there exists a canonical
isomorphism

RiIndHK(M) ∼= Hi(H/K,LH/K(M))

in Rep∞(H), see [J3, §I.5.12].
From this point of view, in the setting of Remark 1.8 and in the special caseG =

SL2(k), Theorem 2.1 specializes to the standard fact that the higher cohomology
spaces of the line bundles La are trivial when a ≥ 0.

There exists another general vanishing result on the spaces RiIndGB (kB(λ)): it
states that

RiIndGB (kB(λ)) = 0 for any i ≥ 0

in case λ ∈ X satisfies ⟨λ, α∨⟩ = −1 for some α ∈ Rs, see [J3, Proposition II.5.4(a)].
(This statement is much easier to prove than Theorem 2.1: by using a stan-
dard transitivity result for derived induction functors it suffices to prove that
RiIndPα

B (kB(λ)) = 0 for any i ≥ 0, where Pα is the parabolic subgroup con-
taining B attached to α. The latter statement comes down to the standard fact
that Hi(P1,OP1(−1)) = 0 for any i.)

2.2. Highest weight structure. In these notes we will make extensive use
of a certain structure on Rep(G) called a structure of highest weight category. The
general theory of such structures is reviewed in Appendix A.

Theorem 2.3. The category Rep(G), together with the poset (X+,⪯), the col-
lection of “standard objects” (M(λ) : λ ∈ X+), and the collection of “costandard
objects” (N(λ) : λ ∈ X+), is a highest weight category.

In view of Remark 1.10, this structure of highest weight category is intrinsic,
i.e. it does not depend on the choice of Borel subgroup and maximal torus.

The proof of Theorem 2.3 will make use of the following lemma, for which we
refer to [J3, Proposition II.4.10]. (The proof of this lemma uses the description of
the injective hulls of the simple B-modules kB(λ).) Here we denote by

Hi(B,−) : Rep∞(B)→ Vectk

the i-th derived functor of the functor of B-fixed points (where Vectk is the category
of k-vector spaces), i.e.

Hi(B,M) = ExtiRep∞(B)(k,M),

and for λ ∈ Z≥0R
+, written as λ =

∑
α∈Rs nα · α, we set ht(λ) =

∑
α∈Rs nα.

Lemma 2.4. If Hi(B,M) ̸= 0, then there exists λ ∈ wt(M) such that

−λ ∈ Z≥0R
+ and ht(−λ) ≥ i.

The main step of the proof of Theorem 2.3 is the following proposition, due
to Cline–Parshall–Scott–van der Kallen.

Proposition 2.5. For λ ∈ X+ and i ∈ Z we have

ExtiRep∞(G)(M(λ),N(µ)) = 0

unless i = 0 and λ = µ.
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Proof. We reproduce the proof given in [J3, Proposition II.4.13]. If we denote
by

RIndGB : D+Rep∞(B)→ D+Rep∞(G)

the derived functor of the left exact functor IndGB : Rep∞(B) → Rep∞(G), then
Theorem 2.1 implies that for any µ ∈ X+ we have an isomorphism

RIndGB (kB(µ)) ∼= IndGB (kB(µ)),

where the right-hand side denotes the module IndGB (kB(µ)) seen as a complex
concentrated in degree 0. The derived version of Frobenius reciprocity (stated in
the form of a spectral sequence in [J3, Proposition I.4.5]) can also be stated as

saying the functor R IndGB is right adjoint to the forgetful functor

ForGB : D+Rep∞(G)→ D+Rep∞(B).

Using this we deduce that

ExtiRep∞(G)(M(λ),N(µ)) ∼= ExtiRep∞(B)

(
ForGB (M(λ)),kB(µ)

)
∼= ExtiRep∞(B)

(
k,ForGB (N(−w0λ))⊗ kB(µ)

)
∼= Hi(B,ForGB (N(−w0λ))⊗ kB(µ)).

Similar arguments show that we also have

ExtiRep∞(G)(M(λ),N(µ)) ∼= Hi(B,kB(−w0λ)⊗ ForGB (N(µ))).

From these equalities and Lemma 2.4 we see that if ExtiRep∞(G)(M(λ),N(µ)) ̸= 0,

then there exist ν ∈ wt(N(−w0λ)) and ν
′ ∈ wt(N(µ)) such that

−µ− ν ∈ Z≥0R
+ and ht(−µ− ν) ≥ i,

w0λ− ν′ ∈ Z≥0R
+ and ht(w0λ− ν′) ≥ i.

Then we have ν ⪰ −λ and ν′ ⪰ w0(µ) by (1.3), so that

−µ+ λ = (−µ− ν) + (ν + λ) ∈ Z≥0R
+,

w0(−µ+ λ) = (w0λ− ν′) + (ν′ − w0µ) ∈ Z≥0R
+.

We deduce that µ − λ ∈ (Z≥0R
+) ∩ (−Z≥0R

+) = {0}, so that µ = λ. We must
also have ν = −µ so that i ≤ 0, and finally i = 0. □

We can now complete the proof of Theorem 2.3.

Proof of Theorem 2.3. We need to check the various conditions in Defini-
tion 1.1 from Appendix A. Here Condition (1) is a standard fact from the theory
of root systems, see e.g. [H2, Lemma B in §13.2]. Condition (2) follows from the
fact that

HomRep(G)(L(λ),N(λ)) ∼= HomRep(B)(L(λ),kB(λ))
(by Frobenius reciprocity), and that this space is at most 1-dimensional, since

HomRep(T)(L(λ),kT(λ)) ∼= (L(λ)λ)
∗

is 1-dimensional.
For condition (3), we consider an ideal Λ ⊂ X+ and a maximal element λ ∈ Λ.

For any V in Rep(G) we have

Ext1Rep(G)(V,N(λ))
∼= Ext1Rep∞(G)(V,N(λ))
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because the subcategory Rep(G) ⊂ Rep∞(G) is closed under extensions. The same
arguments as in the proof of Proposition 2.5 then show that if Ext1Rep(G)(V,N(λ)) ̸=
0, then exists ν ∈ wt(V ) such that ν−λ ∈ Z≥0R

+ and ht(ν−λ) ≥ 1. Then we have
ν ≻ λ, so that V must admit a composition factor of the form L(η) with η ≻ λ,
hence with η /∈ Λ. This implies that N(λ) is injective in the Serre subcategory of
Rep(G) generated by the simple objects L(µ) with µ ∈ Λ. Since its socle is L(λ), it
must be the injective hull of L(λ) in this subcategory. By duality, we deduce that
M(λ) is the projective cover of L(λ) in this Serre subcategory.

Condition (4) follows from the fact that the weights µ of the cokernel of the
embedding L(λ) ↪→ N(λ) satisfy µ ≺ λ, so that the composition factors of this
cokernel must be of the form L(ν) with µ ≺ λ, and a similar observation for the
kernel of the surjection M(λ) ↠ L(λ).

Finally, to prove Condition (5), we remark that the natural functor

(2.1) DbRep(G)→ DbRep∞(G)

induces isomorphisms

HomDbRep(G)(M,N [i])
∼−→ HomDbRep∞(G)(M,N [i])

for any M,N ∈ Rep(G) and i ∈ {0, 1}, since Rep(G) is a full subcategory of
Rep∞(G) closed under extensions. It follows that the similar morphism

HomDbRep(G)(M,N [2])→ HomDbRep∞(G)(M,N [2])

is injective for any M,N ∈ Rep(G), see e.g. [BBD, Remarque 3.1.17(i)] or [BGS,
Lemma 3.2.3]. In particular if M = M(λ) and N = N(µ) for some λ, µ ∈ X+, the
natural morphism

Ext2Rep(G)(M(λ),N(µ))→ Ext2Rep∞(G)(M(λ),N(µ))

is injective. Since the right-hand side vanishes by Proposition 2.5, it follows that
the left-hand side also vanishes, which finishes the proof. □

Remark 2.6. (1) By Corollary 2.3 from Appendix A, Theorem 2.3 im-
plies that we have

ExtiRep(G)(M(λ),N(µ)) = 0

unless λ = µ and i = 0. Comparing with Proposition 2.5, and using the
fact that the category DbRep(G) is generated (as a triangulated category)
both by the objects (N(λ) : λ ∈ X+) and by the objects (M(λ) : λ ∈ X+),
it is not difficult to deduce that the functor (2.1) is fully faithful. This
property is in fact a general fact on categories of representations of affine
group schemes over fields, see [Co, Theorem 2.3.1].

(2) By Lemma 1.5 in Appendix A we have

dimHomG(M(λ),N(λ)) = 1.

Now M(λ) has head isomorphic to L(λ), which by definition is the socle of
L(λ). It follows that any nonzero morphism in HomG(M(λ),N(λ)) factors
as a composition

M(λ) ↠ L(λ) ↪→ N(λ).
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2.3. The case p = 0. The results we have discussed so far are uniform across
all characteristics. Starting from §2.4 below we will restrict to the case p > 0, which
is the main topic of this book. Before that, for completeness (and comparison) we
state two important results which are specific to the case p = 0.

The first one is the Borel–Weil–Bott theorem (or Borel–Bott–Weil theorem, or
Bott–Borel–Weil theorem). This theorem is due to Bott, and is based on an earlier
result of Borel–Weil describing irreducible representations of compact Lie groups
as sections of line bundles on flag varieties. To state this theorem, we note that a
fundamental domain for the restriction of W on X via • is given by

{λ ∈ X | ∀α ∈ Rs, ⟨λ, α∨⟩ ≥ −1}.

In other words, any µ ∈ X can be written as µ = w • λ where w ∈ W and λ ∈ X
satisfies ⟨λ, α∨⟩ ≥ −1 for any α ∈ Rs. Here λ is uniquely determined, but w is
determined only up to multiplication on the right by an element of the stabilizer
of λ (which is the parabolic subgroup of W generated by the simple reflections in
S which stabilize λ). In case λ ∈ X+, this stabilizer is trivial, so that w is uniquely
determined in this case.

Theorem 2.7. Assume that p = 0. Let λ ∈ X such that ⟨λ, α∨⟩ ≥ −1 for any
α ∈ Rs, and let w ∈W .

(1) If λ /∈ X+, then RiIndGB (kB(w • λ)) = 0 for any i ≥ 0.
(2) If λ ∈ X+, then for i ≥ 0 we have

RiIndGB (kB(w • λ)) ∼=

{
N(λ) if i = ℓ(w)

0 otherwise.

For the proof of this theorem, see [J3, Corollary II.5.5]. This statement also
has a variant in the case p > 0, which is useful but more restricted. Namely, in
case p > 0, the same statement holds if λ ∈ X satisfies 0 ≤ ⟨λ + ρ, β∨⟩ ≤ p for all
β ∈ R+.

The second fundamental result we want to mention is the following.

Theorem 2.8. Assume that p = 0. Then the category Rep∞(G) is semisimple,
and for each λ ∈ X+ the module N(λ) is simple.

For the proof, see [J3, §II.5.6]. These statements are definitely false in case
p > 0, as seen already in Example 1.18.

2.4. The Frobenius morphism and Steinberg’s tensor product for-
mula. From now on we will assume that p > 0.

For any k-scheme X, the Frobenius twist of X is the fiber product

X(1) := Spec(k)×Spec(k) X,

where the morphism Spec(k)→ Spec(k) is induced by the ring morphism x 7→ xp.
In fact, the projection morphism X(1) → X is an isomorphism of abstract schemes,
but not of k-schemes: if X = Spec(A) for some k-algebra A, then X(1) is the
spectrum of A, seen as a k-algebra with the same multiplication map, but with the
structure of k-vector space given by λ · a = λ1/pa, where (−)1/p is the inverse to
x 7→ xp. In this setting the Frobenius morphism

FrX : X → X(1)
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is the morphism of k-schemes corresponding to the algebra morphism A → A
defined by a 7→ ap. (In general, the Frobenius morphism can be obtained by gluing
these morphisms on an affine open cover.)

In particular, we can consider the connected reductive group G(1), with its
Borel subgroup B(1), and its maximal torus T(1). The Frobenius morphism

FrG : G→ G(1)

is a group morphism, which sends B into B(1) and T into T(1). In particular, given
V in Rep(G(1)) we can consider the G-module Fr∗G(V ) obtained by pullback. We
will also denote by

(2.2) Fr∗T : X∗(T(1))→ X

the morphism sending a morphism to its composition with FrT. It is easily checked
that this morphism is injective, with image p · X.

The classification of simple modules from §1.6 holds also for G(1) with the sub-
groups B(1) and T(1). If the corresponding subset of dominant weights is denoted
X∗(T(1))+, then for λ ∈ X∗(T(1)) we will denote by L(1)(λ) the corresponding
simple G(1)-module. Note that the image of X∗(T(1))+ under (2.2) is pX+.

We set

X+
res = {λ ∈ X | ∀α ∈ Rs, 0 ≤ ⟨λ, α∨⟩ < p}.

(The weights in this subset are called restricted dominant weights.) The following
theorem is due to Steinberg, and is called Steinberg’s tensor product theorem. For
the proof, we refer to [J3, Proposition II.3.16].

Theorem 2.9. For any λ ∈ X+
res and µ ∈ X∗(T(1))+ we have

L(λ+ Fr∗T(µ))
∼= L(λ)⊗ Fr∗G(L(1)(µ)).

Usually we will fix an isomorphism of k-algebraic groups G(1) ∼= G identifying
B(1) with B and T(1) with T, such that the morphism Fr∗T of (2.2) identifies
with multiplication by p (which is always possible, see [J3, §II.3.1]); if we still
denote by FrG : G→ G the morphism obtained using this identification, then the
isomorphism of Theorem 2.9 then reads

(2.3) L(λ+ pµ) ∼= L(λ)⊗ Fr∗G(L(µ))

for λ ∈ X+
res and µ ∈ X+.

Consider now the derived subgroup D(G) of G (a semisimple group), and its
maximal torus T ∩D(G). The restriction to R of the (surjective) morphism

(2.4) X→ X∗(T ∩D(G))

induced by restriction to T∩D(G) is injective, and its image is the root system of
(D(G),T∩D(G)). The roots Rs therefore also provide a basis of this root system.
Any coroot in R∨ factors through D(G), hence can be considered as a coroot if
this group. If D(G) is simply connected,3 for any α ∈ Rs there exists a weight
ϖα ∈ X∗(T ∩D(G)) which satisfies

⟨ϖα, β
∨⟩ = δα,β

3Let us recall that this condition is not really a restriction, since for any G there exists a finite
central isogeny G′ → G where G has simply connected derived subgroup; see e.g. [J3, §II.1.17].
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for all β ∈ Rs. If ϖ′
α ∈ X is any element whose image under (2.4) is ϖα, then we

also have

⟨ϖ′
α, β

∨⟩ = δα,β

for all β ∈ Rs. Using these weights one sees that any ν ∈ X+ can be written
(possibly non uniquely) as a sum ν = λ+ pµ with λ ∈ X+

res and µ ∈ X+. Therefore,
in this case, applying Theorem 2.9 repeatedly reduces the description of all simple
G-modules to the description of those associated with restricted dominant weights.
In particular, if G is semisimple (and simply connected) there exists a finite number
of restricted dominant weights, so that only finitely many simple modules have to
be considered.

Example 2.10. In case G = SLn(k), there exists a canonical isomorphism of
k-algebraic groups

G(1) ∼= SLn(k)

under which the Frobenius morphism FrG identifies with the morphism sending a
matrix (ai,j)1≤i,j≤n to the matrix (api,j)1≤i,j≤n. With the notation of Example 1.1,
we have

X+
res = {a1ϖ1 + · · ·+ an−1ϖn−1 : a1, · · · , an−1 ∈ {0, · · · , p− 1}}.

In case n = 2, it is easily seen that for any a ∈ {0, · · · , p−1} we have L(aϖ1) =
N(aϖ1), and this module is described in §1.4.1. For a general a ∈ Z≥0, writing

a = a(0) + a(1)p+ · · ·+ a(r)pr

with each a(i) in {0, · · · , p− 1}, we therefore have

L(aϖ1) = N(a(0)ϖ1)⊗ N(a(1)ϖ1)
(1) ⊗ · · · ⊗ N(a(r)ϖ1)

(r)

where (−)(s) means the pullback under the morphism (ai,j) 7→
(
(ai,j)

ps
)
. See

Exercise 1.1 for more details.

Theorem 2.9 is the first statement so far were the characteristic p of k ap-
pears. This statement shows that simple G-modules do depend on p in an essential
way if we use the parametrization by dominant weights. “Independence of p” phe-
nomena for simple modules (as discussed in §1.1) can be expected, but they will
be more subtle than what we have encountered so far, and will require a different
parametrization of these modules, which will be introduced in the next subsections.

2.5. The affine Weyl group and the linkage principle. Recall the sub-
lattice ZR ⊂ X generated by R. The affine Weyl group is the semi-direct product

Waff =W ⋉ ZR.

For λ ∈ ZR, we will denote by tλ the corresponding element in Waff . We will
consider the dot action of Waff on X, defined by

(wtλ) ·p µ = w(µ+ pλ+ ρ)− ρ

for λ ∈ ZR, µ ∈ X and w ∈ W . (As noted in §1.9, the right-hand side indeed
belongs to X. Note also that the restriction of this action to W coincides with the
action • considered above.)
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Remark 2.11. (1) As we will see below, in addition to the affine Weyl
group Waff , it is sometimes useful to consider the extended affine Weyl
group

Wext :=W ⋉X,
in which Waff is a normal subgroup. The dot-action of Waff on X extends
to an action of Wext, defined by the same formula as above.

(2) Sometimes the affine Weyl group is defined as Waff = W ⋉ pZR, and
then no dilation by p is necessary in the definition of the dot-action. In
fact, here pZR is the image of the root lattice of (G(1),T(1)) under the
Frobenius pullback morphism Fr∗T : X∗(T(1))→ X, and it might be even
more natural in view of some formulas below to define Waff as the semi-
direct product of W with the latter root lattice. We will however not do
that.

A fundamental result is the following statement, called the linkage principle and
due in increasing levels of generality to Humphreys, Jantzen and finally Andersen.

Theorem 2.12. For λ, µ ∈ X+, if Ext1Rep(G)(L(λ), L(µ)) ̸= 0 then Waff ·p λ =
Waff ·p µ.

For the proof of this theorem (and in fact, of a more precise version known
as the strong linkage principle, discussed in §2.6 below), we refer to [A1], see [J3,
Corollary II.6.17]. The proof in full generality is subtle, but one can give a simple
proof under the following assumptions:

• the derived subgroup D(G) is simply connected;
• the quotient X/ZR has no p-torsion.

In fact, under the first assumption one can describe an important subalgebra of the
center of the universal enveloping algebra Ug of the Lie algebra g of G, as follows.
Consider the adjoint action of G on Ug, and denote by (Ug)G the fixed points for
this action. It is clear that (Ug)G is a subalgebra of Ug, and since the differential
of the G-action is the action of g given by x · y = xy− yx for x ∈ g and y ∈ Ug this
subalgebra is contained in the center of Ug. Let us denote by t, resp. u, resp. u+,
the Lie algebra of T, resp. U, resp. U+. Then we have a triangular decomposition

g = u⊕ t⊕ u+,

so that multiplication induces an isomorphism of k-vector spaces
Uu⊗ Ut⊗ Uu+ ∼−→ Ug.

Consider the natural algebra morphism Uu → k, resp. Uu+ → k, sending each
element of u, resp. u+, to 0, and the induced map

(2.5) Ug→ Ut = S(t).

This map is not an algebra morphism, but an adaptation of classical results of
Harish-Chandra in the analogous characteristic-0 setting (see [J2, §9.3]) shows that
its restriction to (Ug)G is an injective algebra morphism, whose image can be
described as follows. There exists a unique action • of the group W on t∗ such that

sα • v = sα(v)− α
for any α ∈ Rs, where in the right-hand side we consider the obvious action on t∗.
This action is compatible with the action on X denoted with the same symbol in
the sense that if λ ∈ X has differential ξ ∈ t∗, then for any w ∈W the differential of
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w •λ is w • ξ. Consider the induced action on O(t∗) = S(t), and denote by S(t)(W,•)

its fixed points. Then the map (2.5) restricts to an algebra isomorphism

(Ug)G ∼−→ S(t)(W,•).

By definition the right-hand side is the algebra of functions on the quotient scheme
t∗/(W, •) (an affine scheme); the datum of a k-point in this scheme (i.e. of an
element of the quotient set t∗/(W, •)) is therefore equivalent to the datum of a
character of S(t)(W,•), hence of (Ug)G.

If V ∈ Rep(G), one can consider the action of Ug on V obtained by differentia-
tion, and its restriction to (Ug)G (which is an action by morphisms of G-modules).
If V = L(λ) for some λ ∈ X+, since EndG(V ) = k · id this action must be given by
a character of (Ug)G. Considering the action on the highest-weight line one sees
that this character corresponds to the image of the differential of λ in t∗/(W, •).

Fix now λ, µ ∈ X+ such that Ext1Rep(G)(L(λ), L(µ)) ̸= 0. Then (Ug)G must act

on L(λ) and L(µ) by the same character; hence there exists w ∈W such that λ−w·pµ
has vanishing differential, i.e. belongs to pX. On the other hand, recall the (scheme-
theoretic) center Z(G) ⊂ G considered in §1.7. In view of the decomposition (1.5),
since Ext1Rep(G)(L(λ), L(µ)) ̸= 0 we must have λ − µ ∈ ZR. We therefore obtain
that

λ− w ·p µ ∈ (pX) ∩ ZR.
Now, under our second assumption above we have (pX) ∩ ZR = pZR (because
multiplication by p is injective on X/ZR), hence Waff ·p λ =Waff ·p µ.

Remark 2.13. More recently, a new general proof of Theorem 2.12, based on
the geometric Satake equivalence, has been obtained by G. Williamson and the
author in [RW3].

Theorem 2.12 has strong consequences for the structure of Rep∞(G). Namely,
if c ∈ X/(Waff , ·p), we will denote by Rep∞(G)c the Serre subcategory of Rep∞(G)
consisting of modules all of whose simple subquotients have the form L(λ) with
λ ∈ c ∩ X+.

Corollary 2.14. The assignment (Mc)c∈X/(Waff ,·p) 7→
⊕

cMc induces an
equivalence of categories ∏

c∈X/(Waff ,·p)

Rep∞(G)c
∼−→ Rep∞(G).

In more concrete terms, this corollary says that any object in Rep∞(G) decom-
poses in a canonical way as a direct sum of objects in the subcategories Rep∞(G)c,
and that any morphism between such modules is a direct sum of morphisms between
the components in these subcategories. This statement is an essentially immedi-
ate consequence of Theorem 2.12; for details, see [J3, §II.7.1]. Below we will also
consider the restriction of this decomposition to Rep(G). For c ∈ X/(Waff , ·p) we
will denote by Rep(G)c the Serre subcategory of Rep(G) generated by the simple
objects L(λ) where λ ∈ c ∩ X+; then we have

(2.6) Rep(G) =
⊕

c∈X/(Waff ,·p)

Rep(G)c.

Remarks 2.15. (1) If λ ∈ X+, then M(λ) and N(λ) are indecomposable;
they therefore belong to Rep(G)Waff ·pλ.
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(2) The subcategory Rep(G)c is often called “the block of c,” even though
this is not a block in the strict sense in general (that is, sometimes it can
be decomposed as a direct sum in a nontrivial way). For more details on
this question, see [J3, §II.7.2].

(3) The decomposition in Corollary 2.14 refines the decomposition (1.5) in the
sense that any Waff -orbit in X is included in a (unique) coset in X/ZR,
and that for any x ∈ X/ZR we have

Rep(G)Z=x =
⊕

c∈X/(Waff ,·p)
c⊂x

Rep(G)c.

(4) The decomposition (2.6) is not compatible in any nice way with the
monoidal structure of Rep(G) given by tensor product: the tensor product
of two modules that belong to a block might have nonzero components in
several blocks, and these are not easy to describe in general. (In a sense,
this more complicated behaviour is the reason why the translation func-
tors discussed in §2.7 below are useful.) There is one general thing one
can say however, which is that blocks are “almost” stable under tensor
product with Frobenius pullbacks of G(1)-modules. Namely, since Waff is
a normal subgroup inWext (see Remark 2.11), given anyWext-orbit d in X,
there exists a canonical transitive action of the quotient Wext/Waff on the
set of Waff -orbits contained in d. Now we have canonical identifications

Wext/Waff
∼= X/ZR ∼= (pX)/(pZR) ∼= X∗(Z(G(1)))

where Z(G(1)) is the scheme-theoretic center of G(1), see §1.7. If c ⊂ X is
a Waff -orbit, if V ∈ Rep(G)c, and if V ′ ∈ Rep(G(1)) is such that Z(G(1))
acts on V ′ via a character χ, then V ⊗ Fr∗G(V ′) belongs to the summand
of Rep(G) corresponding to χ · c where χ is identified with an element of
Wext/Waff as above and we consider the action on the set of Waff -orbits
in Wext • c. In fact, the proof of this fact reduces to the case V and V ′ are
simple, and in this case it follows from Steinberg’s tensor product formula
(Theorem 2.9).

In particular, Corollary 2.14 shows that at the level of Grothendieck groups we
have

[Rep(G)] =
⊕

c∈X/(Waff ,·p)

[Rep(G)c].

In terms of the bases considered in §1.8, the subfamilies ([L(λ)] : λ ∈ c ∩ X+)
and ([N(λ)] : λ ∈ c ∩ X+) both form bases of the summand [Rep(G)c], for any
c ∈ X/(Waff , ·p).

2.6. Highest weight structure on blocks and the strong linkage prin-
ciple. Recall from Theorem 2.3 that the category Rep(G) has a natural struc-
ture of highest weight category, with weight poset (X+,⪯). As explained in Re-
mark 2.15(1), the objects M(λ) and N(λ) belong to the block Rep(G)Waff ·pλ, for
any λ ∈ X+. From this it is easily seen that for any c ∈ X/(Waff , ·p), the category
Rep(G)c also has a structure of highest weight category, with weight poset c ∩ X+

(for the order obtained by restricting ⪯), standard objects (M(λ) : λ ∈ c ∩ X+),
and costandard objects (N(λ) : λ ∈ c∩X+). (The proof of this claim is identical to
that of Lemma 1.4 in Appendix A.)
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The strong linkage principle provides a refinement of this claim. Here we will
mainly consider a special case of this result which we first state; for the full state-
ment, see Remark 2.17 below. The reflections in Waff are the elements of the form
trβsβ with β ∈ R and r ∈ Z. We define a new order ↑ on X by declaring that λ ↑ µ
if there exist reflections s1, · · · , sn such that

λ ⪯ s1 ·p λ ⪯ s2s1 ·p λ ⪯ · · · ⪯ (sn−1 · · · s1) ·p λ ⪯ (sn · · · s1) ·p λ = µ.

Of course, when two elements are comparable for this order they belong to the same
(Waff , ·p)-orbit.

The following statement was conjectured by Verma, and first proved in full
generality by Andersen; see [J3, Proposition II.6.13]. (See [J3, Chap. II.6] for
historical remarks and references.)

Proposition 2.16 (The strong linkage principle). If λ, µ ∈ X+ and L(λ) is a
composition factor of N(µ), then λ ↑ µ.

Using (1.6), we see that the statement of Proposition 1.6 also holds with N(µ)
replaced by M(µ). As a consequence, using Remark 2.4 in Appendix A one sees
that for any orbit c ⊂ X+ the category Rep(G)c has a highest weight structure
for the order ↑ on c ∩ X+ (with the same standard and costandard objects as
above). We will explain a different (and, in a sense, more explicit) description of
the intersections c ∩ X+ and the order ↑ on it in §2.8 below.

Remark 2.17. The strong linkage principle as proved by Andersen in [A1]
and presented in [J3, §§II.6.13–16] is in fact a more general statement, which gives

information on all modules RiIndGB (kB(λ)) with λ ∈ X and i ∈ Z. Namely, as
in §2.3, each weight λ can be written in the form w ·p µ with w ∈ W and µ ∈ X
which satisfies ⟨µ, α∨⟩ ≥ −1 for all α ∈ Rs. Here µ is uniquely determined, but w is
determined only up to multiplication on the right by an element in the stabilizer of
µ for the action of W via ·p (a parabolic subgroup of W ). Any composition factor

of RiIndGB (kB(λ)) is of the form L(ν) with ν satisfying ν ↑ µ. In case µ /∈ X+, of
course we must have ν ̸= µ; if µ ∈ X+ then we have

[RiIndGB (kB(λ)) : L(µ)] =

{
1 if i = ℓ(w);

0 otherwise.

See [J3, Propositions II.6.15–16] for details.
We do not know any alternative proof of this statement, nor do we understand

its categorical meaning. See Exercise 1.20 for a proof of a weaker statement regard-
ing the higher induced modules RiIndGB (kB(λ)) based on the same considerations
as in the proof of the linkage principle in §2.5.

2.7. Translation functors.
2.7.1. Definition. For λ ∈ X, we will denote by

prλ : Rep(G)→ Rep(G)Waff ·pλ

the functor of projection on the summand Rep(G)Waff ·pλ in the decomposition (2.6).

Definition 2.18. Let λ, µ ∈ X, and let ν be the unique dominant weight in
W (µ − λ). The translation functor from Rep(G)Waff ·pλ to Rep(G)Waff ·pµ is the
functor

Tµλ := prµ
(
L(ν)⊗ (−)

)
: Rep(G)Waff ·pλ → Rep(G)Waff ·pµ.
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Remark 2.19. In the definition of Tµλ , if one replaces the module L(ν) by any
M ∈ Rep(G) such that dim(Mν) = 1 and wt(M) ⊂ {η ∈ X | η ⪯ ν}, then one
obtains an isomorphic functor; see [J3, Remark II.7.6]. For this reason, we find it
useful to consider that translation functors are only defined “up to isomorphism,”
and that there is no prefered choice of these functors among their isomorphism
classes.

The following claim gathers easy (though important) properties of the transla-
tion functors, whose proofs are easy. For details, see [J3, §II.7.6].

Proposition 2.20. Let λ, µ ∈ X.
(1) For any w ∈Waff we have Tµλ

∼= T
w·pµ
w·pλ .

(2) The functor Tµλ is exact.

(3) The functor Tµλ is both left and right adjoint to Tλµ .

Remark 2.21. Even if one wants to ignore the comments in Remark 2.19, and
consider that Tµλ is canonically defined using the simple module L(ν), the adjoint-
ness in Proposition 2.20(3) is not canonical: it depends on a choice of isomorphism
L(ν)∗ ∼= L(−w0(ν)) (where ν is the only dominant W -translate of µ− λ). Such an
isomorphism exists (see (1.4)), and is unique up to scalar, but there does not exist
any canonical choice for it in general.

2.7.2. Alcove geometry. In order to state more subtle properties of the trans-
lation functors, we will need to introduce the system of facets in the real vector
space

V := X⊗Z R.
The same formula as for the dot-action ·p on X defines an action of Waff on V
which stabilizes X, and which will be denoted similarly. A facet is any nonempty
subset of V of the form

F = {λ ∈ V | ∀α ∈ R+
0 , ⟨λ+ ρ, α∨⟩ = nαp

and ∀α ∈ R+
1 , (nα − 1)p < ⟨λ+ ρ, α∨⟩ < nαp}

for some partition R+ = R+
0 ⊔ R+

1 and some integers nα ∈ Z. (We insist that a
subset defined by such conditions may well be empty; we only consider nonempty
subsets of this form.) Equivalently, a facet is a connected component of the com-
plement in an intersection of hyperplanes

Hα,n = {λ ∈ V | ⟨λ+ ρ, α∨⟩ = np}

for (α, n) ∈ R+×Z of all strictly smaller intersections of such hyperplanes. A facet
determined by a partition R+ = R+

0 ⊔ R+
1 is called an alcove if R+

0 = ∅, and a
wall if #R+

0 = 1.
The space V is the disjoint union of all facets, and the alcoves are the connected

components of

V ∖

 ⋃
α∈R+

n∈Z

Hα,n

 .

If F is a wall, defined by a partition R+ = R+
0 ⊔R+

1 and integers (nα : α ∈ R+),
then we can associate to F a reflection sF ∈ Waff as follows. Let β be the unique
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Figure 2.1. Weights and facets for SL2
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Figure 2.2. Weights and facets for SL3

element in R+
0 , and let n = nβ be the corresponding integer. Then

sF = tnβsβ .

With this definition, the fixed points of the action of sF on V consist of the unique
affine hyperplane containing F .

Example 2.22. In case G = SL2(k), recall that we have a canonical identifica-
tion X = Z. The decomposition of V = R is given in Figure 2.1. Namely, each facet
is either an alcove or a wall. Alcoves are intervals of the form (np− 1, (n+1)p− 1)
with n ∈ Z, and walls are singletons {np− 1} with n ∈ Z.

Example 2.23. In case G = SL3(k), the decomposition of the plane V into
facets is illustrated in Figure 2.2. (Here we follow the notation of Example 1.1,
with α = ϵ1 − ϵ2, β = ϵ2 − ϵ3 and γ = α + β = ϵ1 − ϵ3.) Each facet is either an
alcove, a wall or a singleton. The singleton facets are the red points. The walls are
the blue intervals between red dots. The alcoves are the triangles delimited by the
walls.

The following properties are standard, but very important. They follow from
the general theory of discrete groups generated by affine reflections; see [J3, §6.2–
6.3] for references.
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Lemma 2.24. (1) The action of Waff on V via ·p induces a simply tran-
sitive action on the set of alcoves.

(2) For any alcove A, the closure A of A for the standard metric topology is
a fundamental domain for the action of Waff on V.

(3) If A is an alcove, and if we denote by Σ(A) ⊂ Waff the subset consisting
of the reflections sF where F is a wall contained in A, then (Waff ,Σ(A))
is a Coxeter system.

(4) If A is an alcove and x ∈ A, then the stabilizer Stab(Waff ,·p)(x) of x in
Waff (for the action ·p) is generated by the subset Sx ⊂ Σ(A) of reflections

sF where F is a wall contained in A and containing x in its closure.
Moreover, the pair (Stab(Waff ,·p)(x), Sx) is a Coxeter system.

A particularly important example of an alcove is the “fundamental alcove,”
defined as

C = {v ∈ V | ∀α ∈ R+, 0 < ⟨v + ρ, α∨⟩ < p}.
The corresponding subset of Coxeter generators of Waff will be denoted

Saff := Σ(C).

(This is in fact the only set of Coxeter generators of Waff which will be considered
below.) It can be checked that Saff does not depend on p: in fact it is the union
of S and the set of elements tβsβ where β ∈ R+ is a maximal short root. We
have S ⊂ Saff , so that W identifies with a parabolic subgroup in (Waff , Saff). The
choice of this set of Coxeter generators determines a Bruhat order and a length
function on Waff . This function has an explicit description which builds on work of
Iwahori–Matsumoto [IM]: for w ∈W and λ ∈ ZR we have

(2.7) ℓ(w · tλ) =
∑
α∈R+

w(α)∈R+

|⟨λ, α∨⟩|+
∑
α∈R+

w(α)∈−R+

|1 + ⟨λ, α∨⟩|.

What is particularly important for the study of Rep(G) is not really V, but
rather its subset X. Since C is a fundamental domain for the action of Waff on
V (see Lemma 2.24(2)), the intersection C ∩ X is a fundamental domain for the
action of Waff on X. In particular, the decomposition in Corollary 2.14 can be now
written as

(2.8) Rep(G) =
⊕

λ∈C∩X

Rep(G)Waff ·pλ.

The closure C decomposes as a disjoint union of facets, but it is not the case
that every facet contained in C intersects X. This question already occurs in the
case of the facet C; in this case, it is a standard fact that the following conditions
are equivalent:

(1) C ∩ X ̸= ∅;
(2) 0 ∈ C;
(3) some alcove contains an element in X;
(4) for any alcove A we have A ∩ X ̸= ∅;
(5) p ≥ h, where

h := max{⟨ρ, β∨⟩+ 1 : β ∈ R+}

is the Coxeter number of R.
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An Bn, Cn Dn E6 E7 E8 F4 G2

n+ 1 2n 2n− 2 12 18 30 12 6

Figure 2.3. Coxeter numbers of irreducible root systems

See [J3, §II.6.2] for more details on this question.
Explicitly, the Coxeter numbers of the indecomposable root systems are given

by the table in Figure 2.3. In general, the Coxeter number of a root system is the
maximum of the Coxeter numbers of its indecomposable factors.

Remark 2.25. The facets contained in C are in bijection with the subsets of
Saff which generate a finite subgroup of Waff , via the operation sending a facet to
the set of elements of Saff which fix it pointwise. (Such subsets of Saff are sometimes
called finitary.)

If µ ∈ X, we will say that µ is regular if µ belongs to an alcove, or in other
words if its stabilizer in Waff is trivial, or in other words if p ∤ ⟨λ + ρ, α∨⟩ for any
α ∈ R. As explained above, such weights exist iff p ≥ h. A weight which is not
regular will be called singular.

Remark 2.26. Recall the extended affine Weyl group defined in Remark 2.11.
The Waff -action on V extends naturally to an action of Wext, and it is easily seen
that this action sends each facet to a facet, and in particular each alcove to an
alcove. If we set

Ω := {w ∈Wext | w ·p C = C},
then conjugation by Ω preserves Saff , hence acts on Waff by Coxeter group auto-
morphisms, and multiplication induces an isomorphism

Waff ⋊ Ω
∼−→Wext.

This can be used to extend the length function ℓ and the Bruhat order ≤ on Waff

(see §4.1 below for details) to Wext, by defining ℓ(wω) = ℓ(w) for w ∈ Waff and
ω ∈ Ω, and wω ≤ w′ω′ iff ω = ω′ and w ≤ w′ for w,w′ ∈ Waff and ω, ω′ ∈ Ω.
(The same formulas with the order of terms inverted then also hold.) With this
extension, formula (2.7) holds for any λ ∈ X.

2.7.3. Image of standard, costandard, and simple modules. If F is a facet, de-
termined by a partition R+ = R+

0 ⊔R
+
1 and some integers nα ∈ Z, then the closure

of F is

F = {λ ∈ V | ∀α ∈ R+
0 , ⟨λ+ ρ, α∨⟩ = nαp

and ∀α ∈ R+
1 , (nα − 1)p ≤ ⟨λ+ ρ, α∨⟩ ≤ nαp}.

The upper closure of F is the union of facets defined by

F̂ = {λ ∈ V | ∀α ∈ R+
0 , ⟨λ+ ρ, α∨⟩ = nαp

and ∀α ∈ R+
1 , (nα − 1)p < ⟨λ+ ρ, α∨⟩ ≤ nαp}.

This notion is crucial for the following statement.

Proposition 2.27. Let λ, µ ∈ C.
(1) If λ and µ belong to the same facet, then Tµλ and Tλµ induce quasi-inverse

equivalences of categories between Rep(G)Waff ·pλ and Rep(G)Waff ·pµ.
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(2) Assume that µ belongs to the closure of the facet containing λ. Let w ∈
Waff be such that w ·p λ ∈ X+, and let F be the facet of w ·p λ. We have

Tµλ (M(w ·p λ)) ∼=

{
M(w ·p µ) if w ·p µ ∈ X+,

0 otherwise;

Tµλ (N(w ·p λ)) ∼=

{
N(w ·p µ) if w ·p µ ∈ X+,

0 otherwise;

Tµλ (L(w ·p λ)) ≃

{
L(w ·p µ) if w ·p µ ∈ F̂ ,
0 otherwise.

(3) Assume that λ ∈ C, and that µ belongs to a wall contained in C, with
associated reflection s ∈ Saff . Let w ∈ Waff be such that w ·p λ ∈ X+ and
w ·p λ ≺ ws ·p λ. Then w ·p µ and ws ·p λ are dominant, and there exist
short exact sequences

N(w ·p λ) ↪→Tλµ (N(w ·p µ)) ↠ N(ws ·p λ),

M(ws ·p λ) ↪→Tλµ (M(w ·p µ)) ↠ M(w ·p λ).

(4) More generally, let w ∈ Waff such that w ·p λ ∈ X+. Then TµλN(w ·p λ),
resp. TµλM(w ·p λ), admits a filtration whose subquotients are the mod-
ules N(wx ·p µ), resp. M(wx ·p µ), where x runs over the elements of
Stab(Waff ,·p)(λ) such that wx ·p µ belongs to X+, each occurring once.

For (1), we refer to [J3, Proposition II.7.9]. For (2), see [J3, Proposition II.7.11]
for the second isomorphism, and [J3, Proposition II.7.15] for the third one. The
first isomorphism follows from the second one by duality (or can be proved by
similar arguments). For (3), the first exact sequence is constructed in [J3, Propo-
sition II.7.19]; the second one follows by duality (or, again, can be proved by the
same considerations). For (4), see [J3, Proposition II.7.13].

Remark 2.28. We have explained above that C ∩ X ̸= ∅ iff p ≥ h. Proposi-
tion 2.27(3) shows the importance of also having weights which belong to the walls
contained in C. As explained in [J3, §II.6.3], such weights always exist when p ≥ h
and D(G) is simply connected.

Recall the decomposition (2.8). Proposition 2.27(1) shows that, in this decom-
position, all factors corresponding to weights in a given facet give rise to equivalent
categories. This shows that in order to understand the structure of Rep(G) it suf-
fices, for any facet F contained in C and such that F ∩ X ̸= ∅, to understand the
category Rep(G)Waff ·pλ for some choice of weight λ ∈ F ∩ X.

These statements also interact nicely with our strategy to describe characters
of simple G-modules (see §1.9). In fact, assume that for some λ ∈ X+ we can
express [L(λ)] in the basis ([N(ν)] : ν ∈ (Waff ·pλ)∩X+) of [Rep(G)Waff ·pλ], see §2.5.
Then Proposition 2.27(2) allows to deduce the expansion of [L(µ)] in the basis
([N(ν)] : ν ∈ (Waff ·p µ) ∩ X+) of [Rep(G)Waff ·pµ], for any µ in the upper closure
of the facet of λ. In particular, assuming that p ≥ h (so that 0 ∈ C), if we can
express [L(w ·p 0)] in the basis ([N(ν)] : ν ∈ (Waff ·p 0) ∩ X+) of [Rep(G)Waff ·p0] for
any w ∈Waff such that w ·p 0 ∈ X+, then we can deduce the similar expansions of
all simple modules corresponding to a dominant weight which belongs to the upper
closure of an alcove containing a point w ·p0 with w ∈Waff such that w ·p0 ∈ X+. In
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fact any dominant weight belongs to such an upper closure, hence we can compute
the characters of all simple modules.

Recall (see §2.4) that (assuming that D(G) is simply connected) Steinberg’s
tensor product formula reduces the problem of computing characters of all sim-
ple G-modules to computing the characters of simple modules corresponding to
restricted dominant weights, i.e. dominant weights which belong to the region

(2.9) {λ ∈ V | ∀α ∈ Rs, 0 ≤ ⟨λ+ ρ, α∨⟩ ≤ p}.
This region is a union of facets. The considerations above show that if p ≥ h,
to compute (in theory) the characters of all simple G-modules it therefore suffices
to compute the characters of the finitely many simple G-modules L(w ·p 0) where
w ∈Waff is such that w ·p 0 is restricted dominant.

Remark 2.29. There is a (sometimes important) subtlety in the restriction to
restricted dominant weights: if w ∈ Waff and w ·p 0 is restricted dominant, it is
not the case that in the expansion of [L(w ·p 0)] in the basis ([N(y ·p 0)] : y ∈Waff)
only elements y such that y ·p 0 is restricted dominant can appear with nonzero
coefficients.

2.8. Coxeter-theoretic parametrization of simple objects in blocks.
2.8.1. Dominant weights in orbits. If c ⊂ X is a Waff -orbit, the simple objects

in Rep(G)c are naturally parametrized by c∩X+. On the other hand, the behaviour
of translation functors as described in Proposition 2.27, as well as many subsequent
statements (as e.g. Lusztig’s conjecture, see Conjecture 4.6), involve the groupWaff

and its Coxeter generators Saff (see §2.7). It is therefore important to understand
the relation between these two parametrizations.

Recall (see e.g. [H4] or [Mi]) that if (W,S) is a Coxeter system, given any
subset I ⊂ S the standard parabolic subgroup ofW associated with I is the subgroup
WI generated by I; then the pair (WI , I) is again a Coxeter system. Moreover, for
any w ∈ W, the following conditions are equivalent:

(1) for any v ∈ WI we have ℓ(vw) = ℓ(v) + ℓ(w);
(2) for any s ∈ I we have ℓ(sw) > ℓ(w);
(3) w is of minimal length in WIw.

See e.g. [Mi, Lemma-Definition 5.12] for details. It is clear from this fact that any
coset WIw contains a unique element of minimal length, and that this element is
also minimal for the Bruhat order; if w satifies these condictions, we will simply
say that w is minimal in wWI .

In caseWI is finite, each coset wWI also contains a unique element of maximal
length, characterized by the property that ℓ(xy) = ℓ(x)− ℓ(y) for any y ∈ WI ; we
will say that this element is maximal in wWI . In fact, if x is the minimal element
in wWI , and if wI is the longest element in WI , then the maximal element in wWI

is xwI . Similar comments apply to right cosets WIw (w ∈ W).
As an example of this setting, the finite Weyl group W ⊂ Waff is a standard

parabolic subgroup (associated with the subset S ⊂ Saff). The elements w ∈ Waff

which are minimal inWw can be described explicitly (see e.g. [AHR, Lemma 6.1]):
if w = tλv with λ ∈ ZR and v ∈W , then w is minimal in Ww if and only if

(2.10) λ ∈ X+ and for any α ∈ R+ s. t. v−1(α) ∈ −R+ we have ⟨λ, α∨⟩ ≥ 1.

We will denote by
fWaff ⊂Waff
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the subset of elements which satisfy this condition.
Let us now return to the question we wanted to consider. By Lemma 2.24(2),

the intersection X ∩ C is a fundamental domain for the action of Waff on X; in
other words, each orbit can be written as Waff ·p µ for some unique µ ∈ X∩C. Fix
some µ ∈ X ∩ C; by Lemma 2.24(4), the stabilizer Stab(Waff ,·p)(µ) of µ is then the
parabolic subgroup ofWaff associated with the subset of Saff consisting of reflections

fixing µ. As a consequence, if we denote by W
(µ)
aff ⊂ Waff the subset of elements w

which are maximal in wStab(Waff ,·p)(µ), we obtain a bijection

W
(µ)
aff

∼−→Waff ·p µ
defined by w 7→ w ·p µ.

The following statement explains, in terms of this parametrization, which ele-
ments of Waff ·p µ are dominant weights.

Proposition 2.30. If w ∈ W (µ)
aff , the weight w ·p µ is dominant if and only if

w ∈ fWaff .

In order to prove this proposition, we will need two lemmas. The first one only
involves Coxeter combinatorics.

Lemma 2.31. Let (W,S) be a Coxeter system. If x ∈ W and s, r ∈ S satisfy
rx < x and rxs > xs, then rxs = x. In particular, if I ⊂ S is a subset, if w ∈ W is
minimal in WIw, and if s ∈ S is such that ws < w, then ws is minimal in WIws.

Proof. By [H4, Proposition in §5.9] we have either rxs ≤ x or rxs ≤ xs. By
assumption the second alternative is impossible; we must therefore have rxs ≤ x.
Now ℓ(rxs) = ℓ(xs) + 1 ≥ ℓ(x), hence rxs = x, as desired.

To deduce the second statement, we assume for a contradiction that ws is not
minimal in WI . Then there exists r ∈ I such that rws < ws. Since rw > w,
the first statement implies that rw = ws, which contradicts our assumption that
ws < w. □

Now we set

(2.11) D := {x ∈ V | ∀α ∈ R+, ⟨x+ ρ, α∨⟩ > 0}.
Then D is a union of facets; in particular, an alcove meets D if and only if it is
contained in D.

Lemma 2.32. For w ∈Waff , we have w ·p C ⊂ D if and only if w ∈ fWaff .

Proof. Let us fix x ∈ C, and write w = tλv with λ ∈ ZR and v ∈W . In view
of the comments above and the characterization (2.10) of the property that w is
minimal in Ww, what we have to prove is that w ·p x ∈ D if and only if λ ∈ X+

and for any α ∈ R+ such that ⟨λ, α∨⟩ = 0 we have v−1(α) ∈ R+.
For any β ∈ R+ we have

⟨w ·p x+ ρ, β∨⟩ = ⟨v(x+ ρ) + pλ, β∨⟩ = ⟨x+ ρ, v−1(β)∨⟩+ p⟨λ, β∨⟩.
If λ /∈ X+, then there exists β ∈ R+ such that ⟨λ, β∨⟩ ≤ −1. We have ⟨x +
ρ, v−1(β)∨⟩ < p, so that ⟨w ·p x + ρ, β∨⟩ < 0, and therefore w ·p x /∈ D. On the
other hand, if there exists β ∈ R+ such that ⟨λ, β∨⟩ = 0 and v−1(β) ∈ −R+, then
since ⟨x+ ρ, v−1(β)∨⟩ < 0, the formula above shows that ⟨w ·p x+ ρ, β∨⟩ < 0, and
therefore w ·p x /∈ D.
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Now we assume that λ ∈ X+ and v−1(α) ∈ R+ for any α ∈ R+ such that
⟨λ, α∨⟩ = 0. Then if β ∈ R+ we have

⟨w ·p x+ ρ, β∨⟩ = ⟨x+ ρ, v−1(β)∨⟩+ p⟨λ, β∨⟩.

If v−1(β) ∈ R+ then we have ⟨x+ρ, v−1(β)∨⟩ > 0, so that ⟨w ·px+ρ, β∨⟩ > 0. And
if v−1(β) ∈ −R+ then ⟨λ, β∨⟩ ≥ 1; since ⟨x + ρ, v−1(β)∨⟩ > −p we deduce that
again ⟨w ·p x+ ρ, β∨⟩ > 0. This implies that w ·p x ∈ D, and finishes the proof. □

We can now prove Proposition 2.30.

Proof of Proposition 2.30. The proof is based on the observation that w·p
µ ∈ X+ if and only if x(C) ⊂ D for any x ∈ wStab(Waff ,·p)(µ). By Lemma 2.32, this

condition is equivalent to requiring that wStab(Waff ,·p)(µ) ⊂ fWaff . Of course this

implies that w ∈ fWaff . On the other hand, assume that w ∈ fWaff and that wx /∈
fWaff for some x ∈ Stab(Waff ,·p)(µ). Choose x of minimal length with this property;

then there exists s ∈ Saff ∩ Stab(Waff ,·p)(µ) such that xs < x. Since wx /∈ fWaff ,
there exists r ∈ S such that rwx < wx. On the other hand, by minimality we
have wxs ∈ fWaff , hence rwxs > wxs. By Lemma 2.31 these conditions imply that
rwxs = wx, hence wxs = rwx < wx. But ℓ(wxs) = ℓ(w)−ℓ(xs) = ℓ(w)−ℓ(x)+1 =
ℓ(wx) + 1 by maximality; we have therefore reached a contradiction. □

Remark 2.33. In the course of the proof of Proposition 2.30 we have seen that

if w ∈ W
(µ)
aff , we have w ∈ fWaff if and only if wStab(Waff ,·p)(µ) ⊂ fWaff . This

property is a special case of a general fact about coset representatives in Coxeter
groups. For other characterizations of the elements satisfying these properties,
see [AR5, Lemma 2.4]. Let us note that it is not the case that any double coset

WwStab(Waff ,·p)(µ) contains an element in fWaff ∩W (µ)
aff .

We will set
fW

(µ)
aff := fWaff ∩W (µ)

aff .

Proposition 2.30 then says that the assignment w 7→ w ·p µ defines a bijection

(2.12) fW
(µ)
aff

∼−→ (Waff ·p µ) ∩ X+.

In this way, the simple objects in Rep(G)Waff ·pµ can be parametrized by fW
(µ)
aff .

2.8.2. Orders. Fix again µ ∈ C ∩ X. As explained in §2.6, the category
Rep(G)Waff ·pµ has a natural highest weight structure with underlying weight poset
((Waff ·pµ)∩X+, ↑). It is therefore interesting to describe the transport along (2.12)
of the restriction of the order ↑ to (Waff ·p µ)∩X+. In fact we will now explain that
this order is nothing but the restriction of the Bruhat order on Waff to the subset
fW

(µ)
aff .
To check this, and in particular to compare this construction with others ap-

pearing in the literature, it is useful to recall another, related but different, notion
of alcoves. (To distinguish the two cases, we will call these new objects “alcoves”
with quotation marks.) Namely set V′ := X⊗ZR, which we endow with the action
of Waff determined by (tλv) · x = v(x) + λ for λ ∈ ZR and v ∈ W , where in the
right-hand side we consider the obvious action of W on X⊗Z R. (The vector space
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V′ therefore coincides with V, but the actions ofWaff differ.) We will call “alcoves”
the connected components of

V′ ∖

 ⋃
α∈R+

n∈Z

{v ∈ V′ | ⟨v, α∨⟩ = n}

 .

We have a fundamental “alcove” defined by

A := {v ∈ V′ | ∀α ∈ R+, 0 < ⟨v, α∨⟩ < 1},
and obvious analogues of the statements in Lemma 2.24 hold; in fact the map
v 7→ −ρ+pv defines a Waff -equivariant bijection V′ ∼−→ V which matches A with C
and “alcoves” with alcoves. In particular, the action morphism w 7→ w ·A defines a
bijection betweenWaff and the set of “alcoves”, and restricts (as in Lemma 2.32) to
a bijection between fWaff and the set of “alcoves” contained in the dominant Weyl
chamber

{x ∈ V′ | ∀α ∈ R+, ⟨x, α∨⟩ > 0}.
Recall that if (W,S) is a Coxeter system, the reflections inW are the conjugates

of the elements in S. In the case when (W,S) = (Waff , Saff), the reflections are the
elements of the form tnαsα with α ∈ R+ and n ∈ Z.

We have an order ↑ on the set of alcoves defined in [J3, §II.6.5] as follows: given
α ∈ R+ and n ∈ Z, if C1 is an alcove then we have either ⟨x + ρ, α∨⟩ < np for all
x ∈ C1, or ⟨x+ ρ, α∨⟩ > np for all x ∈ C1. In the first case we set C1 ↑ tnαsα ·p C1,
and in the second case we set tnαsα ·p C1 ↑ C1. Then if C1, C2 are alcoves we set
C1 ↑ C2 if and only if there exist reflections s1, · · · , sr such that

C1 ↑ s1 ·p C1 ↑ s2s1 ·p C1 ↑ · · · ↑ (sr · · · s1) ·p C1 = C2.

Comparing this definition with that given in [S3, p. 95], we see that the bijection
considered above between “alcoves” and alcoves matches the order ⪯ (on “alcoves”)
from [S3] with ↑.

On the other hand, one can consider the “periodic order” ⪯ onWaff considered
in [AR6, §2.5].4 Comparing the definition with [S3, Claim 4.14] we see that the
bijection betweenWaff and the set of “alcoves” defined by w 7→ w−1 ·A matches this
periodic order with ⪯. Next, as explained in [AR6, Lemma 2.5(3)], the restriction
of the periodic order to the subset of Waff consisting of elements w which are
minimal in wW coincides with the restriction of the Bruhat order. Given into
account the fact that the bijection w 7→ w−1 matches the Bruhat order with itself,
we have finally proved the following lemma.

Lemma 2.34. The assignment w 7→ w·pC identifies the restriction of the Bruhat
order of Waff to fWaff with the restriction of the order ↑ on the set of alcoves to the
subset of alcoves contained in D (see (2.11)).

We deduce the following claim, that was announced above.

Proposition 2.35. For any µ ∈ C ∩ X, the bijection (2.12) matches the

restriction of the Bruhat order to fW
(µ)
aff with the restriction of the order ↑ to

(Waff ·p µ) ∩ X+.

4In [AR6, §2.5] the order is defined on Wext; more explicitly, what we consider here is the
restriction of this order to Waff . The definition of this order (with a different normalization) is

due to Lusztig in [L2].
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Proof. Let x, y ∈ fW
(µ)
aff . If x ≤ y for the Bruhat order, then by Lemma 2.34

we have x·pC ↑ y·pC, which implies that x·pµ ↑ y·pµ by [J3, Equation (2) in §II.6.5].
On the other hand, assume that x ·p µ ↑ y ·p µ. The alcove “C−” associated with
the facet containing x ·p µ in [J3, §II.6.11] is xw(µ) ·p C, where w(µ) is the longest
element in the parabolic subgroup Stab(Waff ,·p)(µ), and similarly for y ·p µ. (This
follows e.g. by comparing [J3, Equation (3) in §II.6.11] with Lemma 2.34.) In view
of [J3, Equation (4) in §II.6.11], we therefore have xw(µ) ·p C ↑ yw(µ) ·p C, hence
xw(µ) ≤ yw(µ) in the Bruhat order. By Exercise 1.9, this implies that x ≤ y, which
finishes the proof. □

Remark 2.36. (1) In the special case when p ≥ h and µ = 0, Proposi-
tion 2.35 already appeared in the literature, see [AR3, Lemma 10.1] for
references. We do not know any reference for the general case.

(2) Assume that there exists a weight ς ∈ X such that ⟨ς, α∨⟩ = 1 for each
α ∈ Rs. (Such a weight exists at least under the assumption that the
derived subgroup D(G) is simply connected. In case G is semisimple
such a weight is unique if it exists, and equal to ρ. For a general reductive
group, there might exist several choices.) Then the weight −ς belongs to
C, and its stabilizer is W ; we therefore have

Waff ·p (−ς) = −ς + pZR.

In fact, in this case we have

(2.13) fW
(−ς)
aff = {tλw0 : λ ∈ ZR ∩ (ς + X+)},

see [AR5, Lemma 2.5].

2.8.3. Translation of standard, costandard, and simple modules (new version).
We can now translate Proposition 2.27 in Coxeter-theoretic terms. (Here, as in the
proof of Proposition 2.35, we denote by w(µ) the longest element in Stab(Waff ,·p)(µ).)

Proposition 2.37. Let λ, µ ∈ C.
(1) Assume that µ belongs to the closure of the facet containing λ, and let

w ∈ fW
(λ)
aff . We have

Tµλ (M(w ·p λ)) ∼=

{
M(w ·p µ) if wStab(Waff ,·p)(µ) ∩ fW

(µ)
aff ̸= ∅,

0 otherwise;

Tµλ (N(w ·p λ)) ∼=

{
N(w ·p µ) if wStab(Waff ,·p)(µ) ∩ fW

(µ)
aff ̸= ∅,

0 otherwise;

Tµλ (L(w ·p λ)) ≃

{
L(w ·p µ) if ww(µ) ∈ fW

(µ)
aff ,

0 otherwise.

(2) Assume that λ ∈ C, and that µ belongs to a wall contained in C, with

associated reflection s ∈ Saff . Let w ∈ fW
(µ)
aff . Then w ·p λ, w ·p µ and

ws ·p λ are dominant, and there exist short exact sequences

N(ws ·p λ) ↪→Tλµ (N(w ·p µ)) ↠ N(w ·p λ),

M(w ·p λ) ↪→Tλµ (M(w ·p µ)) ↠ M(ws ·p λ).
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2.8.4. Consequence for simple characters. Using the Coxeter-theoretic para-
metrization of simple modules in a given block, one can also make the procedure of
computing characters of simple modules in “singular” blocks from those of modules
in a “regular” block (see §2.7) more explicit.

Namely, assume that p ≥ h, so that 0 ∈ C ∩X. As explained above the simple,
induced, and Weyl modules in Rep(G)Waff ·p0 can (and will) be parametrized by
fW

(0)
aff = fWaff . Consider the matrix (ay,w : y, w ∈ fWaff) such that

(2.14) [L(w ·p 0)] =
∑

y∈fWaff

ay,w · [N(y ·p 0)]

in [Rep(G)Waff ·p0] for any w ∈ fWaff . Fix now µ ∈ C ∩ X. Each weight in (Waff ·p
µ) ∩ X+ belongs to the upper closure of exactly one alcove, which is moreover

contained in the domain D of (2.11): explicitly, for w ∈ fW
(µ)
aff the weight w ·p µ

is in the upper closure of ww(µ) ·p C. (Here ww(µ) is the minimal element in
wStab(Waff ,·p)(µ)). Applying the translation functor Tµ0 to the formula (2.14) and

using Proposition 2.27 we obtain that for any w ∈ fW
(µ)
aff we have

[L(w ·p µ)] =
∑

y∈fW
(µ)
aff

 ∑
x∈Stab(Waff ,·p)(µ)

ayx,ww(µ)

 · [N(y ·p µ)].
Remark 2.38. In case p < h, one can apply similar considerations to compute

characters of simple modules in blocks corresponding to weights in the closure of a
given facet contained in C, if one knows the characters in the block of a weight in
this facet. However, it is not clear how to determine the “most regular” weights in
C ∩ X in general, and in any case these weights might belong to several different
facets.

2.9. Some simple cases. In this subsection we explain how the characters
of some simple modules can be easily computed.

2.9.1. Minimal weights. First, let assume that µ ∈ X+ is minimal (for the
order ↑) in (Waff ·p µ) ∩ X+. Then the linkage principle implies that the canonical
morphisms

M(µ)→ L(µ)→ N(µ)

are isomorphisms. This happens for instance if µ ∈ C ∩ X+. (See [J3, Corol-
lary II.5.6] for a different proof of the simplicity of N(µ) in this case, which does
not use the linkage principle.) If there exists a weight ς ∈ X such that ⟨ς, α∨⟩ = 1
for each α ∈ Rs (see Remark 2.36(2)) then this also applies to the weight (p− 1)ς,
since we have

Wext ·p (p− 1)ς = (p− 1)ς + pX,
hence

(Wext ·p (p− 1)ς) ∩ X+ = (p− 1)ς + pX+.

The modules L((p− 1)ς) are called the Steinberg modules. For some of their prop-
erties, see [J3, §§II.3.18–19].5

5Jantzen only considers the case ς = ρ, assuming that (p − 1)ρ ∈ X. However, all the
properties of the Steinberg module proved in [J3] also hold for the modules we consider here.
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2.9.2. The alcove above the fundamental one. Next, let us assume that p ≥ h
and that G is quasi-simple. In this case Saff ∖ S contains a unique element, which
we will denote s◦. Consider the induced module N(s◦ ·p 0). We know that its socle
is L(s◦ ·p 0), that this simple module appears only once as a composition factor
of N(s◦ ·p 0), and that the only other possible composition factor is L(0). Since

Ext1Rep(G)(L(0), L(0)) = 0, we deduce that there exists an exact sequence

L(s◦ ·p 0) ↪→ N(s◦ ·p 0) ↠ L(0)⊕r

for some r ∈ Z≥0. We then have

[N(s◦ ·p 0)] = [L(s◦ ·p 0)] + r · [L(0)].

If µ is a weight on the wall contained in C fixed by s◦, then applying the functor
Tµ0 and using Proposition 2.27 we deduce that

[N(µ)] = r · [L(µ)].

On the other hand we have N(µ) = L(µ) since µ ∈ C, hence r = 1. This shows that
N(s◦ ·p 0) sits in an exact sequence

L(s◦ ·p 0) ↪→ N(s◦ ·p 0) ↠ L(0).

Example 2.39. In case G = SL3(k), assuming that p ≥ 3 the region (2.9) is
the union of the closures of C and s◦ ·p C. In view of the considerations above,
this shows that the problem of computing characters of simple modules can be
considered solved in this case also.

2.10. The Steinberg (extended) block. In this subsection we assume (as
in Remark 2.36(2)) that there exists a weight ς ∈ X such that ⟨ς, α∨⟩ = 1 for
each α ∈ Rs. We consider the “extended block of −ς,” i.e. the Serre subcategory
RepStein(G) generated by the simple modules whose highest weight belongs to

(Wext ·p (−ς)) ∩ X+ = (−ς + pX) ∩ X+ = (p− 1)ς + pX+.

(Here, the subscript “Stein” refers to Steinberg.) This subcategory is a direct sum-
mand in Rep(G), in fact it is a direct sum of some blocks in the decomposition (2.6).
Note also that, as explained in §2.9, the canonical morphisms

M((p− 1)ς)→ L((p− 1)ς)→ N((p− 1)ς)

are isomorphisms.
The following result is due to Andersen; for a proof, see [J3, Proposition II.3.19].

Here we consider the Frobenius twist G(1) as in §2.4. Given λ ∈ X∗(T(1))+, we will
denote by N(1)(λ), resp. M(1)(λ), the associated induced, resp. Weyl, G(1)-module
(defined with respect to the Borel subgroup B(1)).

Proposition 2.40. For any λ ∈ X∗(T(1))+, there exist isomorphisms of G-
modules

N
(
(p− 1)ς + Fr∗T(λ)

) ∼= L
(
(p− 1)ς

)
⊗ Fr∗G

(
N(1)(λ)

)
,

M
(
(p− 1)ς + Fr∗T(λ)

) ∼= L
(
(p− 1)ς

)
⊗ Fr∗G

(
M(1)(λ)

)
.

Remark 2.41. Assume that G = SL2(k), and recall the notation of Exam-
ple 2.10. In this case, the first isomorphism in Proposition 2.40 takes the form

N((p− 1 + pn)ϖ1) ∼= N((p− 1)ϖ1)⊗ N(nϖ1)
(1)
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for n ∈ Z≥0. Explicitly, with the identifications of §1.4.1, this isomorphism is
induced by the isomorphism

k[X,Y ]p−1 ⊗ k[X,Y ]n
∼−→ k[X,Y ]p−1+pn

given by P ⊗Q 7→ P ·Qp. (To check that this indeed is an isomorphism, one uses
the observation that if a, b ∈ Z≥0 have respective remainders r, s modulo p, and if
a+ b ≡ p− 1 mod p, then r + s = p− 1.)

This result has the following consequence.

Corollary 2.42. The functor

Rep(G(1))→ Rep(G)

defined by V 7→ L
(
(p− 1)ς

)
⊗ Fr∗G(V ) induces an equivalence of categories

Rep(G(1))
∼−→ RepStein(G).

Moreover, this functor sends N(1)(λ), resp. M(1)(λ), to N
(
(p − 1)ς + Fr∗T(λ)

)
,

resp. M
(
(p− 1)ς + Fr∗T(λ)

)
.

Proof. Let us consider the induced functor on derived categories

φ : DbRep(G(1))→ DbRep(G).

By Proposition 2.40, this functor sends N(1)(λ), resp. M(1)(λ), to N
(
(p − 1)ς +

Fr∗T(λ)
)
, resp. M

(
(p− 1)ς +Fr∗T(λ)

)
. Now by Theorem 2.3 and Corollary 2.3 from

Appendix A, we have

ExtnRep(G(1))(M
(1)(λ),N(1)(µ)) ∼=

{
k if λ = µ and n = 0;

0 otherwise

and

ExtnRep(G)

(
M((p− 1)ς +Fr∗T(λ)),N((p− 1)ς +Fr∗T(µ))

) ∼= {k if λ = µ and n = 0;

0 otherwise.

In particular, for fixed µ ∈ X∗(T(1))+, our functor induces an isomorphism

ExtnRep(G(1))(M
(1)(λ),N(1)(µ))

∼−→

ExtnRep(G)

(
φ(M(1)(λ)),N((p− 1)ς + Fr∗T(µ))

)
for any n ∈ Z and λ ∈ X∗(T(1))+. Since the objects (M(1)(λ) : λ ∈ X∗(T(1))+)
generate DbRep(G(1)) as a triangulated category, we deduce that for any M in
DbRep(G(1)) our functor induces an isomorphism

HomDbRep(G(1))(M,N(1)(µ))
∼−→ HomDbRep(G)

(
φ(M),N((p− 1)ς + Fr∗T(µ))

)
.

For fixed M in DbRep(G(1)), using the fact that the objects (M(1)(µ) : µ ∈
X∗(T(1))+) generate DbRep(G(1)) as a triangulated category, we deduce that for
any N in DbRep(G(1)) our functor induces an isomorphism

HomDbRep(G(1))(M,N)
∼−→ HomDbRep(G)(φ(M), φ(N)),

i.e. that this functor is fully faithful. Since DbRep(G(1)) is generated as a tri-
angulated category by the objects (L(1)(µ) : µ ∈ X∗(T(1))+), the essential im-
age of φ is the triangulated subcategory of DbRep(G) generated by the objects
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(φ(L(1)(µ)) : µ ∈ X∗(T(1))+), i.e. by the objects L((p − 1)ς + Fr∗T(λ)) (see Theo-
rem 2.9), i.e. the full subcategory DbRepStein(G). Restricting φ to the full subcat-
egory Rep(G(1)), we obtain the desired claim. □

The comments in §2.7 suggest that the singular blocks (those associated with
weights in C ∖ C) are “simpler” than the regular blocks (those associated with
weights in C), in that their structure can in theory be derived if we understand the
regular blocks. However, this point of view is a bit contradicted by Corollary 2.42:
since G(1) is isomorphic to G, the block associated to the highly singular weight
(p− 1)ς (associated with a weight in a facet of maximal codimension) is equivalent
to the block of the regular weight 0. In this way, the category Rep(G) exhibits
some kind of “fractal” behaviour.

Remark 2.43. See [A3] for some applications of Corollary 2.42.

3. Soergel’s modular category O

In this section we explain a construction due to Soergel [S5], which allows
to produce an analogue in the setting of representations of G of the celebrated
“category O” of Bernstein–Gelfand–Gelfand for complex semisimple Lie algebras
(see [H5]). This construction is the basis for the construction of Williamson’s
counterexamples which will be explained in Chapter 5. The definition uses the
notion of Serre quotient of an abelian category, whose construction is recalled in §3.1
in Chapter A.

3.1. Motivation. As illustred in Theorem 2.12, and as will be made clearer
below, the structure of the category Rep(G) is closely related with the combinatorics
of the Coxeter group (Waff , Saff). The way the problem of computing characters
of simple modules will be tackled is inspired by the Kazhdan–Lusztig conjecture in
the study of highest weight simple modules for complex semisimple Lie algebras,
which is closely related to the simpler combinatorics of (W,S).6 In an effort to
continue the parallel between these two problems, and to allow the use of some of
the techniques used in the latter problem for the study of the former one, Soergel
introduced in [S5] a category defined in terms of representations of G, but whose
combinatorics is governed by (W,S). This category is now called Soergel’s modular
category O, and can serve as a “toy model” for Rep(G). (This toy model turns to
be quite complicated already, as we will later see!)

Remark 3.1. In the more recent literature, a different “modular counterpart”
of the BGG category O has appeared, which is sometimes also called “modular
category O;” see e.g. [Lo]. These two categories are unrelated.

3.2. Definition. In this section we assume that p > h and that G is semisim-
ple and simply connected. We will denote by A the Serre subcategory of Rep(G)
generated by the simple objects L(λ) with λ ∈ X+ which satisfies λ ↑ pρ, and by
B the Serre subcategory of Rep(G) (or equivalently, of A) generated by the simple
objects L(λ) with λ ∈ X+ which satisfies λ ↑ pρ but λ /∈ {(p − 1)ρ +Wρ}. Then
Soergel’s modular category O is defined as

Ok = A/B.

6More specifically, regular integral blocks of category O of a complex semisimple Lie algebra
are highest-weight categories with underlying poset the associated Weyl group endowed with the

Bruhat order (or its inverse, depending on the choice of parametrization of simple objects).
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Figure 3.1. Weights for Soergel’s modular category O for SL3

Example 3.2. For G = SL3, the picture the reader can keep in mind is illus-
trated in Figure 3.1. Here the blue dot is (p − 1)ρ, and the six dominant weights
one has to consider belong to the six alcoves containing red dots.

3.3. Highest weight structure. Let µ be the unique element in C ∩Waff ·p
(pρ). Then the results of §2.8 show that the assignment w 7→ w ·p µ induces a

bijection fWaff
∼−→ X+∩Waff ·p (pρ) which identifies the Bruhat order on fWaff with

the order ↑ on X+ ∩Waff ·p (pρ). If we denote by w ∈Waff the unique element such
that w ·p µ = pρ (or, equivalently, such that w ·p C = C + pρ), then the simple
objects in A are in a canonical bijection with {y ∈ fWaff | y ≤ w}. Since this subset
is an ideal in fWaff , Lemma 1.4 in Appendix A implies that this category has a
structure of highest weight category with underlying poset {y ∈ fWaff | y ≤ w} (for
the restriction of the Bruhat order).

We have w ·p C = tρ ·p C; hence ω := w−1tρ ∈ Wext belongs to the subgroup
Ω of Remark 2.26. (With this notation we have µ = ω ·p 0.) Set Sω := ωSω−1

and Wω := ωWω−1. Then Sω is a finitary subset of Saff , with associated parabolic
subgroup Wω.

Lemma 3.3. The element w defined above is maximal in the coset wWω. As a
consequence:

(1) we have wWω ⊂ {y ∈ fWaff | y ≤ w}, and {y ∈ fWaff | y ≤ w}∖ wWω is
an ideal in fWaff ;

(2) if y ∈Waff satisfies y ≤ w and if s ∈ Sω, then ys ≤ w;
(3) the bijection

Wω ∼−→ {y ∈ fWaff | y ≤ w}∖ wWω

given by x 7→ wx identifies the inverse of the Bruhat order on Wω with
the restriction of the Bruhat order on the right-hand side.
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Proof. To prove that w is maximal in wWω it suffices to prove that tρ has
maximal length in tρW , i.e. that for any x ∈W we have

ℓ(tρx) = ℓ(tρ)− ℓ(x).
Now we have

ℓ(tρx) = ℓ(x−1t−ρ),

and applying the formula (2.7) (see Remark 2.26) we deduce the desired claim.
Now that this property is established, if x ∈ Wω then we have wx ≤ w. Since

ℓ(wx) = ℓ(w) − ℓ(x), by Exercise 1.10 we also have wx ∈ fWaff , which shows
the first assertion in (1). To prove that the complement in an ideal, we choose
u ∈ {y ∈ fWaff | y ≤ w} ∖ wWω and z ∈ fWaff such that z ≤ u. Then z ≤ w.
If we assume for a contradiction that z ∈ wWω, and denote by u′ the maximal
element in uWω then by [Dou, Lemma 2.2] we have w ≤ u′. On the other hand,
the same claim (applied to the inequality u ≤ w) shows that u′ < w, which provides
a contradiction.

In (2), denoting by y′ the maximal element in yWω, then again by [Dou,
Lemma 2.2] we have y′ ≤ w. Then ys ≤ y′ ≤ w, proving the desired inequality.

For (3), we note that our map is a bijection by (1). Set wω0 := ωw0ω
−1; then

wω0 is the longest element in Wω. Since the element wwω0 is mimimal in wWω,
by Exercise 1.9 the assignment x 7→ wwω0 x identifies the Bruhat order on Wω with
the restriction of the Bruhat order to wWω. The claim follows, since x 7→ wω0 x
intertwines the Bruhat order and its inverse on Wω. □

Lemma 3.3(1)–(3) and Lemma 3.1 in Appendix A guarantee that the category
Ok has a natural structure of highest weight category with underlying poset Wω

endowed with the inverse of the Bruhat order, such that the standard object as-
sociated with x is the image of the Weyl module M(wx ·p µ). In fact, it will be
more convenient to identify this poset with W via x 7→ ωxω−1. Observing that for
x ∈W we have

wωxω−1 ·p µ = tρx ·p 0 = (p− 1)ρ+ x(ρ),

we see that if for x ∈ W we denote by Nx, Mx and Lx the images of the modules
N((p−1)ρ+x(ρ)), M((p−1)ρ+x(ρ)) and L((p−1)ρ+x(ρ)) respectively, then Ok has
a structure of highest weight category with underlying poset W (with the inverse
of the Bruhat order) and parametrization of standard objects given by x 7→ Mx.
For any x, y ∈W the multiplicity [Ny : Lx] of the simple object Lx as a composition
factor of the object Ny is given by

[Ny : Lx] = [N((p− 1)ρ+ y(ρ)) : L((p− 1)ρ+ x(ρ))].

Similarly we have

[My : Lx] = [M((p− 1)ρ+ y(ρ)) : L((p− 1)ρ+ x(ρ))]

where the left-hand side denotes the multiplicity of Lx as a composition factor of
My. In view of (1.7), we therefore have

(3.1) [Ny : Lx] = [My : Lx]

for any x, y ∈W .
Consider the Grothendieck group [Ok]. It admits as a basis the classes of the

simple objects ([Lx] : x ∈ W ). On the other hand, as for any highest weight
category, this Grothendieck admits another basis consisting of classes of standard
objects. We will therefore identify it with the group algebra Z[W ] in such a way
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that w ∈ W corresponds to [Mw]. In fact, the comments above show that for any
w ∈W we have

[Mw] = [Nw].

3.4. Wall-crossing functors. For later use, we explain now how to define
a collection of endofunctors of O0 parametrized by S. For any s ∈ S we fix a
cocharacter µs ∈ X which belongs to the wall contained in C corresponding to s.
(For instance, if (ϖα : α ∈ Rs) is the collection of fundamental weights, see §2.4,
one can choose µs = ρ − ϖαs

for any s ∈ S.) Then we consider the self-adjoint
exact endofunctor

ϑs := T pρpρ+µs
◦ T pρ+µs

pρ

of Rep(G)Waff ·p(pρ).

Lemma 3.4. For any s ∈ S the functor ϑs stabilizes A and B.

Proof. By exactness, proving the lemma amounts to proving that if λ ↑ pρ
(resp. if λ ↑ pρ and λ /∈ {(p − 1)ρ + x(ρ) : x ∈ W}) then ϑs(L(λ)) belongs to A
(resp. to B). As explained in §3.3 we have λ = y ·p µ with y ∈ fWaff such that
y ≤ w, resp. with y which satisfies these conditions and does not belong to wWω.
Moreover, since L(λ) is a submodule of N(λ), by exactness again it suffices to prove
that ϑs(N(λ)) belongs to A, resp. to B.

Write µ′
s := w−1 ·p (pρ+ µs). Then µ

′
s belongs to the wall of C corresponding

to the simple reflection s′ = ωsω−1, and by Proposition 2.20(1) we have

ϑs = T pρpρ+µs
◦ T pρ+µs

pρ = Tµµ′
s
◦ Tµ

′
s

µ .

By Proposition 2.37, if ys′ /∈ fWaff we have ϑs(N(λ)) = 0, and otherwise ϑs(N(λ))
admits a 2-step filtration with associated graded

N(y ·p µ)⊕ N(ys′ ·p µ).

Here s′ ∈ Sω, hence by Lemma 3.3(2) we have ys′ ≤ w, which implies that ys′ ·pµ ↑
pρ by Proposition 2.35, and of course ys′ /∈ wWω if y /∈ wWω. This implies the
desired claim. □

Let us denote by π : A → Ok the quotient functor. In view of the universal
property of the Serre quotient (see §3.1 in Chapter A), Lemma 3.4 implies that
there exists a unique endofunctor of Ok whose composition with π is π ◦ ϑs; it is
again self-adjoint. This functor will also be denoted ϑs. The proof of Lemma 3.4
shows that for any w ∈W , in [Ok] we have

[ϑs(Mw)] = [Mw] + [Mws].

In other words, under the identification [Ok] = Z[W ] considered in §3.3, the mor-
phism induced by ϑs is given by right multiplication by e+ s.

3.5. Projective objects. Let us denote by Proj(Ok) the full subcategory of
Ok whose objects are the projective objects, and consider its split Grothendieck
group [Proj(Ok)]⊕. For w ∈ W we will denote by Pw the projective cover of Lw.
The obvious morphism

[Proj(Ok)]⊕ → [Ok]
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is an isomorphism; under the identification of the right-hand side with Z[W ], this
isomorphism is given by

[P ] 7→
∑
w

(P : Mw) · w

for P ∈ Ok projective. The identification [Proj(Ok)]⊕
∼−→ Z[W ] will be denoted κ.

One can compute the dimensions of morphism spaces between projective ob-
jects in terms of this identification, as follows (see [S5, Lemma 2.11.2]). Let us
denote by b the bilinear form on Z[W ] which satisfies b(w, y) = δw,y.

Lemma 3.5. For any P,Q ∈ Proj(Ok) we have

dimk HomOk(P,Q) = b(κ(P ),κ(Q)).

Proof. It suffices to prove the formula when P is indecomposable, i.e. P = Px
for some x ∈W . Then we have

dimk HomOk(Px, Q) = [Q : Lx] =
∑
y

(Q : My) · [My : Lx],

where we use the fact that Q has a standard filtration (see Theorem 2.1 in Appen-
dix A). Using reciprocity (see (2.1) in Appendix A) and (3.1), we deduce that

dimk HomOk(Px, Q) =
∑
y

(Q : My) · [Px : My] = b(κ(Px),κ(Q)),

as desired. □

Remark 3.6. Lemma 3.5 implies that the problem of computing the multi-
plicities ((Px : My) : x, y ∈ W ) (or, equivalently by reciprocity, the multiplicities
([My : Lx] : x, y ∈ W )) is equivalent to the problem of computing the dimen-
sions (dimk HomOk(Px,Py) : x, y ∈ W ). In fact, the formula in the lemma shows
that if one knows the multiplicities ([My : Lx] : x, y ∈ W ) one can compute the
dimensions (dimk HomOk(Px,Py) : x, y ∈ W ). Reciprocally, if one knows the di-
mensions (dimk HomOk(Px,Py) : x, y ∈ W ) one can compute the multiplicities
((Px : My) : x, y ∈ W ) by induction on x as follows. In fact, for x = e we have
Pe = Me by maximality. Then, if x ∈ W and if the multiplicities are known for
indecomposable projective objects with labels < x, one computes the multiplicities
((Px : My) : y ∈W ) by induction on y as follows. For y = e we have

(Px : Me) = dimk HomOk(Px,Pe).

Then if y < x and if the multiplicities (Px : Mz) are known for all the elements
z < y, we use the fact that (Py : My) = 1 to see that

(Px : My) = dimk HomOk(Px,Py)−
∑
z<y

(Px : Mz) · (Py : Mz).

Finally if y = x we have (Px : Mx) = 1, and if y ̸≤ x we have (Px : My) = 0, which
completes the procedure.

The projective objects in Ok admit an inductive construction as follows. First,
note that since each functor ϑs is self-adjoint and exact, it sends projective objects
to projective objects. As seen already in Remark 3.6, by maximality the object
[Me] is projective; we therefore have

Pe = Me.
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Now if n ≥ 0 is such that all the objects Py with y ∈ W of length ≤ n are know,
and if w ∈ W has length n + 1, then we can choose s ∈ S such that ws < w.
By consideration of standard multiplicities (see Remark 2.2 in Appendix A) one
sees that Pw is then a direct summand of ϑs(Pws) with multiplicity 1, and that all
other direct summands have a label of length ≤ n. In particular, this implies that
the subcategory Proj(Ok) of Ok is the smallest full subcategory which contains the
object Me and is stable under the functors ϑs and under taking direct summands.

In another formulation, given a word w = (s1, · · · , sr) in S we set

ϑw = ϑsr ◦ · · · ◦ ϑs1 .
Then if w is a reduced expression for some w ∈W we have

(3.2) ϑw(Me) ∼= Pw ⊕
⊕
y∈W
y<w

P
⊕by,w
y

for some nonnegative integers by,w.

3.6. The object Pw0
. There is one nontrivial projective object that can be

described explicitly, namely Pw0
. In fact, consider the object

(3.3) T pρ(p−1)ρ(M((p− 1)ρ)).

By Proposition 2.27(4), this objects admits a filtration with subquotients M((p −
1)ρ+ x(ρ)) where x runs over W ; in particular, it belongs to A. If λ ∈ X+ satisfies
λ ↑ pρ, we see using Proposition 2.27(2) that

T (p−1)ρ
pρ (L(λ)) ∼=

{
L((p− 1)ρ) if λ = (p− 2)ρ;

0 otherwise.

Since Ext1Rep(G)(L((p − 1)ρ), L((p − 1)ρ)) = 0 (e.g. because L((p − 1)ρ) is both

standard and costandard, see §2.9), we deduce using adjunction that T pρ(p−1)ρ(M((p−
1)ρ)) is projective in A; in fact it is the projective cover of L((p− 2)ρ). In view of
Remark 3.3 in Appendix A, we deduce that its image in Ok is Pw0

, and that the
natural morphism

EndRep(G)(T
pρ
(p−1)ρ(M((p− 1)ρ)))→ EndOk(Pw0

)

is an isomorphism. This analysis also shows that

[Pw0 ] =
∑
y∈W

[My].

Remark 3.7. We will explain in §1.5.3 in Chapter 4 that the G-module (3.3)
is the indecomposable tilting G-module of highest weight pρ.

3.7. The functor V. The starting point of the work in [S5] is a description of
the algebra EndOk(Pw0

) which is reminiscent of a statement for complex Lie algebras
also due to Soergel [S1]; see §1.10 in Chapter 2. Namely, recall the notation of §2.5,
and denote by ⟨S(t)W+ ⟩ the ideal of S(t) generated by homogeneous W -invariant
elements of positive degree (for the natural grading on S(t)). We set

C := S(t)/⟨S(t)W+ ⟩.
(This algebra is sometimes called the “coinvariant algebra,” but this terminology
might be misleading since C is different from the coinvariants for the action of W



56 CHAPTER 1. REPRESENTATION THEORY OF REDUCTIVE GROUPS

on S(t).) This algebra admits a canonical action ofW , and for s ∈ S we will denote
by Cs the subalgebra of s-invariant elements.

In [AJS, §19.8] the authors construct a canonical algebra isomorphism

S(t)/⟨S(t)W+ ⟩
∼−→ EndOk(Pw0

).

In particular, using this isomorphism we obtain that the functor

V := HomOk(Pw0
,−) : Ok → Vectk

factors through a functor (still denoted V) taking values in the category C-Mod of
C-modules.

The following statement gathers some of the main results of the “algebraic
part” of [S5].

Theorem 3.8. (1) The restriction of the functor

V : Ok → C-Mod

to the subcategory Proj(Ok) is fully faithful.
(2) The image of Me under V is the trivial S(t)-module, seen as a C-module.
(3) For any s ∈ S there exists a canonical isomorphism of functors

V ◦ ϑs(−) ∼= C ⊗Cs V(−).

For (1), see [S5, Theorem 2.6.1]. For (2) and (3), see [S5, Theorem 2.6.2].
Transferring the results of §3.5 through the fully faithful functor V we deduce

the following results:

(1) the category Proj(Ok) is equivalent to the smallest full subcategory of
C-Mod which contains the trivial module k and is stable under the functors
C ⊗Cs (−);

(2) for any w ∈W there exists a unique indecomposable C-module Dw which
is a direct summand of the module

C ⊗Csr C ⊗Csr−1 · · · ⊗Cs2 C ⊗Cs1 k

for any reduced expression (s1, · · · , sr) of w, but not a direct summand
of a module

C ⊗Csk C ⊗Csk−1 · · · ⊗Cs2 C ⊗Cs1 k

for any word (s1, · · · , sk) in S with k < ℓ(w); moreover we have

Dw = V(Pw).

The category in (1) is an example of a category of Soergel modules, which
will be studied systematically in Chapter 2. Using these results and Remark 3.6,
one sees that the problem of computing the multiplicities (3.1) can be rephrased
completely in terms of these modules. We will come back to this question repeatedly
in the following chapters, culminating in Chapter 5 where we will explain how these
considerations are the basis for Williamson’s construction of counterexamples to the
expected bound in Lusztig conjectures.

4. Lusztig’s character formula

We are now ready to explain Lusztig’s conjecture, which provides an answer to
the question of computing the characters of the simple algebraic G-modules under
appropriate assumptions.
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4.1. (Iwahori–)Hecke algebras. In this subsection we consider a Coxeter
system (W,S). (See §0.9 for our conventions on Coxeter systems.) ThusW admits
a presentation with generators S, and with the following relations:

• for any s ∈ S, s2 = e;
• for any (s, t) ∈ S2◦ , (st)ms,t = e.

It is a classical observation that, given the first set of relations, the second one can
be rephrased as saying that for any s, t ∈ S2◦ ,

st · · ·︸ ︷︷ ︸
ms,t terms

= ts · · ·︸ ︷︷ ︸
ms,t terms

.

(These relations are called the braid relations.) We will consider an indeterminate
v, and the ring Z[v, v−1] of Laurent polynomials in v with coefficients in Z.

Recall the definition of the Hecke algebra (sometimes called the Iwahori–Hecke
algebra) associated with (W,S).

Definition 4.1. The Hecke algebra associated with (W,S) is the Z[v, v−1]-
algebra H(W,S) with a basis (Hw : w ∈ W) and with multiplication determined by
the following rules:

(1) (Hs + vHe) · (Hs − v−1He) = 0 if s ∈ S;
(2) Hx ·Hy = Hxy if x, y ∈ W and ℓ(xy) = ℓ(x) + ℓ(y).

Note in particular that He is the unit in H(W,S); this element will therefore
sometimes be denoted 1. The relations (1) are called the quadratic relations (be-
cause they say that a certain quadratic polynomial in Hs vanishes). The rela-
tions (2) imply in particular that the elements (Hs : s ∈ S) satisfy the braid
relations in the sense that for any s, t ∈ S2◦ we have

(4.1) HsHt · · ·︸ ︷︷ ︸
mst terms

= HtHs · · ·︸ ︷︷ ︸
mst terms

.

Remark 4.2. If w ∈ W and w = s1 · · · sr is a reduced expression (i.e. each si
belongs to S, and r = ℓ(w)), then we have

(4.2) Hw = Hs1 · · ·Hsr .

In particular, the elements (Hs : s ∈ S) generate H(W,S) as a Z[v, v−1]-algebra. In
fact, it is standard that this algebra admits a presentation with generators (Hs : s ∈
S) and relations the quadratic relations (for any s ∈ S) and the braid relations (4.1)
for any s, t ∈ S2◦ .

The existence of the algebra H(W,S) is standard but not completely obvious;
for details, see [H4, Chap. 7]. Here we follow the notation and conventions of [S3].
Another popular convention involves a basis (Tw : w ∈ W), where for s ∈ S we
have

T 2
s = v−2T1 + (v−2 − 1)Ts.

The relation between these bases is such that Hx = vℓ(x) · Tx. Some authors also
use an indeterminate q rather than v; these conventions are related by the relation
q = v−2.

The second relation in Definition 4.1 implies that each Hs (s ∈ S) is invertible
in H(W,S), with

(4.3) H−1
s = Hs + (v − v−1).
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In view of (4.2), it follows that each element Hw (w ∈ W) is invertible.
Note that if we view Z as a Z[v, v−1]-module with v acting as the identity, then

we have a canonical algebra isomorphism

(4.4) Z⊗Z[v,v−1] H(W,S)
∼= Z[W]

(where the right-hand side is the group algebra of W) where 1 ⊗Hw corresponds
to the element w ∈ Z[W] for any w ∈ W.

If I ⊂ S is a subset, recall that we have the standard parabolic subgroup
WI ⊂ W associated with I, such that (WI , I) is a Coxeter system; see §2.8. Since
the restriction of the length function of W to WI is the length function of WI , it is
clear that we have a canonical Z[v, v−1]-algebra embedding

(4.5) H(WI ,I) ↪→ H(W,S)

sending the basis element Hw in the left-hand side to the basis element Hw in the
right-hand side, for any w ∈ WI .

4.2. The Kazhdan–Lusztig basis. The basis (Hw : w ∈ W) is called the
standard basis of H(W,S). This algebra has another basis with a very rich com-
binatorics, whose definition is due to Kazhdan–Lusztig [KL1], and which we now
introduce.

The Kazhdan-Lusztig involution is the unique ring involution ι of H(W,S) which
satisfies

ι(v) = v−1, ι(Hx) = (Hx−1)−1.

The following theorem is due to Kazhdan–Lusztig [KL1]. For a simple proof, we
refer to [S3, Theorem 2.1].

Theorem 4.3. For all w ∈ W, there exists a unique element Hw ∈ H(W,S)

such that
ι(Hw) = Hw, Hw ∈ Hw +

∑
y∈W

vZ[v]Hy.

The elements (Hw : w ∈ W) form a basis of H(W,S), called the Kazhdan–Lusztig
basis (or sometimes the canonical basis).

Again we are following the notational conventions of [S3]. In [KL1] the authors
denote the element Hw by C ′

w. They also consider another basis (Cw : w ∈ W); it
is related to the basis (Hw : w ∈ W) by Cw = (−1)ℓ(w)τ(Hw), where τ is the ring
involution of H(W,S) defined by τ(Hx) = (−1)ℓ(x) ·Hx and τ(v) = v−1.

The condition that
Hw ∈ Hw +

∑
y∈W

vZ[v]Hy

is sufficient to characterize the element Hw; but it turns out that a more precise
statement holds; we in fact have

Hw ∈ Hw +
∑
y∈W
y<w

vZ[v]Hy.

If one writes
Hx =

∑
y∈W

hy,x ·Hy,

then the polynomials (hy,x : y, x ∈ W) are called the Kazhdan–Lusztig polynomials.
These polynomials satisfy hw,w = 1 for any w ∈ W, and hy,w = 0 unless y < w.
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Remark 4.4. Using the formula (4.3), it is easy to see that Hs = Hs + v for
any s ∈ S. More generally, if I ⊂ S is such thatWI is finite, and if wI is the unique
element of maximal length in WI , then we have

HwI
=
∑
y∈WI

vℓ(wI)−ℓ(y)Hy;

see Exercise 1.16.

The proof of Theorem 4.3 provides some kind of algorithm to compute the
Kazhdan–Lusztig basis inductively. Namely, let w ∈ W, s ∈ S be such that sw > w,
and assume that the elements (Hy : y ∈ W, y < sw) are known. Then it is easily
seen that the element Hs ·Hw can be written as

(4.6) Hs ·Hw =
∑
y∈W
y≤sw

py ·Hy

for some polynomials py ∈ Z[v]. Then one has

Hsw = Hs ·Hw −
∑
y∈W
y<sw

py(0) ·Hy.

It is clear that if I ⊂ S is a subset, the embedding (4.5) sends the Kazhdan–
Lusztig element Hw in the left-hand side to the Kazhdan–Lusztig element Hw in
the right-hand side, for any w ∈ WI .

4.3. Lusztig’s conjecture. We now specialize the considerations above to
the special case (W,S) = (Waff , Saff). (As explained above W is a standard para-
bolic subgroup in Waff ; hence the Kazhdan–Lusztig combinatorics of (Waff , Saff) in
particular contains that of (W,S).) We will write Haff for H(Waff ,Saff ).

Remark 4.5. Recall the group Wext considered in Remark 2.26. Even through
this group has no natural Coxeter group structure, it admits a “length function”
ℓ, and it is not difficult to check that there exists a Z[v, v−1]-algebra structure on
the free Z[v, v−1]-module Hext with a basis (Hw : w ∈ Wext) where multiplication
is defined by the same rule as in §4.1. The submodule spanned by (Hw : w ∈Waff)
identifies with the Hecke algebra Haff of (Waff , Saff), the submodule HΩ spanned
by (Hω : ω ∈ Ω) identifies with the group algebra of Ω over Z[v, v−1], and multipli-
cation induces an isomorphism

Haff ⊗Z[v,v−1] HΩ
∼−→ Hext.

Moreover, for any ω ∈ Ω, conjugation by Hω stabilizes Haff , and acts on this
subalgebra by the automorphism induced by the automorphism of Waff given by
conjugation by ω in Wext. Hence Hext is some kind of semi-direct product of Haff

with Ω.
One can define a Kazhdan–Lusztig basis (Hw : w ∈ Wext) in Hext in the same

way as for Hecke algebras of Coxeter groups; in fact, for any w ∈ Waff and ω ∈ Ω
we have

Hωw = HωHw, Hwω = HwHω.

By expanding the Kazhdan–Lusztig basis in the standard basis we obtain Kazhdan–
Lusztig polynomials (hy,w : y, w ∈Wext). In fact these polynomials are determined



60 CHAPTER 1. REPRESENTATION THEORY OF REDUCTIVE GROUPS

by those attached to (Waff , Saff); more precisely we have

hωy,ω′w =

{
hy,w if ω = ω′;

0 otherwise

for w, y ∈Waff and ω, ω′ ∈ Ω.

From now on we assume that p ≥ h, so that C ∩ X ̸= ∅. Recall that for
λ ∈ C ∩ X the simple objects in Rep(G)Waff ·pλ are parametrized by fWaff . The
following (extremely important) conjecture is due to Lusztig [L1], and is usually
called Lusztig’s conjecture.

Conjecture 4.6. Assume that p ≥ h, and fix λ ∈ C ∩ X. For any w ∈ fWaff

such that

(4.7) ⟨w ·p λ+ ρ, α∨⟩ ≤ p(p− h+ 2) for all α ∈ R+,

we have

(4.8) [L(w ·p λ)] =
∑

y∈fWaff

(−1)ℓ(w)+ℓ(y)hw0y,w0w(1) · [N(y ·p λ)]

in [Rep(G)].

Remark 4.7. A number of remarks on this conjecture are in order.

(1) By Proposition 2.27(1)–(2), the choice of λ in Conjecture 4.6 does not
matter. Namely, the conjecture holds for one specific choice of λ iff it
holds for all λ’s. For simplicity, we will usually assume that λ = 0.

(2) Conjecture 4.6 is stated in terms of the group Waff . In Remark 4.5 we
have explained how to define Kazhdan–Lusztig polynomials for the group
Wext. Let us denote by

fWext ⊂Wext the subset of elements y which have
minimal length in Wy; then fWext = ⊔ω∈Ω

fWaff · ω, and in the setting
of Conjecture 4.6, for w ∈ Wext the weight w ·p λ is dominant if and
only if w ∈ fWext. It is easy to see that if Conjecture 4.6 holds then the
formula (4.8) will also hold for w ∈ fWext (if one replace the condition
y ∈ fWaff by the condition y ∈ fWext).

(3) A very important aspect of the formula (4.8) is that the coefficients ap-
pearing there do not depend on p. The conjecture therefore expresses in
particular the idea that with the correct parametrization of simple mod-
ules (based on the dot-action ofWaff) and if one restricts the problem to a
suitable region, then the characters of simple G-modules “do not depend
on p” in the sense that the coefficients in the expansion of [L(w ·p λ)] in
the basis ([N(y ·p λ)] : y ∈ fWaff) do not depend on p.

(4) The condition (4.7) is called “Jantzen’s condition” since it appeared earlier
in work of Jantzen. To explain the meaning of this condition, write a
dominant weight µ as µ0 + pµ1 with µ0 ∈ X+

res and µ1 ∈ X+ (assuming
this is possible; see §2.4). Identifying G(1) with G in such a way that Fr∗T
identifies with µ 7→ pµ, by Theorem 2.9 we then have

L(µ) ∼= L(µ0)⊗ Fr∗G(L(µ1)).

On the other hand, if µ satisfies the condition that

⟨µ+ ρ, α∨⟩ ≤ p(p− h+ 2)
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for any β ∈ R+ then we have

⟨µ1, β
∨⟩ < p− h+ 2

for any β ∈ R+, and finally

⟨µ1 + ρ, β∨⟩ ≤ p
for any β ∈ R+. Hence µ1 belongs to C, so that L(µ1) ∼= N(µ1), see §2.9.
Jantzen’s condition can therefore be seen as a simple condition that en-
sures that when we apply Steinberg’s decomposition theorem, the simple
module which is pulled back under the Frobenius morphism is in fact a
simple induced (and Weyl) module. Since characters of induced modules
do not depend on p (see Theorem 1.21), this condition seems favorable if
one expects characters to enjoy some “independence of p.” (For an ex-
plicit example where the formula 4.8 does no hold when one leaves the
region determined by (4.7), see Exercise 1.23.)

(5) If µ ∈ X+
res, then for any α ∈ R+ we have

⟨µ+ ρ, α∨⟩ ≤ ⟨(p− 1)ρ+ ρ, α∨⟩ = p(h− 1).

Hence if p ≥ 2h−3 all the elements w ∈Waff such that w ·p λ is dominant
restricted satisfy (4.7). In view of the comments in §2.7 it follows that,
under this assumption, from Conjecture 4.6 one can deduce (in theory)
the characters of all simple G-modules. For a more explicit description
of the character formula one obtains in this way, see [L7].

Example 4.8. The first nontrivial example in which Conjecture 4.6 can be
checked is when G is quasi-simple and w = s◦, where we use the notation of §2.9.
In this case we have seen that

[L(s◦ ·p 0)] = [N(s◦ · 0)]− [L(0)].

On the other hand, using Remark 4.4 we see that

Hw0s◦ = Hw0
Hs◦ =

∑
x∈W

vℓ(w0)−ℓ(x) · (Hxs◦ + vHx).

In particular, hw0,w0s◦ = v.

4.4. Some history. Let us explain some important steps in the history of
Lusztig’s conjecture. This conjecture has guided and motivated most of the later
works on this subject. For more details on some aspects of this history, we refer
to [J4].

The conjecture was stated in 1980, and presented as an analogue of the Kazh-
dan–Lusztig conjecture [KL1] for characters of simple highest weight modules for
complex semisimple Lie algebras. (See §1.10 in Chapter 2 for a discussion of the
latter conjecture. It involves Kazhdan–Lusztig polynomials for the group (W,S)
rather than (Waff , Saff).) Lusztig writes the following in [L7]: “The evidence for
the conjecture is very strong. I have verified it in the cases where G is of type A2,
B2 or G2. (In these cases, [the characters have] been computed by Jantzen.)7” In
fact, at that time some characters for the group of type A3 had also been computed
by Jantzen (see Exercise 1.21); the conjecture also holds in these cases. Shortly
thereafter, as further evidence for his conjecture, Lusztig proved (independently of

7See Exercise 1.22 for this computation.
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the conjecture) in [L3] a formula for characters of induced modules which follows
from Conjecture 4.6; see §4.5 below for details.

A few years later, in [Ka] Kato proved some formulas for Kazhdan–Lusztig
polynomials for the Coxeter system (Waff , Saff), and used them to show that Con-
jecture 4.6 holds iff the formula (4.8) holds for any w ∈ Waff which satisfies (4.7)
and such that w ·p λ is dominant restricted. This suggests to modify the conjecture
slightly and say that the formula (4.8) should hold for any w ∈Waff such that w ·pλ
is dominant restricted, for any p ≥ h. An important aspect of this result is that
it reduces the proof of Lusztig’s conjecture to proving a collection of formulas, the
cardinality of this collection being independent of p. (More precisely, this cardinal-
ity is the number of alcoves contained in (2.9), which can be shown to be equal to
the quotient of #W by the cardinality of the fundamental group of R.)

In the early 1990’s, Lusztig proposed a program for solving his conjecture, see
e.g. [L4]. This program involved the versions of the quantized enveloping algebras
at roots of unity that he had introduced a few years before, and proposed three
main steps:

(1) show that the characters of simplesG-modules attached to restricted dom-
inant weights in the Waff -orbit of 0 are equal to similar characters for the
quantum groups at a root of unity;

(2) build a bridge relating quantum groups at a root of unity and some cate-
gory of representations of affine Lie algebras (over the complex numbers);

(3) build a “localization theory” for affine Lie algebras, relating their represen-
tations to some category of D-modules on an affine flag variety, analogous
to the constructions for complex semisimple Lie algebras due to Bĕılinson–
Bernstein and Brylinski–Kashiwara (which led to the first proof of the
Kazhdan–Lusztig conjecture).

With these three steps completed, one would obtain a proof of the conjecture by
passing from D-modules to perverse sheaves via the Riemann–Hilbert correspon-
dence, and then using the computation of dimensions of fibers of intersection coho-
mology complexes on affine flag varieties in terms of Kazhdan–Lusztig polynomials
due to Kazhdan–Lusztig [KL2].

This program was tackled in the following years. A solution for step (2) was
obtained by Kazhdan–Lusztig [KL3] and Lusztig [L6], and a solution for step (3)
was obtained by Kashiwara–Tanisaki [KT]. Step (1) however revealed more subtle
than expected. Namely, in [AJS] the desired equality was proved, but under the
assumption than p is bigger than a non explicit bound depending on R. Combining
all these works, one therefore obtains that given a root datum ∆, there exists a
bound N(∆) such that, for any algebraically closed field k with char(k) > N(∆),
Conjecture 4.6 holds for the connected reductive algebraic group over k with root
datum ∆. But no estimate of N(∆) can be obtained from the techniques used for
the proof in [AJS]. This situation is described by Soergel in [S5] in the following
terms: “It is proven up to now that this conjecture is valid for every given root
system in sufficiently high characteristic. If however the root system is none of
A1, A2, A3, B2, G2, one does not know for a single characteristic whether it is
sufficiently high.”

In the late 2000’s, Fiebig found a new way to relate the “combinatorial cate-
gory” constructed by Andersen–Jantzen–Soergel, which played a crucial role in the
proofs in [AJS], to perverse sheaves on affine flag varieties. Using this tool, he
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was able to give a new proof of Lusztig’s conjecture in large characteristics (in the
same sense as above) in [F3], and then to provide an explicit bound over which the
conjecture holds in [F4]. These results make the status of Lusztig’s conjecture a
bit more satisfactory; however the bound obtained in [F4] is difficult to compute
in practice, and in any case several orders of magnitude bigger than the expected
bound, namely the Coxeter number h.

The next important contribution is due to Williamson. In [W3] he provided a
family of examples, for the special case of the groupG = GLn(k), which show (using
some results from number theory due to Kontorovich, McNamara and Williamson,
see the appendix to [W3]) that there cannot exist any polynomial P ∈ Z[X] such
that Conjecture 4.6 holds for the group GLn(k) provided that char(k) > P (n).
In particular, the expected bound for the validity of Conjecture 4.6 (namely h,
which equals n in this case) is not sufficient, and in fact no polynomial in h can
be sufficient. The construction of these counterexamples is based on a relation
between Soergel’s modular category O (see Section 3) and the Soergel bimodules
associated with (W,S) and its action on k ⊗Z X, proved by Soergel in [S5], and a
description of the category of Soergel bimodules by generators and relations due to
Elias–Williamson [EW2]; see Chapter 5 for details. So, in fact, what these exam-
ples contradict is not directly Lusztig’s conjecture, but rather a consequence of this
conjecture which can be seen in the combinatorics of the category Ok; see Propo-
sition 4.10 below. Williamson published later a different proof of these counterex-
amples in [W4], where the arguments involving [EW2] are replaced by geometric
considerations involving the singularities of Schubert varieties.

4.5. Relation with characters of induced modules. In this subsection
we explain how one can deduce from Conjecture 4.6 a formula for dimensions of
weight spaces of induced modules in terms of Kazhdan–Lusztig polynomials. This
formula was in fact proved independently of the conjecture by Lusztig in [L3], which
provided further evidence for the truth of Conjecture 4.6. This result was also the
starting point of a very fruitful subject, namely the geometric Satake equivalence;
see [BaR].

Fix λ ∈ X+. We are interested in computing the dimension of N(λ)µ for any
µ ∈ X. In fact, by Lemma 1.11 we can (and will) assume that µ ∈ X+. As explained
in §1.9, this dimension does not depend on p; we will therefore assume that p≫ 0,
and more precisely that p ≥ h and that

⟨λ, α∨⟩ ≤ p− h+ 2

for any α ∈ R+. As explained in Remark 4.7(4), this condition implies in particular
that λ ∈ C, so that that L(λ) = N(λ). By (2.3) we then have L(pλ) ∼= Fr∗G(N(λ)),
which implies that

(4.9) ch(L(pλ)) =
∑
µ∈X+

dim(N(λ)µ) ·
∑

ν∈W (µ)

epν

 .

On the other hand, for η ∈ X we set

χ(η) =

∑
w∈W (−1)ℓ(w)ew•η∑
w∈W (−1)ℓ(w)ew•0 .
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It isclear from definition that for any w ∈W and η ∈ X we have

(4.10) χ(w • η) = (−1)ℓ(w)χ(η).

We also have ∑
w∈W

χ(wη) =

∑
y,w∈W (−1)ℓ(y)ey(w(η)+ρ)−ρ∑

z∈W (−1)ℓ(z)ez(ρ)−ρ

=
∑
x∈W

ex(η) ·
∑
y∈W (−1)ℓ(y)ey(ρ)−ρ∑
z∈W (−1)ℓ(z)ez(ρ)−ρ

=
∑
x∈W

ex(η)

where in the second line we set x = yw. Applying this to η = pµ and dividing by
the order of the stabilizerWµ of µ (a standard parabolic subgroup ofW ) we deduce
that ∑

ν∈W (µ)

epν =
∑

ν∈W (µ)

χ(pν)

=
∑
w∈Wµ

ew(pµ)

=
∑
w∈Wµ

(−1)ℓ(w)χ(pµ− ρ+ w−1(ρ)),

where Wµ ⊂W is the subset of elements w which are minimal in wWµ, and where
the third equality uses (4.10).

Using this equality in (4.9), we obtain that

ch(L(pλ)) =
∑
µ∈X+

(
dim(N(λ)µ) ·

∑
w∈Wµ

(−1)ℓ(w)χ(pµ− ρ+ w−1(ρ))

)
.

Here each pµ− ρ+ w−1(ρ) is dominant. Indeed, for α ∈ Rs, if ⟨µ, α∨⟩ > 0 then

⟨pµ− ρ+ w−1(ρ), α∨⟩ = ⟨pµ+ w−1(ρ), α∨⟩ − 1 ≥ p− 1 + ⟨ρ, w(α)∨⟩,

and the right-hand side is nonnegative because p ≥ h. On the other hand, if
⟨µ, α∨⟩ = 0 then sα ∈ Wµ, so that wsα > w, which implies that w(α) ∈ R+, and
finally that

⟨pµ− ρ+ w−1(ρ), α∨⟩ = ⟨ρ, w(α)∨⟩ − 1 ≥ 0.

Using this fact and Weyl’s character formula (see §1.9), the formula above can
be written as

ch(L(tλ ·p 0)) =
∑
µ∈X+

(
dim(N(λ)µ) ·

∑
w∈Wµ

(−1)ℓ(w) ch
(
N((tµw

−1) ·p 0)
))

.

Our assumption on p implies that the element tλ ∈ Wext satisfies the condition
in (4.7); comparing the formula above with that in (4.8) (see also Remark 4.7(2)),
we deduce that for any µ ∈ X+ ∩ (λ+ ZR) we have

hw0tµ,w0tλ(1) = dim(N(λ)µ).
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4.6. Consequence for Soergel’s modular category O. In this subsection
we assume that G is semisimple and simply connected, and that p > h. Recall
the category Ok from Section 3. Our goal is to explain that, if Lusztig’s conjecture
holds, then one can express the multiplicities of the simple objects (Ly : y ∈ W )
in Ok in the costandard objects (Ny : y ∈ W ) in terms of the Kazhdan–Lusztig
combinatorics of the group W .

Here we find it convenient to work with the extended affine Weyl group Wext

(see Remark 2.26 and Remark 4.5). In fact, for any y ∈W we have

(p− 1)ρ+ y(ρ) = (tρy) ·p 0,
so that we will consider the elements (tρy : y ∈ W ) of Wext. We will assume
that (4.7) holds for these elements and λ = 0, i.e. that

(4.11) ∀y ∈W, [L((p−1)ρ+y(ρ))] =
∑

x∈Wext

x·p0∈X+

(−1)ℓ(tρy)+ℓ(x)hw0x,w0tρy(1)·[N(x·p0)]

in [Rep(G)].

Remark 4.9. Lusztig’s original conjecture predicts that (4.11) holds only if the
weights in the alcoves containing (p−1)ρ in their closure satisfy the condition (4.7).
However, these weights certainly satisfy

⟨λ+ ρ, α∨⟩ ≤ ph
for any α ∈ R+, hence the condition is satisfied at least if p ≥ 2h− 2.

The following statement is implicit in [S5].

Proposition 4.10. Under the assumptions above, for any x, y ∈W we have

[Ny : Lx] = hy,x(1).

The proof of Proposition 4.10 will require the following preliminary lemma.

Lemma 4.11. For any x, y ∈W we have hw0tρx,w0tρy = hw0x,w0y.

Sketch of proof. It would probably be possible to give a combinatorial
proof of this lemma; but we will rather use arguments from geometry. Namely,
thanks to results of Kazhdan–Lusztig [KL2], it is known that the polynomials
hw0x,w0x′ with x, x′ ∈Wext of minimal length in their cosets Wx,Wx′ compute the
local intersection cohomology groups of Iwahori orbits on the affine Grassmannian
attached to the complex reductive group G∨ which is Langlands dual to G (see
REF below for details), while the polynomials (hz,z′ : z, z

′ ∈ W ) compute the lo-
cal intersection cohomology groups of the Bruhat orbits in the flag variety of G∨.
Since the elements tρx (x ∈ W ) are minimal in their coset since they satisfy the
condition 2.10, the lemma is thus a consequence of a geometric relation between
the corresponding orbits.

More specifically, consider the loop group LG∨ associated with G∨, and the
corresponding arc group L+G∨ (see §4.1 in Chapter 3 for details). Let also B∨ be
the negative Borel subgroup of G∨, and let I∨ be its inverse image of B∨ under the
morphism L+G∨ → G∨ sending the indeterminate z to 0. Then one can consider the
“opposite” affine Grassmannian Gr′ := L+G∨\LG∨, and the action of I∨ induced
by multiplication on the right. The orbits for this action are naturally parametrized
by fWext, and as explained in Section 4 of Chapter 3 the graded dimensions of
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the stalks of the intersection cohomology complexes (with rational coefficients)
associated with these orbits are computed by the polynomials (hw0x,w0x′ : x, x′ ∈
fWext).

Consider also the “opposite” flag variety B∨\G∨ and the action of B∨ induced
by multiplication on the right. By the Bruhat decomposition, the orbits for this ac-
tion are naturally parametrized byW , and as explained in Theorem 1.3 in Chapter 3
the graded dimensions of the stalks of the intersection cohomology complexes (with
rational coefficients) associated with these orbits are computed by the polynomials
(hy,y′ : y, y

′ ∈W ).
We now consider the L+G∨-orbit

Gr′ρ := L+G∨\L+G∨zρL+G∨

in Gr′, which is the union of the I∨-orbits associated with the elements (tρx :
x ∈W ). It is well known that there exists a canonical L+G∨-equivariant morphism
Gr′ρ → B∨\G∨ (where L+G∨ acts on B∨\G∨ via the natural morphism LG∨ → G∨

and the action of G∨ induced by multiplication on the right) which is Zariski locally
trivial with fiber an affine space; in particular this morphism is smooth. This
morphism sends the point L+G∨\L+G∨zρ to B∨\B∨w0, hence for an x ∈ W it
sends the I∨-orbit associated with tρx to the B∨-orbit associated with w0x.

Let us now fix y ∈W . The pullback under the open embedding

Gr′ρ ↪→ Gr′ρ

of the intersection cohomology complex associated with the I∨-orbit of tρy in Gr′

is the intersection cohomology complex associated with this same orbit, now seen
in the variety Gr′ρ. Hence the graded dimensions of the stalks of the latter complex
are computed by the polynomials (hw0tρx,w0tρy : x ∈ W ). On the other hand, this
intersection cohomology complex also identifies with the shifted pullback under the
smooth morphism Gr′ρ → B∨\G∨ by [BBD, §4.2.6] (see also [Ac, Corollary 3.6.9]).
Since the graded dimension of the stalks of the latter complex are computed by the
polynomials (hx,w0y : x ∈W ), we deduce the desired equality. □

Now we can give the proof of the proposition.

Proof of Proposition 4.10. One can easily check using (2.7) that for any
x ∈ W we have ℓ(tρx) = ℓ(tρ)− ℓ(x); therefore the formula (4.11) implies that for
x ∈W we have

[Lx] =
∑
y∈W

(−1)ℓ(x)+ℓ(y)hw0tρy,w0tρx(1) · [Ny]

in [Ok]. In view of Lemma 4.11, this implies that

[Lx] =
∑
y∈W

(−1)ℓ(x)+ℓ(y)hw0y,w0x(1) · [Ny],

again for any x ∈ W . Now recall that the Kazhdan–Lusztig inversion formula
(see [S3, Remark 3.10]) states that for z, z′ ∈W we have∑

u∈W
(−1)ℓ(z)+ℓ(u)hu,zhuw0,z′w0 = δz,z′ .
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Hence the formula above can be inverted to obtain that for any y ∈W we have

[Ny] =
∑
x∈W

hw0yw0,w0xw0
(1) · [Lx].

We conclude using the fact that the map z 7→ w0zw0 induces an automorphism of
the Coxeter system (W,S), so that for y, w ∈W we have hw0yw0,w0ww0 = hy,w. □





CHAPTER 2

Soergel bimodules in their various algebraic
incarnations

Soergel bimodules are certain graded bimodules over a polynomial algebra, at-
tached to a choice of a Coxeter system (W,S) and a representation of W, which
can often be used to relate categories of different origins. They were initially in-
troduced by Soergel [S7] (under the name “special bimodules”), as an abstraction
of some objects that appeared in his study of category O of a complex semisim-
ple Lie algebra (see [S1]) and of Harish-Chandra bimodules (see [S2]). Since then
they have proved to be invaluable tools in Geometric Representation Theory, in
particular because of their great flexibility of use. In this chapter we explain three
incarnations of these objects, which make sense (and behave in the expected way)
in various levels of generality: the original definition of Soergel (see §1), a “dia-
grammatic” variant introduced by Elias–Williamson (see §2), and finally a more
recent incarnation due to Abe (see §3). The latter two play important roles in the
geometric approach to representations of reductive groups (see Chapter 6), while
the former one is important in the construction of Williamson’s counterexamples
(see Chapter 5) and for historical reasons.

Soergel bimodules are also closely related to the parity complexes that will be
studied in Chapter 3 so that these objects can also be considered a “topological”
incarnation of Soergel bimodules. There are other interesting incarnations that we
will not discuss here, like sheaves on moment graphs. For a thorough study of this
subject, we refer to [EMTW]; for a brief introduction to Soergel bimodules and
a presentation of one of the most exciting recent developments in this subject, we
refer to [R1].

1. “Classical” Soergel bimodules

1.1. Origin: total cohomology of semisimple complexes on flag va-
rieties. Let us start by explaining how one can construct interesting families of
bimodules out of semisimple complexes on flag varieties. Consider a complex con-
nected reductive algebraic group G with a choice of Borel subgroup B and maximal
torus T contained in B. Let W be the Weyl group of (G ,T ), and S ⊂ W be the
system of Coxeter generators determined by B. Let X := G /B be the flag variety
of G , and consider the B-equivariant derived category

Db
B(X ,Q)

of sheaves of Q-vector spaces on X (with respect to the obvious action by left
multiplication). (The reader not familiar with equivariant derived categories is
referred to [BL] or to [Ac, Chap. 6].) A standard construction provides a monoidal
product ⋆B on this category; see [Ac, §7.2] for details. Recall that the Bruhat
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decomposition provides a stratification

(1.1) X =
⊔
w∈W

Xw

of X , see (1.1) in Chapter 3. On the category Db
B(X ,Q) we have the perverse

t-structure, and the general theory of perverse sheaves tells us that the simple
objects in the heart of this t-structure are parametrized by W , via the assignment
to w ∈W of the intersection cohomology complex

ICw := IC(Xw,Q)

associated with the constant local system on the stratum Xw.
We will denote by

ICB(X ,Q) ⊂ Db
B(X ,Q)

the full subcategory whose objects are the semisimple complexes, i.e. the direct sums
of cohomological shifts of objects ICw (w ∈W ). It follows from the decomposition
theorem (a deep result in the theory of perverse sheaves) that this subcategory is
stable under the convolution product ⋆B; see [Ac, Proposition 7.2.6] for details.
(This crucially relies on the fact that our coefficient field, here Q, has characteristic
0.) This category is a Krull–Schmidt category,1 and its isomorphism classes of
indecomposable objects are in bijection with W × Z via the map

(w, n) 7→ ICw[n].

Remark 1.1. The category ICB(X ,Q) is in fact the category of parity com-
plexes in Db

B(X ,Q); see REF in Chapter 3.

Consider the character lattice X∗(T ) of T , and the Q-algebra

R := S(Q⊗Z X
∗(T )),

which we endow with the grading such that Q ⊗Z X
∗(T ) is in degree 2. We will

denote by

R-ModZ-R

the abelian category of Z-graded R-bimodules,2 and consider the functor

H : Db
B(X ,Q)→ R-ModZ-R

defined as follows. Given F in Db
B(X ,Q), the underlying graded Q-vector space

of H(F) is
H•

B(X ,F) :=
⊕
n∈Z

HnB(X ,F)

with the obvious grading. (Here, HB denotes equivariant cohomology; see [Ac,
§6.7].) To explain the R-bimodule structure, or in other words the action of R⊗QR,
on this object, recall that since the unipotent radical of B is unipotent the natural
morphism

H•
B(pt;Q)→ H•

T (pt;Q)

1An additive category is called Krull–Schmidt if any object has a decomposition as a direct

sum of indecomposable objects with local endomorphism rings. In this case, any object has a
unique decomposition as a direct sum of indecomposable objects up to permutation and isomor-

phisms, and an object is indecomposable iff its endomorphism algebra is a local ring. For basic

properties of this notion, and references, see e.g. [CYZ, Appendix A].
2See §0.9 for our conventions on bimodules.
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is an isomorphism (this follows e.g. from [Ac, Theorem 6.6.16]), and that the right-
hand side identifies canonically with R (as a graded ring), see [Ac, Theorem 6.7.7].
Similarly, we have a canonical identification

H•
B×B(pt;Q)

∼−→ R⊗Q R.

Now it follows e.g. from [Ac, Theorem 6.5.9] that we have a canonical isomorphism

H•
B(X ;Q)

∼−→ H•
B×B(G ;Q)

where B ×B acts on G via (b, c) · g = bgc−1 for b, c ∈ B and g ∈ G . We therefore
have a natural morphism of graded algebras

R⊗Q R→ H•
B(X ;Q).

By construction H(F) has a canonical action of H•
B(X ;Q); using this morphism

it therefore acquires a natural action of R⊗Q R, which finishes the construction of
the functor H.

For any r ∈ Z we will denote by

(1.2) (r) : R-ModZ-R→ R-ModZ-R

the “shift of grading” autoequivalence which sends an object M to the graded
bimodule whose n-th graded piece is

(M(r))n =Mn+r

for any n ∈ Z (with the same R-actions as M). Then it is clear that the functor H
satisfies

H ◦ [1] = (1) ◦H.
The following result is proved in [S6, Proposition 2].

Proposition 1.2. The functor

H : ICB(X ,Q)→ R-ModZ-R

is fully faithful. In other words, for any w, y ∈ W and n ∈ Z this functor induces
an isomorphism

(1.3) HomDb
B(X ,Q)(ICw, ICy[n])

∼−→ HomR-ModZ-R(H(ICw),H(ICy)(n)).

Remark 1.3. (1) Basic commutative algebra shows that ifM,N are gra-
ded R-bimodules with M finitely generated, the canonical functor⊕

n∈Z
HomR-ModZ-R(M,N(n))→ HomR⊗QR(M,N)

is an isomorphism. In this way one sees that Proposition 1.2 is indeed
equivalent to [S6, Proposition 2].

(2) Proposition 1.2 is an “equivariant” version of an earlier result for nonequiv-
ariant cohomology also due to Soergel, see [S1, Erweiterungssatz 5]. These
statements are connected via the fact that for any F in ICB(X ,Q) we
have a canonical isomorphism

(1.4) Q⊗R H•
B(X ,F) ∼−→ H•(X ,F)

where Q is seen as the trivial R-module. (This fact follows from stan-
dard considerations involving an appropriate spectral sequence and parity
vanishing, once one knows that, for any w ∈ W , H•(X , ICw) is concen-
trated in degrees of the same parity as ℓ(w).) For a generalization of the
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nonequivariant version to a larger geometric setting, see [Gi]. For yet
another proof, see [BGS, Proposition 3.4.2].

(3) This result has variants for flag varieties of Kac–Moody groups; see [Hä]
and (in an étale setting) [BY, Proposition 3.1.6].

(4) Proposition 1.2 also has versions for parity complexes (with arbitrary co-
efficients), where on the right-hand side one considers morphisms as mod-
ules over the equivariant cohomology ring of the flag variety; see [MR2,
Proposition 3.13 and Remark 3.19]. For an earlier “non equivariant” vari-
ant, see [ARi1, Theorem 4.1].

Proposition 1.2 implies that the structure of the category ICB(X ,Q) is reflected

in a certain full subcategory of R-ModZ-R. To proceed further one has to identify
the essential image of H. This is equivalent to describing the image of the objects
ICw; but in fact it turns out to be much easier to describe the image of another
family of objects. Namely, for any expression w = (s1, · · · , sr), we set

ICw := ICs1 ⋆B · · · ⋆B ICsr .
These objects “generate” the category ICB(X ,Q) in the following sense. If w ∈W ,
and if w is a reduced expression for w, then ICw is a direct summand of ICw (see
the proof of Theorem 1.3 in Chapter 3). As a consequence, ICB(X ,Q) is the full
subcategory of Db

B(X ,Q) whose objects are the direct sums of cohomological shifts
of direct summands of objects ICw for expressions w.

On the other hand, for any s ∈ S we consider the subalgebra Rs ⊂ R of
s-invariant elements, and set

Bbim
s := R⊗Rs R(1) ∈ R-ModZ-R.

Next, given an expression w = (s1, · · · , sr), we set

Bbim
w := Bbim

s1 ⊗R · · · ⊗R Bbim
sr = R⊗Rs1 · · · ⊗Rsr R(r).

The following statement is the main step of the proof of [S6, Lemma 5].

Proposition 1.4. For any expression w there exists a canonical isomorphism

H(ICw) ∼= Bbim
w .

The proof of Proposition 1.4 in [S6] proceeds by induction on the length of w
to reduce to the case of words of length 1, which is standard. In fact one can endow
H with the structure of a monoidal functor to streamline this argument; see [BY,
Proposition 3.2.1] or [Ac, Proposition 7.6.9].

Remark 1.5. (1) Once again Proposition 1.4 has an earlier “nonequiv-
ariant” version in [S1, §3].

(2) For extensions to Kac–Moody flag varieties, see [Hä] and [BY, §3.2].
For versions for parity complexes, see [MR2, Proposition 3.11] or [Ac,
Theorem 7.6.11].

Let us now denote by X∗(T ) the cocharacter lattice of T (which identifies to
the dual of X∗(T )), and consider the full subcategory SBim(W,Q ⊗Z X∗(T )) of

R-ModZ-R whose objects are the direct sums of grading shifts of direct summands
of objects Bbim

w (for w an expression). It is clear from this definition that the tensor
product of graded R-bimodules endows this category with a monoidal structure,
and Propositions 1.2 and 1.4 (and the comments above) imply that this category



1. “CLASSICAL” SOERGEL BIMODULES 73

is equivalent to ICB(X ,Q) as a monoidal category; this is exactly the category of
Soergel bimodules associated with the Coxeter system (W,S) and the representation
Q⊗Z X∗(T ) of W .

The description of indecomposable objects in ICB(X ,Q) in terms of the “Bott–
Samelson objects” ICw can be transferred to the category SBim(W,Q ⊗Z X∗(T ))
via the equivalence H. Namely, for any w ∈W we set

(1.5) Bbim
w := H(ICw).

Then Bbim
w is an indecomposable object in SBim(W,Q ⊗Z X∗(T )), and the as-

signment (w, n) 7→ Bbim
w (n) induces a bijection between W × Z and the set of

isomorphism classes of indecomposable objects in SBim(W,Q⊗ZX∗(T )). The ob-
ject Bbim

w can be characterized intrinsequely as follows: for any reduced expression
w for w, Bbim

w is the unique indecomposable direct summand of Bbim
w which is not

isomorphic to a direct summand of Bbim
y (n) for some expression y of length strictly

smaller than ℓ(w) and n ∈ Z. (This follows from the similar characterization of
ICw in terms of the objects ICw.) These statements are prototypes for the main
results in the theory of Soergel bimodules.

Remark 1.6. As explained in Remarks 1.3 and 1.5, what Soergel initially intro-
duced are not the bimodules considered above, but the associated Soergel modules,
i.e. the objects one obtains by tensoring on the right with the trivial R-module
Q. (See §1.9 below for more on Soergel modules.) The bimodules for (W,S) and
Q⊗ZX∗(T ) as above were introduced in [S2], considered again in [S6], and finally
studied algebraically and in a more general context (as explained in §1.4 below)
in [S7].

1.2. Reflection faithful representations.
1.2.1. Definition. As explained above the initial data for the definition of So-

ergel bimodules are a Coxeter system (W,S) and a finite-dimensional representation
V of W over some field k. The definition makes sense for any representation, but
for these objects to behave in a reasonable way one needs to impose a technical
condition on V that Soergel called reflection faithful, and that we now explain.

Denote by T ⊂ W the set of reflections in W, i.e. of conjugates of elements of
S. A finite-dimensional representation V of W over a field k with char(k) ̸= 2 is
called reflection faithful if it is faithful and if for x ∈ W we have

(1.6) dim(V x) = dim(V )− 1 ⇔ x ∈ T .

Let us note some easy “stability” properties of this notion.

Lemma 1.7. Let V be a finite-dimensional representation of W over the field
k.

(1) If I ⊂ S is a subset and if V is a reflection faithful representation of
(W,S), then the restriction of V to WI is a reflection faithful representa-
tion of (WI , I).

(2) If k′ is an extension of k, then k′⊗kV is a reflection faithful representation
of (W,S) (as a representation over k′) if and only if V is a reflection
faithful representation of (W,S).

(3) V is a reflection faithful representation of (W,S) iff the contragredient
representation V ∗ is a reflection faithful representation of (W,S).
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Proof. (1) This follows from the definition and the fact that any element in
WI ∩ T is a reflection for (WI , I), i.e. is WI -conjugate to an element of I, see [Da,
Lemma 4.2.3].

(2) This follows from the fact that the dimension of the kernel of a matrix with
coefficients in k is the same as the dimension of the kernel of that matrix regarded
as a matrix with coefficients in k′.

(3) This follows from the fact that the kernel of a matrix and of its transpose
have the same dimension. □

There are 2 natural families of representations of Coxeter systems which are
known to satisfy this definition, which we now explain.

1.2.2. Soergel’s representation. Given any Coxeter system (W,S), one can con-
sider a R-vector space V endowed with a linearly independent family (es : s ∈ S) ⊂
V and a linearly independent family (e∗s : s ∈ S) ⊂ V ∗ which satisfy, for any
s, t ∈ S,

⟨et, e∗s⟩ =


−2 cos(π/ms,t) if (s, t) ∈ S2◦ ;
2 if s = t;

−2 if s ̸= t and ⟨s, t⟩ is infinite.

Then the formula

s · v = v − ⟨v, e∗s⟩es

defines a reflection faithful representation of (W,S) on V . For a proof of this fact,
we refer to [S7, §2]. (In this reference it is assumed that V has minimal dimension
among R-vector spaces admitting such data, but this condition is not used.)

Remark 1.8. Recall the geometric representation of Coxeter groups, see [Mi].
Namely, let (W,S) be a Coxeter system, and set V = RS , with canonical basis
(es : s ∈ S). We define a symmetric bilinear form ⟨−,−⟩ on V by setting for
s, t ∈ S

⟨es, et⟩ =


− cos(π/ms,t) if (s, t) ∈ S2◦ ;
1 if s = t;

−1 if s ̸= t and ⟨s, t⟩ is infinite.

By [Mi, Lemma 5.10], the assignment

s 7→
(
x 7→ x− 2⟨x, es⟩es

)
extends to a representation ofW on V . In caseW is finite, the bilinear form ⟨−,−⟩
is positive definite (in particular, non-degenerate), see [Mi, Proposition 5.14]. One
can therefore choose for V as above this vector space, with the family (es : s ∈ S),
and the family (e∗s : s ∈ S) defined by e∗s = 2⟨es,−⟩. In particular, the geometric
representation is reflection faithful if W is finite.

For generalW, the geometric representation is faithful (see [Mi, Lemma 5.11]),
but it is not always reflection faithful (see [EMTW, Example 5.34]). Note that the
main results of the theory of Soergel bimodules still apply for this representation
thanks to the results of [Li2].
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1.2.3. Representations arising from Kac–Moody algebras. The other example
arises in the theory of Kac–Moody groups and algebras. Namely, let A = (ai,j)i,j∈I
be a generalized Cartan matrix, with rows and columns parametrized by a finite
set I, and let (

h, (αi : i ∈ I), (α∨
i : i ∈ I)

)
be a realization of A over Q in the sense of [Kac]. Concretely, this means that h
is a finite-dimensional Q-vector space, (αi : i ∈ I) is a collection of elements in h∗

parametrized by I, (α∨
i : i ∈ I) is a collection of elements in h parametrized by I,

and we assume that:

(1) the sets (αi : i ∈ I) and (α∨
i : i ∈ I) consist of linearly independent

vectors;
(2) for any i, j ∈ I we have ⟨α∨

i , αj⟩ = ai,j ;
(3) dim(h) = #I + cork(A).

(For more about this construction, see [Ca, §14.1], replacing the field C by Q.
Note in particular that these data are unique up to isomorphism, see [Ca, Propo-
sition 14.3].)

To each generalized Cartan matrix A one can associate a Coxeter system (W,S)
using the following recipe. The set of simple reflections S is equipped with a fixed
bijection S ∼−→ I (denoted by s 7→ is), and for distinct s, t ∈ S, the order of st is
determined by the following rule:

aisitaitis ms,t

0 2
1 3
2 4
3 6
≥ 4 ∞

In particular we have ms,t ∈ {2, 3, 4, 6} for any (s, t) ∈ S2◦ ; the Coxeter systems
which satisfy this condition are called crystallographic.

It is a basic fact in the theory of Kac–Moody algebras that the assignment

s 7→ (λ 7→ λ− ⟨α∨
is , λ⟩αis)

defines an action of W on C ⊗Q h∗, see [Kac, Proposition 3.13] or [Ku, Defi-
nition 1.3.1 and Proposition 1.3.11]; since these automorphisms are induced by
automorphisms of h∗, it follows that the same recipe defines an action of W on h∗.
This representation turns out to be reflection faithful. In fact, by Lemma 1.7(2) it
suffices to prove that the representation on C⊗Q h∗ is reflection faithful. Faithful-
ness follows from the fact that W can be defined as a subgroup of GL(C ⊗Q h∗),
see [Ku, Definition 1.3.1]. (See [Ku, Proposition 1.3.21] for the identification with
the group defined above.) The condition (1.6) is checked in [Ku, Lemma 11.2.2].
By Lemma 1.7(3), the representation h is also a reflection faithful representation of
(W,S).

Remark 1.9. See [R1, Proposition 1.1(2)] for a different proof of the fact that
this representation is reflection faithful, based on the arguments in [S7, §2], under
the additional assumption that A is symmetrizable.

1.2.4. More representations arising from Kac–Moody theory. Let again A be
a generalized Cartan matrix, whose rows and columns are parametrized by some
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finite set I. Recall that a Kac–Moody root datum associated with A is a triple

(X, (αi : i ∈ I), (α∨
i : i ∈ I))

where X is a finite free Z-module, (αi : i ∈ I) is a family of elements of X
parametrized by I, and (α∨

i : i ∈ I) is a family of elements of X∨ := HomZ(X,Z)
which satisfy

⟨α∨
i , αj⟩ = ai,j ,

see [Ti]. As in §1.2.3, to A we associate a Coxeter system (W,S); once again, it is
a basic fact that the assignment

s 7→ (λ 7→ λ− ⟨α∨
is , λ⟩αis)

defines an action of W on X, see [Ti, §3.1].

Example 1.10. Let G be a connected reductive algebraic group (over some
algebraically closed field) with a choice of Borel subgroup B and maximal torus
T ⊂ B, with associated Cartan matrix A and Weyl group (W,S). Then A is a
generalized Cartan matrix (called of finite type), the associated Coxeter system is
(W,S), and one can take for X the character lattice X∗(T ), for (αi : i ∈ I) the
collection of simple roots, and for (α∨

i : i ∈ I) the collection of simple coroots. The
associated Coxeter system is the pair (W,S) where W is the Weyl group of (G ,T )
and S is the system of Coxeter generators determined by B, and the associated
representation over Q is that considered in §1.1.

Given any field k, one deduces a representation of W with underlying vector
space k ⊗Z X. In general this representation is not faithful, hence a fortiori not
reflection faithful. (For instance, if p = char(k) > 0 and W is infinite this repre-
sentation cannot be faithful because it factors through an action on Fp ⊗Z X and
GL(Fp ⊗Z X) is finite.)

We claim that the representation h considered in §1.2.3 is a special case of this
construction, with k = Q. In fact, consider a triple (h, (αi : i ∈ I), (α∨

i : i ∈ I)) as
in §1.2.3. Let (vj : j ∈ J) be a set of vectors in h such that

• (α∨
i : i ∈ I) ∪ (vj : j ∈ J) is a Q-basis of h;

• for any i ∈ I and j ∈ J , ⟨αi, vj⟩ ∈ Z.
(Such a family of vectors exists: it suffices to start with any family that completes
(α∨
i : i ∈ I) to a basis, and then to multiply these vectors by appropriate integers

to ensure that the second conditions is satisfied.) Set

Y :=

(⊕
i∈I

Zα∨
i

)
⊕

⊕
j∈J

Zvj

 ⊂ h

and X := HomZ(Y,Z). Then we have an identification

(1.7) X = {λ ∈ h∗ | ∀i ∈ I, ⟨λ, α∨
i ⟩ ∈ Z and ∀j ∈ J, ⟨λ, vj⟩ ∈ Z},

and natural isomorphisms

Q⊗Z Y
∼−→ h, Q⊗Z X

∼−→ h∗.

Each α∨
i belongs to Y, and under the identification (1.7) each αi belongs to X.

Hence the triple (X, (αi : i ∈ I), (α∨
i : i ∈ I)) is a Kac–Moody root datum for A,

and the associated representation over Q is h.
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There is another special case of this construction which does produce reflection
faithful representations. Namely, let G be a simply connected semisimple algebraic
group (over some algebraically closed field F), with a Borel subgroup B and a
maximal torus T ⊂ B. If we denote by X = X∗(T ) the character lattice of
T , by (αi : i ∈ I) the basis of the root system of (G ,T ) determined by B, and
by (α∨

i : i ∈ I) the associated coroots, then (X, (αi : i ∈ I), (α∨
i : i ∈ I)) is

a Kac–Moody root datum associated with the (generalized) Cartan matrix A =
(⟨α∨

i , αj⟩)i,j∈I , see Example 1.10. In this setting, it is proved in [Li3, Appendix A]
that the representation of W on k ⊗Z X is a reflection faithful representation of
(W,S) if char(k) /∈ {2, 3}.

The categories of Soergel bimodules and Soergel modules in this case are closely
related to the categories of parity complexes on G /B, as explained in case k = Q
in §1.1. This observation can be used to study them without reference to the general
theory, even in the case when char(k) > 0; see [S5] and [AR1] for this approach.

1.3. Soergel bimodules. From now on we fix a Coxeter system (W,S) and
a finite-dimensional representation V ofW over a field k whose characteristic is not
2. We set

R := S(V ∗).

(Here R can be interpreted geometrically as the algebra of functions—in the sense of
algebraic geometry—on V seen as an affine space over k.) We endow this k-algebra
with the grading such that V ∗ is concentrated in degree 2, and then consider the
category

R-ModZ-R

of Z-graded R-bimodules. This category admits a monoidal structure, with product
the tensor product ⊗R over R (for the right-action on the left factor, and the left
action on the right factor). We define the “shift of grading” equivalences (r) as
in (1.2) (for r ∈ Z).

The algebra R also admits an action of W by graded algebra automorphisms,
induced by the action on V . For any s ∈ S we denote by Rs ⊂ R the subalgebra of
s-invariant elements, and set

Bbim
s := R⊗Rs R(1) ∈ R-ModZ-R.

Recall that a reflection of a finite-dimensional vector space (over a field whose
characteristic is not 2) is an endomorphism whose square is id and which acts as
the identity on a hyperplane. Note that our assumption on char(k) implies that
such an endomorphism is diagonalizable, with eigenvalues 1 and −1; the associated
eigenspaces have dimension dim(V )− 1 and 1 respectively.

Lemma 1.11. Assume that s acts on V as a reflection, and let α ∈ V ∗ be
an element such that s(α) = −α. Then, as a graded Rs-module, R is graded free
with basis (1, α). As a consequence, as graded left R-modules (or as graded right
R-modules) we have

Bbim
s
∼= R(1)⊕R(−1).

Proof. If s acts as a reflection on V , then it also acts as a reflection on V ∗.
Hence there exists a hyperplane H ⊂ V ∗ on which s acts as the identity and such
that

V ∗ = H ⊕ k · α.
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Then we have
R =

⊕
n≥0

S(H) · αn,

and
Rs =

⊕
n≥0
n even

S(H) · αn.

The first claim is then clear. This claim implies that as graded left Rs-modules (or
as graded right Rs-modules) we have R ∼= Rs ⊕ Rs(−2). The claim about Bbim

s

follows. □

Next, for any expression w = (s1, · · · , sr) we set

Bbim
w := Bbim

s1 ⊗R · · · ⊗R Bbim
sr = R⊗Rs1 · · · ⊗Rsr R(r).

(By convention, this tensor product is interpreted as R with its canonical bimodule
structure in case r = 0, i.e. w is the empty word.) These bimodules are sometimes
called Bott–Samelson bimodules, because of their relation with Bott–Samelson res-
olutions of Schubert varieties (see REF).

It is clear that if w and y are expressions we have

Bbim
w ⊗R Bbim

y = Bbim
wy

where wy is the word obtained by concatenation of w and y. Lemma 1.11 implies

that if each element in S acts on V as a reflection, then Bbim
w is graded free as a

graded left R-module and as a graded right R-module (with a graded rank which
can easily be computed).

The category SBim(W, V ) of Soergel bimodules associated with (W,S) and the

representation V is the full subcategory of R-ModZ-R whose objects are the direct
sums of grading shifts of direct summands of objects Bbim

w (for w a word in S).
There is no reason to expect that this category is well behaved for an arbitrary
choice of V . But the magic of this theory is that the properties observed in §1.1
(for a very specific choice closely related to geometry) continue to hold when V is
reflection faithful.

Remark 1.12. The category R-ModZ-R admits an autoequivalence φ that
switches the left and right actions of R. This autoequivalence is “anti-monoidal”
in the sense that for M,N in R-ModZ-R there exists a canonical isomorphism

φ(M ⊗R N) ∼= φ(N)⊗R φ(M).

It is clear that φ(Bbim
s ) = Bbim

s for any s ∈ S, hence for any expression w the bi-
module φ(Bbim

w ) is the bimodule associated with the expression obtained from w by

reversing the order of the simple reflections. In particular, φ stabilizes SBim(W, V ).

A simple property which is true under a much weaker assumption is that
SBim(W, V ) is a Krull-Schmidt category if each element in S acts on V as a re-

flection. Indeed, consider first the abelian full subcategory of R-ModZ-R whose
objects are the graded bimodules which are finitely generated (as bimodules). For
any M,N in this subcategory we have dimHomR-ModZ-R(M,N) < ∞. In view
of [CYZ, Remark A.2] it follows that this subcategory is Krull–Schmidt. It follows

that the subcategory of R-ModZ-R whose objects are the graded bimodules which
are finitely generated as left R-modules is Krull–Schmidt too. This subcategory
is easily seen to be stable under the tensor product ⊗R, direct sums, and direct
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summands. Lemma 1.11 shows that it contains each Bbim
s ; it therefore contains

SBim(W, V ), which is therefore Krull–Schmidt.
Under the same assumption, Lemma 1.11 implies that any object of SBim(W, V )

is finitely generated projective as a graded left R-module (or right R-module), hence
that it is in fact graded free (both as a left R-module and as a right R-module, but
of course not as an R-bimodule).

Remark 1.13. By Lemma 1.7(1), for any I ⊂ S the restriction of V to WI

is a reflection faithful representation of (WI , I). If w is an expression for (WI , I),
then it can be considered as an expression of (W,S), and the bimodules Bbim

w are

the same for the two possible interpretations of w. It follows that SBim(WI , V ) is

contained in SBim(W, V ) (as full subcategories of R-ModZ-R).

1.4. Structure for reflection-faithful representations. We now assume
that V is reflection faithful, and that k is infinite. The first main result on Soergel
bimodules is the following theorem; see [S7, Theorem 1.10].

Theorem 1.14. There exists a unique ring homomorphism

ε : H(W,S) → [SBim(W, V )]⊕

such that ε(v) = [R(1)] and ε(Hs) = [Bbim
s ].

In view of Remark 4.2 in Chapter 1, there is an obvious strategy for prov-
ing Theorem 1.14. The Z-module [SBim(W, V )]⊕ has a ring structure induced by
the monoidal product on the category SBim(W, V ). One turns this ring into a
Z[v, v−1]-algebra by defining the action of v as multiplication (on the left or on the
right) by [R(1)]. Then one should prove that the elements [Bbim

s ] − v satisfy the
quadratic relations and the braid relations. The quadratic relations are immediate
consequences of Lemma 1.11; in fact we have

(1.8) Bbim
s ⊗R Bbim

s = R⊗Rs R⊗Rs R(2)

= R⊗Rs R(1)⊕R⊗Rs R(−1) = Bbim
s (1)⊕ Bbim

s (−1)

since R ∼= Rs ⊕ Rs(−2) as a graded Rs-bimodule, see Lemma 1.11. This implies
that

[Bbim
s ] · [Bbim

s ] = (v + v−1) · [Bbim
s ],

which is equivalent to the quadratic relation for [Bbim
s ]− v.

Checking the braid relations turns out to be a bit more difficult. The verification
in [S7] relies on a fine study of Soergel bimodules in case W is a finite dihedral
group (for the obvious choice of Coxeter generators). This is proved in fact under
slightly weaker assumptions, namely that

(1) k is infinite;
(2) each t ∈ T acts on V as a reflection;
(3) distinct elements in T act with distinct −1-eigenspaces.

(These condition is satisfied for reflection faithful representations by Exercise 2.2.)
Theorem 1.14 is therefore valid under this weaker assumption.

An earlier proof, based on different arguments, appears in [S2] for the special
case when V is the complexification of the geometric representation. (As explained
in Remark 1.8, this representation is not always reflection faithful.)
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Remark 1.15. (1) In [S7], Soergel denotes by R the full subcategory of

R-ModZ-R whose objects are the bimodules which are finitely generated
both as left and as right R-modules. He defines ε as taking values in
[R]⊕, and then defines the “special bimodules” as the objects in R whose
class in [R]⊕ belongs to the image of ε. By [S7, Lemma 5.13], any special
bimodule is a direct summand of a direct sum of objects of the form
Bbim
w (n), hence belongs to our category SBim(W, V ). Conversely, it is

clear that each Bbim
w (n) is special. Since the category of special bimodules

is stable under direct sums, and also under direct summands (by [S7,
Satz 6.14(4)]), evey object of SBim(W, V ) is special. In the end, our
definition is thus consistent with that in [S7].

(2) One might ask for a description of the “standard basis” (Hw : w ∈ W) of
H(W,S) under the morphism of Theorem 1.14. One thing which is clear is
that the image of such elements is not in general the class of a bimodule;
for instance for s ∈ S we have Hs = Hs−v, hence ε(Hs) = [Bbim

s ]−[R(1)].
If ε(Hs) was the class of an object M of SBim(W, V ), then decomposing
M as a sum of indecomposable objects and using Theorem 1.16 below
would provide a contradiction. However, by the main result of [Ros] the
obvious morphism

[SBim(W, V )]⊕ → [KbSBim(W, V )]∆

is an isomorphism. One can thus ask a different question: does there exist
a “natural” object in KbSBim(W, V ) whose class in [KbSBim(W, V )]∆ is
Hw? This question turns out to have a very interesting answer, provided
by Rouquier [Ro1]. As a warm-up, consider the case w = s ∈ S. Then
there exists an obvious “multiplication” morphism R ⊗Rs R → R, which
provides a morphismms : B

bim
s → R(1) in SBim(W, V ). One can therefore

consider the complex

Fs := (· · · → 0→ Bbim
s

ms−−→ R(1)→ 0→ · · · )

where Bbim
s is placed in degree 0. The class of this complex is clearly Hs.

Rouquier proves3 in [Ro1] that for any (s, t) ∈ S2◦ we have

Fs ⊗R Ft ⊗R · · ·︸ ︷︷ ︸
ms,t terms

∼= Ft ⊗R Fs ⊗R · · ·︸ ︷︷ ︸
ms,t terms

in KbSBim(W, V ), where we still denote by ⊗R denotes the obvious ex-
tension of this bifunctor to KbSBim(W, V ). As a consequence, using Mat-
sumoto’s lemma (see [Mi, Theorem 4.2(iv)]), if w ∈ W and w = s1 · · · sr
is a reduced expression the complex

Fw := Fs1 ⊗R · · · ⊗R Fsr
does not depend on the choice of reduced expression, i.e. only depends on
w. It is clear that its class in [KbSBim(W, V )]∆ is Hw.

The complexes (Fw : w ∈ W) are called Rouquier complexes; they
have found important applications to link invariants; for a discussion,

3In this paper Rouquier works with V being the geometric representation. His proof however
applies similarly for reflection faithful representations.
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see [EMTW, Chap. 21]. For more on Rouquier complexes, and a discus-
sion of their role in the proof of the Elias–Williamson theorem discussed
in §1.8 below, see [EMTW, §19.3].

The next important result is the classification of indecomposable objects in
SBim(W, V ).

Theorem 1.16. For any w ∈ W there exists a unique indecomposable object
Bbim
w ∈ SBim(W, V ) which satisfies the property that for any reduced expression w

for w, Bbim
w is the unique indecomposable summand of Bbim

w which is not a direct

summand of an object Bbim
y (n) with y a reduced expression of an element y < w

and n ∈ Z. Moreover, the assignment

(w, n) 7→ Bbim
w (n)

induces a bijection between W × Z and the set of isomorphism classes of indecom-
posable objects in SBim(W, V ).

As a consequence, the family ([Bbim
w ] : w ∈ W) forms a basis of [SBim(W, V )]⊕

over Z[v, v−1].

Given an object M ∈ SBim(W, V ), the integers (aw,n : w ∈ W, n ∈ Z) in the
decomposition

M ∼=
⊕
w∈W
n∈Z

(Bbim
w (n))⊕aw,n

(which are well defined thanks to the Krull–Schmidt property) are determined by
the coefficients of the expansion of [M ] in the basis ([Bbim

w ] : w ∈ W): we have

[M ] =
∑
w∈W

(∑
n∈Z

aw,nv
n

)
· [Bbim

w ].

Remark 1.17. (1) The characterization of the object Bbim
w given in [S7,

Satz 6.14(1)] is different from that given in Theorem 1.16. However, So-
ergel explains in [S7, Bemerkung 6.16] that for any w ∈ W and any
reduced expression w for w we have

(1.9) Bbim
w
∼= Bbim

w ⊕
⊕

y∈W,y<w
n∈Z

(Bbim
y (n))a

w
y,n

for some nonnegative integers a
w
y,n (which moreover satisfy a

w
y,n = a

w
y,−n).

It follows that Bbim
w is also characterized by the condition stated in The-

orem 1.16.
(2) Recall the autoequivalence φ from Remark 1.12. Then for any w ∈ W we

have φ(Bbim
w ) ∼= Bbim

w−1 .

(3) In case (W,S) is as in §1.1 and V = Q⊗ZX∗(T ), the object Bbim
w coincides

with the graded bimodule denoted in the same way in (1.5).
(4) The characterization of Bbim

w given in Theorem 1.16 provides an inductive
procedure for constructing it: if w is a reduced expression for w, and
if one knows the objects Bbim

y for any y ∈ W such that y < w, the

integer a
w
y,n is the largest integer a such that there exist morphisms fi :

Bbim
y (n) → Bbim

w and gi : Bbim
w → Bbim

y (n) (i ∈ {1, · · · , a}) such that

gj ◦ fi = δi,j id; using these maps one determines a subbimodule of Bbim
w
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isomorphic to
⊕

y<w
n∈Z

(Bbim
y (n))a

w
y,n , and Bbim

w is a complement. Of course,

this procedure is very difficult to run in practice, and there are very few
examples for which the object Bbim

w admits an explicit description. Among
those, one can cite the elements belonging to the subgroup generated
by a pair of elements in S (see [S7, §4], to which one can reduce by
Lemma 1.7(1)). Another case is when w is the longest element in a finite
parabolic subgroupWI ofW (I ⊂ S); in this case we have Bbim

w = R⊗RWI

R(ℓ(w)). A quick way to check this uses the theory of singular Soergel
bimodules from [W1], see Remark 1.19 below. In fact, RWI is (up to
shift) the indecomposable singular Soergel bimodule with “singularity”
(I, I) associated with the trivial coset in WI\W/WI . Then the claim
follows from [W1, Proposition 7.11(1)].

(5) As explained in Remark 1.13, if I ⊂ S the category SBim(WI , V ) is con-
tained in SBim(W, V ). If w ∈ WI , then the two possible meanings of Bbim

w

define isomorphic bimodules.
(6) In the course of the proof of Theorem 1.16 Soergel proves another useful

theorem, which allows to compute the dimension of the space of mor-
phisms of graded bimodules between any pair of Soergel bimodules; for
the precise formula, see [S7, Theorem 5.15] or [EMTW, Theorem 5.27].
This statement is often called “Soergel’s Hom formula.” We will encounter
a formula with similar flavor in the geometric setting of Chapter 3: see
Proposition 2.8 in that chapter.

Once Theorem 1.16 is proved, one obtains the following.

Corollary 1.18. The morphism ε of Theorem 1.14 is an isomorphism. More-
over, for any w ∈ W we have

(1.10) ε−1([Bbim
w ]) ∈ Hw +

∑
y<w

Z[v, v−1] ·Hy.

Proof. Choose, for any w ∈ W, a reduced expression w for w, and denote by
W ′ the set of expressions obtained in this way. The Krull–Schmidt property implies
that the classes ([Bbim

w ] : w ∈ W) form a basis of [SBim(W, V )] over Z[v, v−1]. In
view of the decompositions (1.9), the same is true for the classes ([Bbim

w ] : w ∈ W ′).

On the other side, for an expression w = (s1, · · · , sr) we set

(1.11) Hw = Hs1
· · ·Hsr

.

Then if w is a reduced expression for w it is easily seen that

Hw ∈ Hw +
∑
y<w

Z[v, v−1] ·Hy.

As a consequence, the set (Hw : w ∈ W ′) forms a basis of H(W,S). It is clear from
definitions that for any expression w we have

ε(Hw) = [Bbim
w ].

Hence ε sends a basis to a basis, and is therefore an isomorphism.
To prove (1.10), one proceeds by induction on the Bruhat order using (1.9). □

In the course of the proof of Theorem 1.16, Soergel constructs a map h∆ :
[SBim(W, V )]⊕ → H(W,S) which is a left inverse (hence an inverse) to ε (see [S7,
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Proposition 5.7(3) and Bemerkung 5.14], or [EMTW, Definition 5.11 and Theo-
rem 5.24(3)]). Manifestly, for any object M in SBim(W, V ), all the coefficients of
the expansion of h∆([M ]) in the basis (Hw : w ∈ W) have nonnegative coefficients.
In particular, (1.10) can be refined to the statement that

(1.12) ε−1([Bbim
w ]) ∈ Hw +

∑
y<w

Z≥0[v, v
−1] ·Hy.

For any expression w, from the definition one sees that the lowest degree in
which Bbim

w is nonzero is −ℓ(w), and that the component in this degree has di-

mension 1. If w ∈ W and w is a reduced expression for w, since Bbim
w is a direct

summand in Bbim
w , we deduce that Bbim

w vanishes in degrees < −ℓ(w), and that its

component of degree −ℓ(w) has dimension at most 1. In fact, using the explicit
description of ε−1 and (1.10) one can check that

(1.13) dim((Bbim
w )−ℓ(w)) = 1;

see [R1, Remarque 1.10(1)] for details.

Remark 1.19. In [W1], G. Williamson developed a “singular” version of So-
ergel bimodules, in the form of categories of graded (RWI , RWJ )-bimodules for
subsets I, J ⊂ S. In the case of representations as in §1.2.3–1.2.4 these objects
are connected4 to semisimple complexes (or parity complexes) on parabolic flag va-
rieties in the same way that “usual” Soergel bimodules are related to semisimple
complexes on flag varities; see §1.1. As we have already used in Remark 1.17(4), the
description of indecomposable singular Soergel bimodules reduces to the description
of the indecomposable objects in SBim(W, V ), see [W1, Proposition 7.11(1)].

1.5. Extension of scalars. Let V be a reflection faithful representation of
(W,S) over a field k, and let k′ be an extension of k. By Lemma 1.7(2) the
tensor product V ′ := k′ ⊗k V is a reflection faithful representation of (W,S) over
k′, hence we can consider both the categories SBim(W, V ) (a k-linear category)
and SBim(W, V ′) (a k′-linear category). In SBim(W, V ) we have the objects Bbim

w

attached to expressions w and the indecomposable objects (Bbim
w : w ∈ W), and

in SBim(W, V ′) we have the similar objects, which we denote by ′Bbim
w and ′Bbim

w

respectively.
If we set R = Sk(V

∗) and R′ := Sk′((V
′)∗), considered as graded algebras as

in §1.3, then the functor k′ ⊗ (−) induces a functor

R-ModZ-R→ R′-ModZ-R′

For any M,N in R-ModZ-R with M finitely generated (as a bimodule) we have

(1.14) HomR′-ModZ-R′(k′ ⊗k M,k′ ⊗k N) = k′ ⊗k HomR-ModZ-R(M,N),

and for any expression w this functor sends Bbim
w to ′Bbim

w . In particular, this functor
restricts to a functor

(1.15) SBim(W, V )→ SBim(W, V ′).

Lemma 1.20. For any w ∈ W we have

k′ ⊗k B
bim
w
∼= ′Bbim

w .

4This connection is morally clear, but it does not appear in the literature as far as we know.
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Proof. First we prove that k′ ⊗k B
bim
w is indecomposable for any w ∈ W. For

that, we remark that in view of (1.13), restriction to the components of degree
−ℓ(w) defines an algebra morphism

EndSBim(W,V )(B
bim
w )→ Endk((B

bim
w )−ℓ(w)) = k.

The kernelK of this morphism is a maximal ideal of EndSBim(W,V )(B
bim
w ), which is a

local ring, hence it coincides with its radical. Since this algebra is finite-dimensional,
its radical is nilpotent. Using (1.14) we see that

EndSBim(W,V )(k′ ⊗k B
bim
w ) = (k′ ⊗k K)⊕ (k′ · id)

with (k′ ⊗k K) a nilpotent ideal; this algebra is therefore local, which implies that
k′ ⊗k B

bim
w is indecomposable, as desired.

Now we prove the claim. Let w ∈ W, and let w be a reduced expression
for w. Then Bbim

w is a direct sum of Bbim
w and some objects which are direct

summands of objects Bbim
y (n) for some reduced expressions y with ℓ(y) < ℓ(w).

Hence ′Bbim
w = k′ ⊗k B

bim
w is a direct sum of k′ ⊗k B

bim
w and some objects which are

direct summands of objects ′Bbim
y (n) for some reduced expressions y with ℓ(y) <

ℓ(w). Hence k′ ⊗k Bbim
w is the only possible indecomposable summand of ′Bbim

w

which is not isomorphic to a direct summand of an object ′Bbim
y (n) with y a reduced

expression with ℓ(y) < ℓ(w), so that it must be isomorphic to ′Bbim
w . □

It is clear that the morphism

[SBim(W, V )]⊕ → [SBim(W, V ′)]⊕

induced by (1.15) intertwines the isomorphisms ϵ of Theorem 1.14 for V and for
V ′. Lemma 1.20 shows that this morphism sends the basis ([Bbim

w ] : w ∈ W) of
[SBim(W, V )]⊕ to the basis ([′Bbim

w ] : w ∈ W) of [SBim(W, V ′)]⊕.

1.6. Multiplication by a simple reflection. In this subsection we explain
what happens to indecomposable Soergel bimodules when one tensors them with a
bimodule associated with a simple reflection.

Lemma 1.21. Let w ∈ W and s ∈ S.
(1) If sw > w, then there exist nonnegative integers dy,nw,s for y ∈ W such that

y < sw and n ∈ Z such that

Bbim
s ⊗R Bbim

w
∼= Bbim

sw ⊕
⊕

y∈W,y<sw
n∈Z

(Bbim
y (n))⊕d

y,n
w,s .

Moreover, for any y and n we have dy,nw,s = dy,−nw,s .
(2) If sw < w we have

Bbim
s ⊗R Bbim

w
∼= Bbim

w (1)⊕ Bbim
w (−1).

Proof. (1) By (1.9) we have integers a
w
y,n satisfying

Bbim
w
∼= Bbim

w ⊕
⊕

y∈W,y<w
n∈Z

(Bbim
y (n))a

w
y,n ,
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and integers a
sw
y,n satisfying

Bbim
sw
∼= Bbim

sw ⊕
⊕

y∈W,y<sw
n∈Z

(Bbim
y (n))a

sw
y,n .

(Here, sw is the concatenation of the words (s) and w.) By the Krull–Schmidt
property, we deduce that there exist δ ∈ {0, 1} and integers dy,nw,s such that

Bbim
s ⊗R Bbim

w
∼= (Bbim

sw )δ ⊕
⊕

y∈W,y<sw
n∈Z

(Bbim
y (n))⊕d

y,n
w,s .

The object Bbim
sw cannot appear as a direct summand of any Bbim

s ⊗R Bbim
y (n) with

y < w, which shows that δ = 1. In fact, assume the contrary. If sy > y then for
any reduced expression y for y the word sy is a reduced expression for sy. Then

Bbim
y is direct summand in Bbim

y , hence Bbim
sw is a direct summand in Bbim

sy (n), which

is excluded by the characterization of Bbim
sw . If sy < y, one can choose a reduced

expression y for y starting with s. Then Bbim
y is direct summand in Bbim

y , hence

Bbim
s ⊗R Bbim

y (n) is direct summand in

Bbim
s ⊗R Bbim

y (n) ∼= Bbim
y (n+ 1)⊕ Bbim

y (n− 1),

where the isomorphism follows from (1.8). It follows that Bbim
sw is a direct summand

of Bbim
y (n+ 1) or of Bbim

y (n− 1), which provides a contradiction as before.

Now, consider the autoequivalence D introduced in [S7, Proof of Proposi-
tion 5.9]. We have D ◦ (n) ∼= (−n) ◦ D for any n and, by [S7, Satz 6.14(3)],
for any y ∈ W we have D(Bbim

y ) ∼= Bbim
y . From the considerations in [S7, Proof of

Proposition 5.10] one sees that we also have

D(Bbim
s ⊗R Bbim

w ) ∼= Bbim
s ⊗R Bbim

w .

Using the Krull–Schmidt property, these properties imply that dy,nw,s = dy,−nw,s for
any y and n.

(2) First we remark that for any w ∈ W and s ∈ S such that sw < w,
using (1.10) we have

ε−1([Bbim
s ⊗R Bbim

w ]) = Hs · ε−1([Bbim
w ]) ∈ (v + v−1) ·Hw +

∑
y<w

Z[v, v−1] ·Hy,

which implies that Bbim
w (1)⊕ Bbim

w (−1) is a direct summand of Bbim
s ⊗R Bbim

w .
Next, we prove that for any reduced expression w starting with s, in the de-

composition (1.9), any y ∈ W such that a
w
y,n ̸= 0 for some n satisfies sy < y. In

fact, by (1.8) we have

(1.16) Bbim
s ⊗R Bbim

w
∼= Bbim

w (1)⊕ Bbim
w (−1).

If y ∈ W satisfies sy > y, then as explained above Bbim
sy (1) ⊕ Bbim

sy (−1) is a di-

rect summand in Bbim
s ⊗R Bbim

sy . Using also (1), we obtain that the sum of the

multiplicities of the objects Bbim
sy (n) in Bbim

s ⊗R Bbim
w is at least∑

n

(2awsy,n + awy,n).
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On the other hand, the sum of the multiplicities of the objects Bbim
sy (n) in Bbim

w (1)⊕
Bbim
w (−1) is ∑

n

2awsy,n.

In view of (1.16), we deduce that∑
n

2awsy,n ≥
∑
n

(2awsy,n + awy,n),

hence
∑
n a

w
y,n ≤ 0, which implies that a

w
y,n = 0 for any n.

Once this property is established, one proves the desired claim by induction on
w, based on (1.16) and the decomposition (1.9). □

Remark 1.22. (1) Using e.g. the autoequivalence φ from Remark 1.12,
one deduces from Lemma 1.21 a similar result for the tensor product on
the right with Bbim

s .
(2) Let w, s be as in Lemma 1.21(1). If w is a reduced expression for w then

sw is a reduced expression for w starting with s. Since Bbim
s ⊗R Bbim

w is
a direct summand in Bbim

sw , the property proved in the course of the proof

of Lemma 1.21(2) shows that any y ∈ W such that dy,nw,s ̸= 0 for some n
satisfies sy < y.

1.7. Decomposition of Bott–Samelson bimodules. Recall thatW admits
a unique associated product ∗ (sometimes called the Hecke product) such that for
w ∈ W and s ∈ S we have

w ∗ s =

{
ws if ws > w;

w if ws < w,

see e.g. [BM, §3]. For any w ∈ W and s ∈ S we then also have

s ∗ w =

{
sw if sw > w;

w if sw < w.

Moreover, for w ∈ W the maps w ∗ (−) and (−) ∗ w are increasing with respect to
the Bruhat order, see [BM, Lemma 3.1(3)].

For an expression w = (s1, · · · , sr) we set

∗w = s1 ∗ · · · ∗ sr.

With this notation we can generalize part of the decomposition (1.9) as follows.

Proposition 1.23. For any expression w, the bimodule Bbim
w is a direct sum

of modules of the form Bbim
y (n) with y ≤ ∗w.

Proof. We proceed by induction on ℓ(w), the case ℓ(w) = 0 being obvious.
Let w be an expression of positive length, and write w = sy with s ∈ S and y an
expression. By induction we can assume that

Bbim
y =

∑
z≤∗y
n∈Z

(Bbim
z (n))⊕az,n
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for some nonnegative integers az,n. Then

Bbim
w =

∑
z≤∗y
n∈Z

(Bbim
s ⊗R Bbim

z (n))⊕az,n .

By Lemma 1.21, each Bbim
s ⊗R Bbim

z is a direct sum of shifts of modules Bbim
x with

x ≤ s ∗ z. Here, since z ≤ ∗y we have s ∗ z ≤ s ∗ (∗y) = ∗w, so that indeed Bbim
w is

a direct sum of modules of the form Bbim
y (n) with y ≤ ∗w. □

Remark 1.24. One can easily check by induction that the multiplicity of
Bbim
∗w (n) as a direct summand of Bbim

w is at least the coefficient of vn in (v +

v−1)ℓ(w)−ℓ(∗w).

1.8. Soergel’s conjecture. In [S7, Vermutung 1.13] Soergel conjectures that
“at least if k = C,” for any w ∈ W we have

(1.17) ε(Hw) = [Bbim
w ],

where Hw is as in Theorem 4.3 of Chapter 1. Before explaining its status, let us
explain the point of this conjecture. In [S7, Proposition 5.7(3)], Soergel defines
a map h∆ : [SBim(W, V )]⊕ → H(W,S) which is a left inverse to ε (see also [S7,
Bemerkung 5.14]). Manifestly, for any M ∈ SBim(W, V ), all the coefficients of the
expansion of h∆([M ]) in the basis (Hw : w ∈ W) have nonnegative coefficients. In
particular, (1.10) can be refined to the statement that

ε−1([Bbim
w ]) ∈ Hw +

∑
y<w

Z≥0[v, v
−1] ·Hy.

Hence if (1.17) holds, it follows that hy,w has nonnegative coefficients for any y ∈ W;
this property (for all w ∈ W) was conjectured by Kazhdan–Lusztig (see [KL1, Sen-
tence above Definition 1.2]), and has since then become a major question in Coxeter
groups combinatorics (known as the Kazhdan–Lusztig positivity conjecture).

Remark 1.25. (1) The results of §1.5 show that Soergel’s conjecture is
“stable under field extensions” in the sense that if it is known for a reflec-
tion faithful representation V over k and if k′ is an extension of k, then
it is true for the representation k′ ⊗k V .

(2) As explained in Remark 1.17(4), the indecomposable Soergel bimodule
Bbim
w is known in case w belongs to a subgroup of W generated by two

simple reflections. In this case, the equality (1.17) holds.

In the setting considered in §1.1, Soergel’s conjecture can be deduced from
Theorem 1.3 in Chapter 3 and Remark 1.17(3). (This was first observed in [S2].)
This proof can be generalized to the setting of flag varieties of Kac–Moody groups.

In [EW1] it was shown by Elias–Williamson that Soergel’s conjecture holds in
case V is a reflection faithful representation of (W,S) over R which satisfies the
following condition. For any s ∈ S, since s acts on V as a reflection there exist
αs ∈ V ∗ and α∨

s ∈ V such that s · v = v − ⟨αs, v⟩α∨
s for any v ∈ V . (These vectors

are unique up to scalar, in the sense that any two choices differ by the replacement
of (αs, α

∨
s ) by (λ · αs, λ−1 · α∨

s ) for some λ ∈ R×.) We assume that these elements
can be chosen in such a way that there exists ρ ∈ V ∗ such that for any s ∈ S and
w ∈ W we have

⟨w(ρ), α∨
s ⟩ > 0 ⇔ sw > w.
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This condition is satisfied in the following cases (see [R1, §2.1] for details):
• for (W,S) any Coxeter system, if V is as in §1.2.2 we can choose α∨

s = es
and αs = e∗s for any s, and then take for ρ any element such that ⟨ρ, α∨

s ⟩ >
0 for any s ∈ S;

• if A is a generalized Cartan matrix and if we take V = R⊗Q h where h is
as §1.2.3, with αs and α∨

s the vectors denoted in this way in §1.2.3, and
again for ρ any element such that ⟨ρ, α∨

s ⟩ > 0 for any s ∈ S.
In particular, since the construction of §1.2.2 provides a reflection faithful repre-
sentation for each Coxeter system, this is sufficient to imply the Kazhdan–Lusztig
positivity conjecture in all cases.

The proof of this result (which we will not discuss in detail here; see [R1] for
an overview) is inspired by the special case considered in §1.1 (or, more precisely,
its variant for R instead of Q). Namely, if G , B, T are as in §1.1, by (a variant
over R of) (1.4) and (1.5) the vector space R ⊗R Bbim

w identifies with the intersec-
tion cohomology of the closure in X of the Bruhat cell attached to w. As such,
this space satisfies some “Hodge theoretic” properties such as the hard Lefschetz
theorem and the Hodge–Riemann bilinear relations. The spectacular idea at the
heart of the proof of [EW1] is that these properties admit completely algebraic
formulations, which can be shown (by a complicated inductive argument based on
ideas of de Cataldo–Migliorini in the geometric context) to hold for any reflection
faithful representation satisfying the condition considered above, independently of
any geometry.

1.9. Soergel modules. As explained in §1.6, historically, what Soergel intro-
duced first are not the bimodules in SBim(W, V ), but rather the graded R-modules
one obtains by tensoring (either on the right or on the left; one has to make a choice
but this does not affect the theory in any serious way) these bimodules with the
trivial module k. This theory behaves well only under the assumption that W is
finite, which we therefore assume here. Given any expression w = (s1, · · · , sr) one
can consider the graded right R-module

Bmod
w := k⊗R Bbim

w = k⊗Rs1 R⊗Rs2 · · · ⊗Rsr R(r).

(Here (r) is the shift-of-grading by r for graded modules, which is defined simi-
larly as for bimodules. The action of R is induced by the right action on Bbim

w .)
Clearly, the action of R on this module factors through an action of the finite-
dimensional graded algebra R/⟨RW

+ ⟩, where ⟨RW
+ ⟩ is the ideal in R generated by

homogenous W-invariant elements of positive degree. (The fact that this algebra
is finite-dimensional follows from the fact that R is finite over RW , see e.g. [Bou,
Chap. V, §1, 9, Théorème 2].) We will denote by SMod(W, V ) the full subcategory
of the category of Z-graded right R-modules whose objects are the direct sums of
direct summands of objects of the form Bmod

w (n) with w an expression and n ∈ Z.
It is clear from this definition that the functor k⊗R (−) induces a functor

(1.18) SBim(W, V )→ SMod(W, V ).

Considerations similar to those used for SBim(W, V ) (see §1.3) show that the cate-
gory SMod(W, V ) is Krull–Schmidt. The tensor product ⊗R defines a right action
of the monoidal category SBim(W, V ) on SMod(W, V ), such that the functor (1.18)
is a functor of module categories.
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For any M,N ∈ R-ModZ-R, the vector space⊕
n∈Z

HomR-ModZ-R(M,N(n))

has a natural structure of graded R-bimodule. The result that allows to connect
more precisely the categories SBim(W, V ) and SMod(W, V ) is the following. For a
proof (following unpublished work of Soergel), we refer to [R1, Proposition 1.13].

Proposition 1.26. For any M,N in SBim(W, V ), the natural morphism

k⊗R

(⊕
n∈Z

HomSBim(W,V )(M,N(n))

)
→
⊕
n∈Z

HomSMod(W,V )(k⊗RM,k⊗R N(n))

is an isomorphism.

Note that in settings where Soergel (bi)modules can be related to parity com-
plexes on flag varieties, Proposition 1.26 can often be deduced from general proper-
ties of equivariant cohomology; see e.g. [AR1, Footnote 3 on p. 339]. See also [W3,
Lemma 3.1] for an alternative proof of this proposition in the case relevant to the
situation of §1.11 below (which will be used in Chapter 5).

Let us note the following consequences.

Corollary 1.27. (1) For any w ∈ W, the graded right R-module

Bmod
w := k⊗R Bbim

w

is indecomposable.
(2) For any w ∈ W, Bmod

w is indecomposable as an ungraded right R-module.
(3) For any w ∈ W, Bbim

w is indecomposable as an ungraded R-bimodule.

Proof. (1) To prove the claim it suffices to prove that EndSMod(W,V )(k ⊗R
Bbim
w ) is a local ring. Now by Proposition 1.26 this ring is a quotient of the ring

EndSBim(W,V )(B
bim
w ), which is local since SBim(W, V ) is Krull–Schmidt and Bbim

w is
indecomposable; it is therefore local too.

(2) The claim follows from (1) and the general result that a graded module
over a finite-dimensional Z-graded algebra is indecomposable as a graded module
if and only if it is indecomposable as an ungraded module; see [GG, Theorem 3.2].

(3) Let M,N be R-bimodules such that Bbim
w
∼= M ⊕ N as ungraded R-

bimodules. Here Bbim
w is free as a left R-module (see §1.3), hence so are M and N

by the Quillen–Suslin theorem. On the other hand, as right R-modules we have

k⊗R Bbim
w
∼= (k⊗RM)⊕ (k⊗R N).

Using (2) we deduce that either k⊗RM = 0 or k⊗RN = 0. By freeness we deduce
that M = 0 or N = 0, which shows indecomposability. □

From Corollary 1.27(1) we deduce the following.

Corollary 1.28. The assignment

(w, n) 7→ Bmod
w (n)

induces a bijection between W × Z and the set of isomorphism classes of indecom-
posable objects in SMod(W, V ).



90 CHAPTER 2. SOERGEL BIMODULES

Proof. By Corollary 1.27(1) each object Bmod
w (n) is indecomposable. It is

also clear that any object in SMod(W, V ) is a direct sum of such objects. What
remains to be proved is that these objects remain nonisomorphic. Let w,w′ ∈ W
and n, n′ ∈ Z, and assume that there exists an isomorphism

Bmod
w (n) ∼= Bmod

w′ (n′).

Then, using Proposition 1.26, there exist morphisms

ϕ : Bbim
w (n)→ Bbim

w′ (n′), ψ : Bbim
w′ (n′)→ Bbim

w (n)

such that

ψ ◦ ϕ ∈ id+R+ ·

(⊕
m∈Z

Hom(Bbim
w (n),Bbim

w (n+m))

)
and similarly for ϕ ◦ ψ. (Here, R+ ⊂ R is the ideal consisting of sums of elements
of positive degrees.) Since the graded left R-module⊕

m∈Z
Hom(Bbim

w (n),Bbim
w (n+m))

is finitely generated, its grading is bounded below. Hence, for degree reasons,
ψ ◦ϕ− id is nilpotent, hence ψ ◦ϕ is invertible. Similarly, ϕ ◦ψ is invertible. Hence
Bbim
w (n) and Bbim

w′ (n′) are isomorphic, which implies that w = w′ and n = n′. □

In particular, it follows from Corollary 1.28 that the family (Bmod
w : w ∈ W) is

a Z[v, v−1]-basis of [SMod(W, V )]⊕, which implies that the functor (1.18) induces
an isomorphism

[SBim(W, V )]⊕
∼−→ [SMod(W, V )]⊕.

This map is in fact an isomorphism of right [SBim(W, V )]⊕-modules for the ac-
tions induced by the right actions of the category SBim(W, V ) on itself and on
SMod(W, V ). In view of Corollary 1.18, we deduce an isomorphism

[SMod(W, V )]⊕ ∼= H(W,S).

In case Soergel’s conjecture holds (see §1.8), the image of [Bmod
w ] under this identi-

fication is Hw, for any w ∈ W.
Let us now denote by SMod(W, V ) the full subcategory of the category of

(ungraded) R-modules whose objects are the direct sums of direct summands of
objects Bmod

w for w an expression (seen as ungraded modules). We have a natural
functor

(1.19) For : SMod(W, V )→ SMod(W, V )

of forgetting the grading. Using once again [CYZ, Remark A.2] one checks that
SMod(W, V ) is Krull–Schmidt.

Corollary 1.29. The assignment

w 7→ For(Bmod
w )

induces a bijection betweenW and the set of isomorphism classes of indecomposable
objects in SMod(W, V ).

Proof. By Corollary 1.27(2), and each object For(Bmod
w ) is indecomposable,

and it is clear that any object in SMod(W, V ) is a direct sum of such objects. To
conclude, it remains to prove that these objects are pairwise nonisomorphic. This
follows from [GG, Theorem 4.1] and Corollary 1.28. □
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As above, Corollary 1.29 implies that ([For(Bmod
w )] : w ∈ W) is a Z-basis of

[SMod(W, V )]⊕, and that the functor (1.19) induces an isomorphism

Z⊗Z[v,v−1] [SMod(W, V )]⊕
∼−→ [SMod(W, V )]⊕,

where in the left-hand side Z is considered as a Z[v, v−1]-algebra where v acts as
the identity. We deduce an identification

(1.20) [SMod(W, V )]⊕ ∼= Z[W].

In case Soergel’s conjecture holds, the image of [For(Bmod
w )] under this identification

is Hw|v=1, where h|v=1 is the image of h ∈ H(W,S) in H(W,S)/v · H(W,S)
∼= Z[W].

1.10. Application to the Kazhdan–Lusztig conjecture. The first impor-
tant application of the theory of Soergel bimodules (developed before this subject
was really introduced) was to the proof of the Kazhdan–Lusztig conjecture. This
conjecture was formulated by Kazhdan–Lusztig in [KL1], and proved shortly there-
after by Brylinski–Kashiwara and Bĕılinson–Bernstein independently using geom-
etry; see [Ac, Remark 7.3.10] for a brief overview of these proofs, and [HTT] for
more details. Soergel proposed in [S1] a new approach to this question which,
combined with the later algebraic proof of Soergel’s conjecture in [EW1] (see §1.8)
can be used to provide a completely algebraic solution to this problem. Here we
provide a brief overview of this approach; for more details see [EMTW, Part III].

Consider the setting of §1.1, with G semisimple and simply connected, and
also the categories of Soergel (bi)modules for (W,S) and the reflection faithful
representation V := C ⊗Z X∗(T ) (with the standard action). Let also g be the
semisimple complex Lie algebra whose root system is dual to R; thus we are given
a Cartan subalgebra t ⊂ g and an identification t = V ∗ such that the roots of (g, t)
are the coroots (α∨ : α ∈ R). Let also b ⊂ g be the Borel subalgebra whose roots
are the positive coroots of G . Bernstein–Gelfand–Gelfand have defined and studied
a very nice category of modules over the enveloping algebra Ug of g, called category
O, whose simple objects are the simple highest representations. (These include in
particular the finite-dimensional representations, whose structure is understood via
Weyl’s character formula.) For this theory, see [H5].

The category O breaks into direct summands according to the action of the
center of Ug; in particular we have the principal block O0, whose simple objects are
in bijection withW . More precisely, for w ∈W we denote by ∆w the Verma module
of highest weight w(ρ) − ρ (where ρ is the half sum of the positive roots), and by
Lw its head; then the assignment w 7→ Lw induces a bijection between W and the
set of isomorphism classes of simple objects in O0. The category O0 has a structure
of highest weight category with underlying poset W endowed with the opposite of
the Bruhat order, and standard objects (∆w : w ∈ W ). (The costandard objects
are the dual Verma modules.) The structure of O0 is very similar to that of the
category Ok studied in Section 3 of Chapter 1 (which is one reason which justifies
the name modular category O).

As for any highest weight category, the Grothendieck group [O0] admits a basis
consisting of classes of standard objects. We can therefore identify

[O0] = Z[W ]

where w ∈ W corresponds to [∆w]. We will be interested in particular in the
full subcategory Proj(O0) of O0 whose objects are the projective objects. For any
w ∈ W we denote by Pw the projective cover of Lw; then the assignment w 7→ Pw
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induces a bijection betweenW and the set of isomorphism classes of indecomposable
objects in Proj(O0). The natural morphism [Proj(O0)]⊕ → [O0] is an isomorphism,
which provides an identification

(1.21) [Proj(O0)]⊕
∼−→ Z[W ]

sending [P ] to
∑
y(P : ∆y) · y. The Kazhdan–Lusztig conjecture predicts a for-

mula for computing the multiplicities (∆y : Lw)y,w∈W ; by reciprocity (see (2.1) in
Appendix A) and since O0 admits a “duality” operation which fixes each simple
object (in the sense of Exercise 7.10), it is equivalent to determine the multiplici-
ties (Pw : ∆y)y,w∈W or, in other words, the images of the classes ([Pw] : w ∈ W )
under (1.21); in these terms, the Kazhdan–Lusztig formula amounts to the equality

(1.22) [Pw] = Hw|v=1

(where we use the notation introduced at the end of §1.9.)
The projective objects in O0 admit an “inductive” construction similar to that

considered in §3.5 in Chapter 1, as follows. For any s ∈ S we can consider the
endofunctor

ϑs : O0 → O0

given by wall crossing along the s-wall of the dominant Weyl chamber. Standard
formulas for translation of Verma modules (see e.g. [H5, §7.6 and §7.12]) show that,
under the identification (1.21), the induced endomorphism of Z[W ] is given by right
multiplication by e+ s = Hs|v=1. Given an expression w = (s1, · · · , sr) we set

ϑw := ϑsr ◦ · · · ◦ ϑs1 .

The Verma module ∆e is projective by maximality; hence Pe = ∆e. Now if w ∈W
and if w is a reduced expression for w, the comments above on standard filtrations
imply that

(1.23) ϑw(Pe) ∼= Pw ⊕
⊕
y<w

P
by,w
y

for some nonnegative integers by,w.
The first main result of the “representation theoretic” part of [S1] is the con-

struction of an algebra isomorphism

R/⟨RW+ ⟩
∼−→ EndO0(Pw0).

This isomorphism is somewhat explicit; the morphism from the left-hand side to
the right-hand side is induced by the action of the center of Ug. (This isomorphism
has a different proof due to Bernstein, see [Be].) Via this morphism, for any
P ∈ Proj(O0) the finite-dimensional vector space

V(P ) = HomO0(Pw0 , P )

acquires a right R-module structure, which allows to define a functor

V : Proj(O0)→ Modfg-R.

One can also show that for any s ∈ S there is an isomorphism of functors

(1.24) V ◦ ϑs(−) ∼= V(−)⊗R Bbim
s .
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Since V(Pe) ∼= k, this implies that the functor V takes values in SMod(W,V ). The
second main result of the “representation theoretic” part of [S1] is that this functor
induces an equivalence of categories

(1.25) Proj(O0)
∼−→ SMod(V,W ).

Comparing the formulas (1.9) and (1.23) and using (1.24), one easily checks by
induction on the Bruhat order that for any w ∈W we have

V(Pw) ∼= For(Bmod
w ).

Now, using (1.24) one checks that, under the identifications (1.20) and (1.21), the
automorphism of Z[W ] induced by the equivalence (1.25) is the identity. Since
Soergel’s conjecture is known for our choice of V (at the time of [S1] the proof used
geometry; now this can be replaced by the proof in [EW1]), as explained in §1.9
the class of For(Bmod

w ) is Hw|v=1; we deduce the formula (1.22), as desired.

Remark 1.30. As in §1.1, for the choice of V considered here, the categories
SBim(W,V ) and SMod(W,V ) admit descriptions in terms of semisimple complexes
on the flag variety X . More explicitly, consider the B-equivariant derived category
Db

B(X ,C) of C-sheaves on X , and the constructible derived category Db
(B)(X ,C)

with respect to the Bruhat stratification (1.1). Let also ICB(X ,C) and IC(B)(X ,C)
be the subcategories of semisimple complexes (or, in other words, of parity com-
plexes). Then the functors

H := H•
B(X ,−) and H′ := H•(X ,−)

induce equivalences of additive categories

H : ICB(X ,C) ∼−→ SBim(W,V ), H′ : IC(B)(X ,C) ∼−→ SMod(W,V ).

Here, H is an equivalence of monoidal categories with respect to convolution on
ICB(X ,C), and H′ intertwines the actions of ICB(X ,C) and SBim(W,V ) via H.

The situation is thus summarized in the diagram

(1.26)

IC(B)(X ,C) ∼
H′
// SMod(V,W )

For

��
SMod(W, V ) Proj(O0).∼

Voo

From this point of view, Soergel (bi)modules appear as a “bridge” relating the two
categories we want to compare (one of topological nature, and one of representation-
theoretic nature). This point of view has become a model for most applications of
these techniques; for some examples, see [BY, AR1, MR2].

Note that there exists another way to relate O0 to a category of perverse
sheaves on a flag variety. Namely, if we denote by X ∨ the flag variety of the
complex simply-connected semisimple algebraic group G ∨ whose Lie algebra is g,
and by Perv(B∨)(X

∨,C) the category of C-perverse sheaves on X ∨ constructible
with respect to the Bruhat stratification, then combining the Bĕılinson–Bernstein
localization theorem and a result of Soergel one obtains an equivalence of abelian
categories

(1.27) O0
∼= Perv(B∨)(X

∨,C);
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see [BGS, Proposition 3.5.2]. Here the Weyl group of G ∨ identifies canonically with
W , so that Perv(B∨)(X

∨,C) has a canonical structure of highest weight category
with weight poset W for the Bruhat order. The equivalence (1.27) sends Lw to the
simple perverse sheaf ICw0w−1 .

Note that the equivalence (1.27) is different from the relation provided by (1.26).
In fact, understanding the relation between these two approaches was one of the
motivations for the construction of Koszul duality for constructible sheaves on flag
varieties; see [BGS].

1.11. Application to Soergel’s modular category O. Recall now the set-
ting of Section 3 in Chapter 1. The main reason why Soergel called the category
Ok the “modular category O” is that a large part of the theory of §1.10 can be
adapted to this setting, as explained in §§3.5–3.7 of Chapter 1.

Namely, let G, B, T be as in Section 3 in Chapter 1. Let G be a complex
semisimple algebraic group which is Langlands dual to G; hence G is of adjoint
type, and its root system is the coroot system of G. Fix also a maximal torus
T ⊂ G and an identification X = X∗(T) = X∗(T ), and denote by B ⊂ G the
Borel subgroup containing T and whose set of roots is the set of coroots of (G,T)
corresponding to B. Now we consider the representation of W given by

V := k⊗Z X∗(T ) = k⊗Z X.

Remark 1.31. Consider the root lattice ZR ⊂ X; our assumption that p > h
implies in particular that the natural morphism k⊗ZZR→ V is an isomorphism. In
view of the comments in §1.2.4, it follows that if p ̸∈ {2, 3} (which follows from the
assumption p > h unless G is a product of copies of SL2) V is a reflection faithful
representation of (W,S). In any case, Soergel proves in [S5, Theorem 2.8.1] that
the categories SMod(W,V ) and SMod(W,V ) satisfy the properties of §1.9 without
reference to the general theory of Soergel (bi)modules.

The results of §3.7 in Chapter 1 can now be restated as saying that V restricts
to an equivalence of categories

Proj(Ok)
∼−→ SMod(W,V ).

Comparing (3.2) in Chapter 1 with (1.9) one checks by induction that

V(Pw) ∼= For(Bmod
w )

for any w ∈W .
As in §1.10, these results show that for any w ∈W the sum∑

y∈W
(Pw : My) · y

is the image of [For(Bmod
w )] under the identification (1.20), or in other words is

obtained from the image of [Bbim
w ] under ε−1 (see Corollary 1.18) by setting v = 1. In

case Soergel’s conjecture holds for this choice of V , this implies that the coefficients
(Pw : My) = (My, Lw) are given by the same formula as in §1.10, in accordance with
what is predicted by Lusztig’s conjecture (see §4.6 in Chapter 1). Unfortunately,
Soergel’s conjecture is not known in general in this case, and in fact we will see in
Chapter 5 that it fails in many cases.

Remark 1.32. As in Remark 1.30, the category SMod(W,V ) admits a descrip-
tion in terms of constructible sheaves on flag varieties. Namely, if X = G /B, and
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if Parity(B)(X ,k) is the category of parity complexes with coefficients in k on X ,

then Soergel proves in [S5, Theorem 4.2.1] that the functor

H′ := H•(X ,−)
induces an equivalence of categories

Parity(B)(X ,k) ∼−→ SMod(W,V ).

(In fact the theory of parity complexes did not exist when [S5] was written, so his
definition of Parity(B)(X ,k) is different. Understanding the meaning of Soergel’s

construction was one of the motivations for the study that led to [JMW2].) We
therefore have an analgue of (1.26) in this setting, in the form of a diagram

(1.28)

Parity(B)(X ,C) ∼
H′
// SMod(V,W )

For

��
SMod(W, V ) Proj(O0).∼

Voo

There is also an analogue of (1.27) in this setting: if X ∨ is the flag variety of the
complex simply-connected semisimple algebraic group whose root system is R, then
by [AR1, Theorem 2.4] there exists an equivalence of abelian categories

Ok ∼= Perv(B∨)(X
∨,k)

sending Lw to the simple perverse sheaf ICw0w−1 for any w ∈W .5 The construction
of this equivalence is quite different from that of (1.27): in fact it is obtain as a
consequence of a Koszul duality formalism.

2. The Elias–Williamson category

In this section we explain the definition of the “diagrammatic” category associ-
ated with a Coxeter system (W,S) and a “realization” (see §2.2), following Elias–
Williamson [EW2]. We will also explain the relation between this construction and
the category of Soergel bimodules as considered in Section 1 (which, historically,
was the main motivation behind its definition), see §2.13. The definition itself is
given in §2.5. Before we can explain it we need to discuss a number of technicalities,
which are important but can be ignored at first reading.

2.1. Quantum numbers. The definition of the Elias–Williamson category
will involve a two-colored version of quantum numbers, which we now explain.
These quantum numbers will live in the ring Z[x, y], where x, y are indeterminates.
They are defined by induction, starting with

[0]x = [0]y = 0, [1]x = [1]y = 1, [2]x = x, [2]y = y,

and the relations

(2.1) [n+ 1]y = [2]y[n]x − [n− 1]y, [n+ 1]x = [2]x[n]y − [n− 1]x.

One can e.g. compute that

• [3]x = [3]y = xy − 1;
• [4]x = x2y − 2x, [4]y = xy2 − 2y;
• [5]x = [5]y = x2y2 − 3xy + 1;

5The formula in [AR1] looks a bit different. For the comparison between the two versions,

see Exercise 3.1.
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• [6]x = x3y2 − 4x2y + 3x; [6]y = x2y3 − 4xy2 + 3y.

These numbers are not symmetric in x and y (in the sense that [n]x ̸= [n]y for
some n’s), but in a very simple way explained in the following lemma.

Lemma 2.1. (1) For any n ∈ Z≥0 odd we have [n]x = [n]y;
(2) For any n ∈ Z≥0 even we have [2]y[n]x = [2]x[n]y.

Proof. Both formulas are proved in parallel by induction. □

It is clear also that the polynomial obtained from [n]x by switching x and y is
[n]y for any n ∈ Z≥0, and vice versa. In view of Lemma 2.1(1), if n is odd we will
sometimes write [n] for [n]x = [n]y.

Remark 2.2. Two-colored quantum numbers are generalization of “usual”
quantum numbers, in a sense explained in [El, §3.1]. The (one-colored) quan-
tum number ⟨n⟩x is a polynomial in x, which can be obtained from [n]x or [n]y by
setting y = x.

There are also 2-colored quantum binomial coefficients, which can be defined
as follows: for n,m ≥ 0 with n ≤ m we set[
m

n

]
x

=
[m]x[m− 1]x · · · [m− n+ 1]x

[n]x[n− 1]x · · · [1]x
,

[
m

n

]
y

=
[m]y[m− 1]y · · · [m− n+ 1]y

[n]y[n− 1]y · · · [1]y
.

It is not difficult to check that these fractions actually belong to Z[x, y], see [Ab3,
Comments before Lemma 2.6].

2.2. Realizations.
2.2.1. Definition. Let (W,S) be a Coxeter system, and let k be a commutative

domain. We consider a free k-module V of finite rank, together with collections
(αs : s ∈ S) of vectors in V ∗ := Homk(V,k) and (α∨

s : s ∈ S) of vectors of V . For
any s, t ∈ S and n ∈ Z≥1, we denote6 by [n]s,t the value of [n]x at

x = −⟨α∨
s , αt⟩ and y = −⟨α∨

t , αs⟩.

Note that the corresponding evaluation of [n]y is [n]t,s. In particular, if n is odd
we have [n]s,t = [n]t,s; to emphasize the independence on the order between s and
t, this element will sometimes be denoted [n]{s,t}. Similarly, if 0 ≤ n ≤ m we will

denote by
[
m
n

]
s,t

the value of
[
m
n

]
x
at x = −⟨α∨

s , αt⟩ and y = −⟨α∨
t , αs⟩.

Following [EW2, Definition 3.1], the triple(
V, (αs : s ∈ S), (α∨

s : s ∈ S)
)

is called a realization of (W,S) over k if it satisfies the following conditions:

(1) for any s ∈ S we have ⟨α∨
s , αs⟩ = 2;

(2) the assignment s 7→ (v 7→ v− ⟨v, αs⟩α∨
s ) defines a representation of W on

V ;
(3) we have

(2.2) [ms,t]s,t = 0 for any (s, t) ∈ S2◦ .

6The element we denote by [n]s,t is often denoted [n]s. We find this notation misleading
since it hides the dependency on the other simple reflection, and hence follow a heavier but more

explicit convention inspired by [ELi].



2. THE ELIAS–WILLIAMSON CATEGORY 97

For an explanation of the origin of condition (3), see [EW2, §3.1] and [El].
There are further technical conditions on realizations that we will consider.

First we will say that our realization satisfies Demazure surjectivity if for any s ∈ S
the morphisms

αs : V → k and α∨
s : V ∗ → k

are surjective. Note that this condition is automatic if 2 ∈ k×, due to the condi-
tion (1).

Next, we consider the numbers [ms,t − 1]s,t for (s, t) ∈ S2◦ . As explained
in [EW3, (6.11), (6.12)], the condition that [ms,t]s,t = [ms,t]t,s = 0 implies that
[ms,t − 1]s,t · [ms,t − 1]t,s = 1. (In case ms,t is even, this condition simplifies to
([ms,t−1]{s,t})

2 = 1.) But the combinatorics involved simplified greatly when each
of these numbers is actually equal to 1. We will therefore say that the realization
is balanced if

(2.3) [ms,t − 1]s,t = 1 for any (s, t) ∈ S2◦ .

Below all of our realizations will be assumed to be balanced and to satisfy Demazure
surjectivity. The latter assumption is necessary for the results discussed in §2.8
to hold. The former assumption can be relaxed a little bit at the cost of some
complications (see [EW3, §7]), but we will not consider this variant here.

A further condition that one needs to impose on realizations to obtain a com-
plete theory is that

(2.4)

[
ms,t

k

]
s,t

= 0 for all s, t ∈ S2◦ and all integers k ∈ {1, . . . ,ms,t − 1}.

(Here the case k = 1 recovers (2.2).) This condition was overlooked in [EW2], but
it was later considered in [EW3], [Ab3] and finally in [Haz] (as we will explain
below).

Remark 2.3. (1) Given a realization (V, (αs : s ∈ S), (α∨
s : s ∈ S)) of

(W,S) over k and a ring morphism k → k′ (where k′ is again a com-
mutative domain), there exists a natural realization of (W,S) over k′
with underlying k′-module k′⊗k V . If the original realization is balanced,
resp. satisfies Demazure surjectivity, resp. satisfies (2.4), then so does this
new realization.

(2) See [Ab3, Proposition 3.4] for some reformulations of this assumption.
By [Ab3, Proposition 3.6], it is satisfied if, for any (s, t) ∈ S2◦ , the action
of ⟨s, t⟩ on kαs + kαt is faithful. (See also Lemma 2.5 below for a variant
of this result.)

We will say that a realization is symmetric if for any distinct s, t ∈ S we have

⟨α∨
s , αt⟩ = ⟨α∨

t , αs⟩.

This condition is really useful, because when it is satisfied we have [n]s,t = [n]t,s for
any n ∈ Z≥1 and s, t ∈ S, so that one can use a “one-colored” combinatorics rather
than a “two-colored” one. Unfortunately, it is not satisfied for some important
examples we want to consider (see §2.2.2 below), so we will generally not assume it
is satisfied.

The following lemma can help checking that some data form realizations.
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Lemma 2.4. Let (W,S) be a Coxeter system and k be a commutative ring.
Assume we are given a free k-module V of finite rank together with collections
(αs : s ∈ S) of vectors in V ∗ and (α∨

s : s ∈ S) of vectors in V which satisfy
conditions (1)–(2) above. Let also s, t ∈ S be distinct reflections, and assume that
α∨
s and α∨

t are linearly independent. Then the rank-2 free submodule kα∨
s ⊕kα∨

t ⊂ V
is stable under the actions of s and t, and for any k ≥ 0 the matrix of (st)k,
resp. (st)ks, in the basis (α∨

s , α
∨
t ) of this module is(

[2k + 1]{s,t} −[2k]t,s
[2k]s,t −[2k − 1]{s,t}

)
, resp.

(
−[2k + 1]{s,t} −[2k + 2]t,s
−[2k]s,t [2k + 1]{s,t}

)
.

Proof. It is clear from definitions that kα∨
s ⊕ kα∨

t ⊂ V is stable under the
actions of s and t, and that the matrix of s, resp. t, in the basis (α∨

s , α
∨
t ) is(

−1 [2]t,s
0 1

)
, resp.

(
1 0

[2]t,s −1

)
.

The claims can be checked together using these formulas and (2.1) by induction on
k. □

The following lemma (explained to us by N. Abe) can also help checking con-
dition (2.4).

Lemma 2.5. Consider a balanced realization

(V, (αs : s ∈ S), (α∨
s : s ∈ S))

of (W,S) over k in the sense of §2.2.1. Assume that

• k is a field with char(k) ̸= 2;
• for any (s, t) ∈ S2◦ the action of ⟨s, t⟩ on V ∗ is faithful, and we have

kαs ̸= kαt.
Then (2.4) is satisfied.

Proof. Fix (s, t) ∈ S2◦ . By assumption the sum kαs + kαt is direct. If 4 −
[2]s,t[2]t,s ̸= {0} we have

V =
(
kαs ⊕ kαt

)
⊕ {λ ∈ V ∗ | ⟨λ, α∨

s ⟩ = ⟨λ, α∨
t ⟩ = 0}

because the matrix (
⟨αs, α∨

s ⟩ ⟨αt, α∨
s ⟩

⟨αs, α∨
t ⟩ ⟨αt, α∨

t ⟩

)
is invertible. Since ⟨s, t⟩ acts trivially on the rightmost summand and faithfully on
V ∗, it must act faithully on kαs ⊕ kαt. This implies our claim by Remark 2.3(2).

Now, assume that [2]s,t[2]t,s = 4. By Exercise 2.8, for any n ≥ 0 we then have

(2.5) [2n]s,t = [2]s,tn, [2n]t,s = [2]t,sn, [2n+ 1]{s,t} = 2n+ 1.

We have

(st)(αt) = −αt − [2]s,tαs, (st)(αs) = 3αs + [2]t,sαt,

and both s and t act trivially on V ∗/(kαs ⊕ kαt). Hence, in a suitable basis of V ∗

extending ([2]t,sαt,−2αs), the matrix of st has the form−1 −2 x
2 3 y
0 0 id


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for some vectors x and y. By induction, one then checks that for any n ≥ 0 the
matrix of (st)n in this basis is−2n+ 1 −2n −n(n− 2)x− n(n− 1)y

2n 2n+ 1 n(n− 1)x+ n2y
0 0 id

 .

By the faithfulness assumption, ms,t is the smallest positive integer such that this
matrix is the identity; we deduce that k has positive characteristic, equal to ms,t.
On the other hand, by (2.5), if k ∈ {1, · · · ,ms,t − 1} there exists a ∈ k× such that[

ms,t

k

]
s,t

= a ·
(
ms,t

k

)
.

The right-hand side vanishes, hence so does the left-hand side. □

2.2.2. Cartan realizations of crystallographic Coxeter systems. For the pur-
poses of this book, the main example of a realization of a Coxeter system the
reader should have in mind is the following. Let A be a generalized Cartan matrix,
and let (X, (αi : i ∈ I), (α∨

i : i ∈ I)) be an associated Kac–Moody root datum;
see §1.2.4.

Example 2.6. Following [Ti, bottom of p. 8], there are three “natural” Kac–
Moody root data one can associate to an arbitrary generalized Cartan matrix:

• the adjoint datum, given by X = ZI with canonical basis denoted (αi :
i ∈ I) and the vectors α∨

i ∈ X∨ defined by the equality ⟨αj , α∨
i ⟩ = aij for

i, j ∈ I;
• the simply connected datum, given by X∨ = ZI with canonical basis
denoted (α∨

i : i ∈ I) and the vectors αi ∈ X = (X∨)∨ defined by the
equality ⟨αj , α∨

i ⟩ = aij for i, j ∈ I;
• the universal datum, given by X = ZI⊔I with canonical basis (αi)i∈I ∪
(βi)i∈I , X

∨ = ZI⊔I with canonical basis (β∨
i )i∈I ∪(α∨

i )i∈I and the pairing
between X and X∨ defined by

⟨αi, β∨
j ⟩ = δi,j , ⟨αi, α∨

j ⟩ = aj,i, ⟨βi, β∨
j ⟩ = 0, ⟨βi, α∨

j ⟩ = δi,j .

We have recalled in §1.2.3 how to associate to A a (crystallographic) Coxeter
system (W,S). Let k be an integral domain. Using the Kac–Moody root datum,
we can construct a realization of (W,S) over k as follows: we set V := k ⊗Z X∨

(so that V ∗ is identified with k ⊗Z X), and for s ∈ S, we define αs, resp. α
∨
s , to

be the image of αis , resp. α
∨
is
, in V ∗, resp. in V . To justify this assertion we need

to explain why conditions (1)–(3) above are satisfied. Condition (1) is obvious,
and (2) is part of the theory of Kac–Moody groups; see [Ti, §3.1]. Condition (3)
can be checked by explicit computation, depending on the value of aisitaitis . (Only
the values 0, 1, 2, 3 need to be considered.) For instance, if aisitaitis = 2, then by
definition of a generalized Cartan matrix we have either aisit = −1 and aitis = −2,
or aisit = −2 and aitis = −1. In both cases, using the formulas for [4]x and [4]y
given in §2.1 one sees that [4]s,t = 0 when k = Z, hence in general.

A realization of (W,S) obtained in this way is called a Cartan realization.
Such a realization is always balanced, it always satisfies (2.4) (this can be checked
explicitly by the same considerations as above), but it might not satisfy Demazure
surjectivity. More precisely, let us define Z′ to be Z if the maps αi : X

∨ → Z and
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α∨
i : X → Z are surjective for all i ∈ I, and as Z[ 12 ] otherwise. Then Demazure

surjectivity holds as soon as there exists a ring morphism Z′ → k.

Example 2.7. For the cases given in Example 2.6:

• for the adjoint datum we have Z′ = Z[ 12 ] if A has a line consisting only of
even numbers, and Z′ = Z otherwise;

• for the simply connected datum we have Z′ = Z[ 12 ] if A has a column
consisting only of even numbers, and Z′ = Z otherwise;

• for the universal datum, we have Z′ = Z in all cases.

2.2.3. The geometric realization. There exists another systematic construction
of realizations, which will not play any role in the present book, but which has the
advantage of providing realizations for all Coxeter systems. (Recall that for us, a
Coxeter system always has a finite number of simple reflections!) Namely, if (W,S)
is a Coxeter system, let V be the representation considered in Remark 1.8. For
s ∈ S we set

α∨
s := es ∈ V, αs = 2⟨es,−⟩ ∈ V ∗.

These data satisfy conditions (1)–(2) in the definition above. In order to check (2.2)
(and, at the same time, (2.3) and (2.4)), we fix (s, t) ∈ S2◦ . We identify Rα∨

s ⊕Rα∨
t

with the plane R2 in such a way that α∨
s , resp. α∨

t , corresponds to the vector
(1, 0), resp. (− cos(π/ms,t), sin(π/ms,t)). With this identification, the restriction
of s, resp. t, is the orthogonal reflection with respect to the line orthogonal to
α∨
s , resp. α

∨
t . As a consequence, the restriction of st identifies with rotation of

angle 2π/ms,t. If ms,t = 2k is even, then these remarks show that (st)k = − id.
Comparing with the information provided by Lemma 2.4, we deduce that

[ms,t]s,t = [ms,t]t,s = 0 and [ms,t − 1]{s,t} = 1.

If ms,t = 2k + 1 is odd, we use the fact that

(st)k(α∨
s ) = α∨

t and (st)k(α∨
t ) = −α∨

s − 2 cos(π/ms,t)α
∨
t

and again Lemma 2.4 to show that

[ms,t]{s,t} = 0 and [ms,t − 1]s,t = [ms,t − 1]t,s = 1.

In summary, in both cases (2.2) is satisfied, so that these data define a realiza-
tion (called the geometric realization), and this realization is balanced. It satisfies
Demazure surjectivity (because 2 ∈ k×), and it is clear that it is symmetric.

Finally, we note that if k ∈ {1, · · · ,ms,t − 1} we have

(2.6) [k]s,t = [k]t,s ̸= 0.

In fact, the equality of quantum numbers follows from symmetry. To prove that
these numbers are nonzero we have to distinguish the cases when ms,t and k are
even or odd. If ms,t = 2j is even and k = 2l is also even, if [k]s,t = 0 then by
Lemma 2.4 we have (st)k(α∨

t ) ∈ R · α∨
t . This is absurd since the restriction of

st to R · α∨
s ⊕ R · αt ∼= R2 identifies with rotation of angle lπ

j , which belongs to

(0, π). Similarly, if ms,t = 2j is even and k = 2l + 1 is odd, if [k]s,t = 0 then
(st)k(α∨

s ) ∈ R · α∨
t , which implies (since (st)k identifies with rotation of an angle

in (0, π)) that (st)k(α∨
s ) = α∨

t , hence that lπ
j = π − π

2j = (2j−1)π
2j , which again is

absurd. The cases when ms,t is odd can be checked similarly.
These conditions together with condition (3) imply that (2.4) is satisfied.



2. THE ELIAS–WILLIAMSON CATEGORY 101

Remark 2.8. Recall the representation of (W,S) considered in §1.2.2. This
representation can be upgraded to a balanced realization by setting α∨

s = es and
αs = e∗s. In fact the matrix (⟨α∨

t , αs⟩)s,t∈S for these data is the same as for the
geometric realization, hence it also satisfies (2.2), (2.3) and (2.4).

2.3. Jones–Wenzl projectors.
2.3.1. The two-colored Temperley–Lieb category. Given two colors7 s and t and

a Z[x, y]-algebra A, we can define the two-colored Temperley–Lieb category 2TLA

over A as follows (see [El] or [EW1, §6.4]; see also [ELi, §2.6] for a multicolored
extension of this definition). The objects in this category are alternating words in
the alphabet {s, t}. There exists no nonzero morphism between two words unless
they start and finish with the same letter. If they do, then the space of morphisms
between them has an A-basis consisting of two-colored crossingless matchings be-
tween them. (Here a two-colored crossingless matching is a crossingless matching
where the regions are colored either by s or by t, and adjacent regions have different
colors.) Diagrams should always be read from bottom to top. For instance,

is a crossingless matching. If we color the leftmost region by s and alternate the
colors, it defines a morphism from (s, t, s, t) to itself in 2TLA. This morphism
factors through (s, t).

Composition in this category consists of the A-bilinear maps induced by vertical
concatenation of two-colored crossingless matchings and evaluation of circles as
follows: a circle whose interior is labeled by t inside a region labeled by s evaluates
to−x, and a circle whose interior is labeled by s inside a region labeled by t evaluates
to −y. Note that by forgetting the coloring, a morphism from (s, t, · · · ) (with n
alternating letters) to (s, t, · · · ) (with m alternating letters) provides a crossingless
matching with n− 1 points at the bottom and m− 1 points on top.

The category 2TLA admits an anti-autoequivalence ι which fixes every object,
and acts on morphisms by reflecting the two-colored crossingless matchings along
an horizontal axis.

Later we will use the notion of partial trace of an endomorphism of an object
of 2TLA. If w = (u1, · · · , un) and f ∈ End2TLA

(w), the partial trace pTr(f) is
the endomorphism of (u1, · · · , un−1) given by

pTr(f) = f

· · ·

· · ·

Remark 2.9. The two-colored Temperley–Lieb category is a generalization of
the “usual” Temperley–Lieb category TLA′ , which is defined as follows. (Here,
A′ is a Z[x]-algebra.) Objects are Z≥0, and morphisms from n to m are spanned

7In practice, below s and t will be two distinct simple reflections in a Coxeter system. But
this interpretation plays no role in the present subsection, and s and t will just be considered as

some colors.
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by crossingless matchings with n points at the bottom and m points at the top.
Composition is induced by concatenation of diagrams, where circles are evaluated
to −x. The combinatorics of this category involves the “one-colored” quantum
numbers mentioned in Remark 2.2.

There are cases where the two-colored Temperley–Lieb category in fact “reduces
to the usual version.” Namely, assume that A is a Z[x, y]-algebra in which the images
of x and y coincide. (We will refer to this setting as the “symmetric case.”) Then A
can also be considered as a Z[x]-algebra, hence we can consider the category TLA.
There are two fully faithful functors

TLA → 2TLA

one can consider. The first option is to send n ∈ Z≥0 to the unique alternating
word in {s, t} of length n+ 1 starting with s, and any crossingless matching to its
unique two-colored version whose leftmost part is colored by s. The second option
is to follow the same recipe with t in place of s. These two functors “capture” the
combinatorics of 2TLA in this case, in a sense that should be obvious.

2.3.2. Jones–Wenzl projectors. Let w be an alternating word in {s, t}. The
two-colored crossingless matching which consists only of vertical lines and has colors
given by w is called the trivial matching associated with w. The following lemma
is taken from [ELi, Claim 2.14].

Lemma 2.10. Let w be an alternating word in {s, t}. Assume that End2TLA
(w)

contains an element f whose expansion in the basis of two-colored crossingless
matchings has coefficients 1 on the trivial matching and whose pre-composition
with any morphism of the form

(2.7) · · ·· · ·

(with appropriate coloring) vanishes. Then f is the unique element satisfying such
properties, it is an idempotent, it satisfies f = ι(f), and it is killed by post-
composition with any morphism of the form

(2.8) · · ·· · · .

Proof. Let us denote by I ⊂ End2TLA
(w) the submodule spanned by all

the nontrivial two-colored crossingless matchings. Then by assumption we have
f = id+g for some g ∈ I. Any nontrivial two-colored crossingless matching involves
a cup on top, which implies that

f ◦ h = 0 for any h ∈ I,
hence that f is an idempotent. Similarly, since any nontrivial two-colored crossin-
gless matching involves a cap on bottom, we have

h ◦ ι(f) = 0 for any h ∈ I.
Since I is stable under ι, we have ι(f) ∈ id+I, which implies that

f = f ◦ ι(f) = ι(f).

Hence f is killed by post-composition with any morphism of the form (2.8).
Finally, if g ∈ End2TLA

(w) is another element satisfying the properties of the
lemma, then we have g ∈ id+I, hence f = g ◦ f = g, proving unicity. □
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A morphism satisfying the conditions in Lemma 2.10 is called a Jones–Wenzl
projector associated with w, and is denoted JWw. Note that if JWw exists, then
the subspace of Hom2TLA

(w) consisting of morphisms whose whose pre-composition
with any morphism of the form (2.7) (with appropriate coloring) vanishes is exactly
the span of JWw. In fact, let λ ∈ k be the coefficient of the trivial matching in the
expansion of f on the basis of two-colored crossingless matchings. Then f−λ·JWw

has a trivial coefficient on the trivial matching, so that JWw + (f − λ · JWw)
satisfies the properties of Lemma 2.10. By unicity we deduce that f = λ · JWw,
which finishes the proof of our claim. Of course, a similar property holds for post-
composition with morphisms of the form (2.8).

Remark 2.11. Recall the setting of Remark 2.9. The considerations above
have obvious analogues in the category TLA′ . This is in fact the setting where
these morphisms were introduced by Jones and Wenzl independently; see [El, §4.1]
for details. In this case there are no colors to consider, so Jones–Wenzl projectors
are attached to nonnegative integers.

2.3.3. Existence. Given a Z[x, y]-algebra A and an alternating word w in s, t,
it is a priori a difficult question to determine whether a Jones–Wenzl projector
associated with w exists. A solution to this question was asserted in [EW2], but
it turned out to be wrong, as explained in [EW3]. The correct solution was finally
found by Hazi in [Haz], following an earlier result in the symmetric case due to
Webster (see the appendix to [ELi]): if w is a word of length n starting with s,
then JWw exists if and only if the image of

[
n−1
k

]
x
in k is invertible for any integer

k ∈ {1, · · · , n− 2}.
The following lemma, taken from [EW3, §6.6], can sometimes be used to com-

pute JWw explicitly (see below for details). Here, if u ∈ {s, t} we denote by û the
unique element in {s, t}∖ {u}.

Lemma 2.12. Let A be a Z[x, y]-algebra with structure morphism φ : Z[x, y]→
A, and for n ≥ 0 denote by [n]s,t, resp. [n]t,s, the image of [n]x, resp. [n]y, in
A. Let m ∈ Z>0, and assume that [k]s,t and [k]t,s are invertible for any k < m.
Then JWw exists for any alternating word w in {s, t} of length ≤ m, and these
morphisms satisfy

(2.9) pTr(JWw) = −
[n]v̂,v

[n− 1]v,v̂

where n is the length of w and v is the last letter in w. Moreover the following
recursion formulas hold if w = (u1, · · · , un):

(1)

JW(w,ûn)

· · ·

· · ·
= JWw

· · ·

· · ·
+

[n− 1]un,ûn

[n]ûn,un

JWw

JWw

· · ·

· · ·

· · · ;
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(2)

JW(w,ûn)

· · ·

· · ·
= JWw

· · ·

· · ·
+

n∑
a=2

[a− 1]ua,ûa

[n]ûn,un JWw

· · ·

· · ·

ua

.

One can sometimes use this lemma to prove existence of (and compute) Jones–
Wenzl projectors even when some quantum numbers vanish in A. Namely, first
consider the case when A = Q(x, y). In this case, Lemma 2.12 implies the ex-
istence of all Jones–Wenzl projectors. Assume that, for a given w, one has an
explicit expression of JWw (e.g. obtained by using one of the recursion formulas
in Lemma 2.12) and that the coefficients in the expansion of these morphisms in
the basis of two-colored crossingless matchings all belong to Z[x, y][1/f ] for some
f ∈ Z[x, y]. Then if the given morphism Z[x, y] → A extends to a morphism
Z[x, y][1/f ]→ A (in other words, if the image of f in A is invertible), one obtains
morphisms in 2TLA by evaluating all coefficients in A using such an extension.
It is clear from definitions that this morphism is a Jones–Wenzl projector for w.
(Note that Jones–Wenzl projectors associated with the other words of shorter length
might not exist, constrary to the situation considered in Lemma 2.12.)

For our purposes, the most important cases will be when the length of w belongs
to {2, 3, 4, 6}. In these cases, in 2TLQ(x,y) the Jones–Wenzl projectors are as
follows. (We will only write projectors for words starting with s, and will not
indicate the colors of the regions since they can be easily determined. The projectors
for the words starting with t can be obtained by switching s↔ t and x↔ y.) One
finds that

JW(s,t) = , JW(s,t,s) = +
1

[2]x
,

JW(s,t,s,t) = +
[2]y
[3]

+
[2]x
[3]

+
1

[3]
+

1

[3]
.

The next relevant case is JW(s,t,s,t,s,t), whose expression is shown on Figure 2.1.

2.3.4. Rotatability. Consider a Z[x, y]-algebra A, with structure morphism φ :
Z[x, y] → A, and the associated category 2TLA. Fix m ∈ Z≥1, and denote by w,
w′ the two alternating words in {s, t} of length n. In the rest of this subsection
we assume that JWw and JWw′ exist. We will say that these morphisms are
rotatable if we have

pTr(JWw) = 0 and pTr(JWw′) = 0.

The reason for this terminology is explained by the following lemma, which is copied
from [EW3, Lemma 6.15].

Lemma 2.13. The morphism

JWw

· · ·

· · ·
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JW(s,t,s,t,s,t) = +
1

[5]
+

1

[5]

+
[2]x

[4]x[5]
+

[2]x
[4]x[5]

+
[4]y
[5]

+
[2]x
[5]

+
[2]x
[5]

+
[2]x[2]y
[4]x[5]

+
[2]x[2]y
[4]x[5]

+
[4]x
[5]

+
[2]y
[5]

+
[2]y
[5]

+
[2]2x

[4]x[5]
+

[2]2x
[4]x[5]

+
[2]x([5] + 2)

[4]x[5]
+

[2]x[2]y
[5]

+
[2]x[2]y

[5]

+
[2]2x[2]y
[4]x[5]

+
[2]2x[2]y
[4]x[5]

+
[2]x[2]

2
y[3]

[4]x[5]

+
[2]3x[3]

[4]x[5]
+

[3]

[5]
+

[3]

[5]
+

[3]

[5]

+
[3]

[5]
+

[2]x[3]

[4]x[5]
+

[2]x[3]

[4]x[5]

+
[2]x[3]

[4]x[5]
+

[2]x[3]

[4]x[5]
+

[2]x[3]

[4]x[5]

+
[2]x[3]

[4]x[5]
+

[2]y[3]

[5]
+

[2]x[3]

[5]

+
[2]2x[3]

[4]x[5]
+

[2]2x[3]

[4]x[5]
+

[2]x[2]y[3]

[4]x[5]

+
[2]x[2]y[3]

[4]x[5]
+

[2]2x[3]

[4]x[5]
+

[2]x[2]y[3]

[4]x[5]

+
[2]2x[3]

[4]x[5]
+

[2]x[2]y[3]

[4]x[5]
.

Figure 2.1. Jones–Wenzel projector for (s, t, s, t, s, t)

belongs to A · JWw′ if and only if pTr(JWw) = 0.

Proof. As explained in §2.3.2, an endomorphism of w′ belongs to A · JWw′

iff it is killed by post-composition with any morphism of the form (2.8). Our given
morphism is killed by composition with such a morphism if the cap is not on the
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rightmost strands. It is killed by composition with the cap on the rightmost strand
iff pTr(JWw) = 0. □

Remark 2.14. If the morphisms JWw and JWw′ exist and are rotatable,
one can determine the coefficient appearing in Lemma 2.13 explicitly, see [EW3,
Lemma 6.21]. In the cases we will consider in the setting of the Elias–Williamson
category (see §2.4 below), the condition that the realization is balanced will in fact
imply that this coefficient is 1.

As for existence, it is a priori a delicate question to determine when this condi-
tion is satisfied. One case when it is easy to conclude is the setting of Lemma 2.12.

Lemma 2.15. Consider the setting of Lemma 2.12, and assume that [k]s,t and
[k]t,s are invertible for any k < m. Then JWw and JWw′ are rotatable iff [m]s,t =
[m]t,s = 0.

Proof. The claim is a direct consequence of (2.9). □

The rotatability for general realizations was also considered by Hazi in [Haz],
where he proved the following result.

Theorem 2.16. Let n ≥ 1. The Jones–Wenzl projectors associated with the
two alternating words in {s, t} of length n exist and are rotatable if and only if the
images of

[
n
k

]
x
and

[
n
k

]
y
in k vanish for any integer k ∈ {1, . . . , n− 1}.

In cases where one has an explicit formula for the projectors JWw and JWw′ ,
checking the rotatability condition is just a matter of computation. Using the
formulas given in §2.3.3 one can check explicitly (if one is patient enough) that the
condition in Theorem 2.16 is indeed sufficient in these cases.

2.4. Some consequences of the technical conditions. From now on we
fix a Coxeter system (W,S), an integral domain k, and a balanced realization(

V, (αs : s ∈ S), (α∨
s : s ∈ S)

)
of (W,S) over k which satisfies (2.4). We will consider the symmetric algebra

R := Sk(V
∗)

as a graded ring with V ∗ in degree 2. This algebra admits a natural action of W
(induced by the action on V ), and for s ∈ S we will denote byRs ⊂ R the subalgebra
of s-invariants. The following lemma (which generalizes some of the computations in
the proof of Lemma 1.11) is one of the justifications for the assumption of Demazure
surjectivity.

Lemma 2.17. Assume that α∨
s : V ∗ → k is surjective and that αs ̸= 0. If

δs ∈ V ∗ satisfies ⟨δs, α∨
s ⟩ = 1, then we have

R = Rs ⊕ δs ·Rs.

Proof. Since s(δs) ̸= δs (because αs ̸= 0 by assumption), it is clear that
Rs ∩ (δsR

s) = {0}. On the other hand, using the fact that

(2.10) V ∗ = (V ∗)s ⊕ k · δs
(where (V ∗)s = ker(α∨

s )) and the formula

(2.11) (δs)
2 = (δs + s(δs)) · δs − s(δs)δs
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one checks by induction that for any n ∈ Z≥0, any element of R2n belongs to
Rs + δs ·Rs; it follows that R = Rs ⊕ δs ·Rs, as desired. □

From now on we assume in addition that our realization satisfies Demazure
surjectivity. In particular, Lemma 2.17 holds for any s. For s ∈ S we will denote
by

∂s : R→ Rs

the Demazure operator associated with s, i.e. the k-linear map sending a = a1+δsa2
(with a1, a2 ∈ Rs, and where δs is as in Lemma 2.17) to a2. This map does not
depend on the choice of δs: in fact we have

∂s(f) =
f − s(f)
αs

in the fraction field of R.
In [EW2], the authors associate to such data a k-linear graded (strict) monoidal

category8 DBS(W, V ). (In [EW2] it is not assumed that (2.4) is satisfied, but the
teatment of Jones–Wenzl projectors has a gap. This gap was identified and partially
solved in [EW3], and later completely solved in [Haz].) The definition of this
category is given in §2.5; in the rest of this subsection we discuss some technical
details required in this definition.

First, for any (s, t) ∈ S2◦ , considering k as a Z[x, y]-algebra via

x 7→ −⟨α∨
s , αt⟩, y 7→ −⟨α∨

t , αs⟩,

the assumption (2.4) and Theorem 2.16 ensure that in the category 2TLk the
Jones–Wenzl projectors

JW(s,t,··· ) and JW(t,s,··· )

(with ms,t letters in each case) exist and are rotatable. Using a deformation retract
(see [EW2, §5.2]), from a two-colored crossingless matching one obtains a diagram
of the form used below in the definition of DBS(W, V ) (see §2.5); for instance, from
the matching

with the leftmost region colored by s we obtain the diagram

• •

•
s s st t t

s s st t t

.

8Of course this category also depends on S and the collections (α∨
s : s ∈ S) and (αs : s ∈ S).

These data are not indicated to lighten the notation.
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The diagram obtained from JW(s,t,··· ,t) (if ms,t is even) or JW(s,t,··· ,s) (if ms,t is
odd) will be denoted

(2.12) JW(s,t,··· ,t)

· · ·

· · ·

s

s

t t

t t

or JW(s,t,··· ,s)

· · ·

· · ·

s

s

t s

t s

.

This morphism is again called the Jones–Wenzl projector associated with the pair
(s, t)

Remark 2.18. As we will see below the Jones–Wenzl projectors, or rather their
images (2.12), appear in the relations defining the Elias–Williamson category; it is
therefore clear that we need to assume their existence for the definition to make
sense. The necessity of rotatability is less immediate. It should be seen as some kind
of compatibility of the cyclicity of the 2ms,t-valent vertex (relation (4) in §2.5) with
the relation involving Jones–Wenzl projectors (relation (12) in §2.5) which prevents
the category from collapsing. For a more formal discussion, see [EW3, §3.3].

There is an extra technical condition that has to be considered in caseW admits
a parabolic subgroup of type H3. In this case, the “Zamolodchikov” relation one
needs to impose (see [EW2, (5.12)]) is not known explicitly. One therefore needs
to assume that there exists a linear combination of this form that is sent to 0 by the
operation described in [EW3, §2]. Such a linear combination is then fixed, and its
vanishing is imposed in the definition of the category DBS(W, V ) (see (13) in §2.5
below). There does not seem to be any understanding of when this condition holds
at this stage; we will therefore not discuss it any further. (This condition is empty
for Cartan realizations of crystallographic Coxeter groups, since such groups do not
have any parabolic subgroup of type H3.)

2.5. Definition. We continue with the realization fixed in §2.4.
The category DBS(W, V ) is graded, in the sense that its morphism spaces are

graded k-modules. Its objects are parametrized by expressions; the object attached
to w will be denoted by Bw. The morphisms are generated (under horizontal
and vertical concatenation, and k-linear combinations) by four kinds of morphisms
depicted by diagrams (to be read from bottom to top):

(1) for any homogeneous f ∈ R, a “box” morphism

f

from B∅ to itself, of degree deg(f);
(2) for any s ∈ S, “dot” morphisms

•
s

and •
s

from Bs to B∅ and from B∅ to Bs, respectively, of degree 1;
(3) for any s ∈ S, trivalent morphisms

s

s s

and
s

ss
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from Bs to B(s,s) and from B(s,s) to Bs, respectively, of degree −1;
(4) for any (s, t) ∈ S2◦ , a 2mst-valent morphism

s

s

st

t t

· · ·

· · ·

s

t

if mst is odd or

s

s

st

t t

· · ·

· · ·

t

s

if mst is even

from B(s,t,··· ) to B(t,s,··· ) (where each expression has lengthmst, and colors
alternate), of degree 0.

(Below we will sometimes omit the labels “s” or “t” when they do not play any
role.) Using these morphisms we define the cap and cup morphisms as follows:

:=
•

, := • .

These morphisms are subject to a number of relations that we now explain.
First, there are the “isotopopy relations:”

(1) biadjunction:

= = ;

(2) rotation of univalent vertices :

• =
•

= • and
•

=
•

=
•

;

(3) rotation of trivalent vertices:

= = and = = ;

(4) cyclicity of the 2mst-valent vertex:

· · ·

· · ·
=

· · ·

· · ·
=

· · ·

· · ·
if mst is odd;

· · ·

· · ·
=

· · ·

· · ·
=

· · ·

· · ·
if mst is even.

Once these relations are known, as explained in [EMTW, Proposition 7.18], an
isotopy class of diagrams unambiguously represents a morphism in our category.
This also allows us to use some pictures that are not in the strict sense obtained
by concatenating our diagrams above: for instance, we will write
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for

= .

After this remark we can state the remaining relations:

(5) the boxes add and multiply in the obvious way;
(6) Frobenius unit:

• = ;

(7) Frobenius associativity:

= ;

(8) needle relation:

= 0;

(9) barbell relation:

•
• = αs

(where s is the color of the diagram on the left-hand side);
(10) nil-Hecke relation:

s

s

f =

s

s

s(f) +

s

s

•
•

∂s(f) ;

(11) 2-color associativity:

· · ·

· · ·
=

· · ·

· · ·
· · · if mst is odd;

· · ·

· · ·
=

· · ·

· · ·
· · · if mst is even;



2. THE ELIAS–WILLIAMSON CATEGORY 111

(12) Jones–Wenzl relations (or two-color dot contraction):

•

· · ·

· · ·

s

t

st

s

s

s

= JW(s,t,··· ,s)

•

· · ·

· · ·

s t s

t s

if ms,t is odd;

•

· · ·

· · ·

s

t

st

s

t

t

= JW(s,t,··· ,t)

•

· · ·

· · ·

s t t

t t

if ms,t is even;

(13) Zamolodchikov relations: see [EW2, §5.1].
These relations can be gathered in four groups:

• the polynomial relation (5), which does not involve any simple reflection;
• the 1-color relations, which involve only 1 simple reflection in each case,
namely (1)–(3); and (6)–(10);

• the 2-color relations, which involve pairs of simple reflections generating
a finite subgroup of W, namely (4) and (11)–(12);

• the 3-color relation, which involves triples of simple reflections generating
a finite subgroup of W, namely (13).

The composition of morphisms is induced by vertical concatenation. The
monoidal product in DBS(W, V ) is induced by the assignment Bv ⋆ Bw := Bvw,
and horizontal concatenation of diagrams.

Remark 2.19. (1) The letters “BS” in the notation DBS(W, V ) again
refer to Bott–Samelson, because the objects Bw play the role of equivariant
cohomology of Bott–Samelson resolutions of Schubert varieties.

(2) As checked in [EMTW, Exercise 9.39], from the relations (11)–(12) above
one deduces that the composition of the 2ms,t-valent morphism from
(s, t, · · · ) to (t, s, · · · ) with the 2ms,t-valent morphism from (t, s, · · · ) to
(s, t, · · · ) is JW(s,t,··· ).

(3) In some sources (e.g. [EMTW]) the needle relation (see (8) above) is
presented in a different form; it is explained in Exercise 2.10 that this
gives rise to the same category.

(4) As explained in Remarks 1.30 and 1.32, Soergel bimodules are often used
as a bridge between two categories of representation-theoretic or geomet-
ric interest, by constructing functors H and V with values in Soergel
(bi)modules. By design a category defined by generators and relations
makes it easy to define a functor from it. In the case where one wants to
use the Elias–Williamson category as a replacement for Soergel bimodules,
one therefore usually constructs functors from this category to categories
of representation-theoretic or geometric interest. For illustrations of this
procedure, see [AMRW] and Conjecture 1.3 in Chapter 6.

When we consider DBS(W, V ) as a graded category as above, the graded k-
module of morphisms from Bw to Bv will be denoted

Hom•
DBS(W,V )(Bw,Bv).
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This k-module has a canonical structure of graded R-bimodule, given by putting
boxes to the left and to the right of a given morphism. But sometimes it will be
more convenient to consider DBS(W, V ) as a usual category endowed with a “shift
of grading” autoequivalence (1), whose n-th power will be denoted by (n). From
this perspective the objects of DBS(W, V ) are the Bw(n) where w is an expression
and n ∈ Z. The morphism space from Bw(n) to Bv(m), denoted

HomDBS(W,V )(Bw(n),Bv(m)),

is the k-submodule of Hom•
DBS(W,V )(Bw,Bv) consisting of elements of degree m−n.

The category DBS(W, V ) admits a nice symmetry, which is explained in the
following lemma. For applications, see Exercise 2.11.

Lemma 2.20. Assume that (W,S) has no parabolic subgroup of type H3. There
admits a canonical monoidal anti-autoequivalence

ι : DBS(W, V )
∼−→ DBS(W, V )

which acts on objects by the formula

ι(Bw(n)) = Bw(−n)

for any expression w and any n ∈ Z, and on morphisms by reflecting diagrams
along a horizontal axis.

Proof. Since our category is defined by generators and relations, and since we
know the behaviour of our functor on objects, we consider the assignment sending
each generating morphism to its reflection along an horizontal axis; what we need to
check is that this assignment satisfies the relations defining DBS(W, V ). This is eas-
ily seen for all relations except 2-color associativity and the Jones–Wenzl relations.
For 2-color associativity, this follows from these relations together with cyclicity
of the 2ms,t-valent vertex and of trivalent vertices. Finally, instead of checking
explicitly the Jones–Wenzl relations, we remark that by [EMTW, Exercise 9.39]
these relations are equivalent (modulo cyclicity and 2-color associativity) to the
relation stating that the composition of two 2ms,t-valent vertices associated with
s, t equals the corresponding Jones–Wenzl projector; see [EMTW, (9.27b)]. This
relation is visibly invariant under horizontal reflection thanks to the corresponding
property of Jones–Wenzl projectors (see Lemma 2.10), which allows to check this
relation. □

Remark 2.21. Similar considerations allow to construct an analogue of the
autoequivalence φ of Remark 1.12, i.e. an autoequivalence of DBS(W, V ) that sends
Bw to the object associated with the word obtained from w by reversing the order
of the letters, and acts on morphisms by reflection along a vertical axis. This
autoequivalence respects degrees of morphisms, and reverses the order of the factors
in a monoidal product.

2.6. Additive and Karoubian versions. The category DBS(W, V ) is “only”
a preadditive (in fact, k-linear) category. We will denote by D⊕

BS(W, V ) the additive
hull of DBS(W, V ) (considered as an ordinary, non graded, category). The objects
of this category are the formal direct sums

r⊕
i=1

Bwi
(ni)
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where each wi is an expression and each ni is an integer. The morphisms are defined
in the obvious way, as matrices of morphisms in DBS(W, V ). This category admits
an obvious (additive) monoidal product extending the product ⋆, and denoted by
the same symbol.

In case k is a field or a complete local ring,9 we will denote by D(W, V ) the
Karoubian envelope of DBS(W, V ). Once again this category admits a natural
monoidal product extending ⋆, and which will also be denoted ⋆. It follows from
Theorem 2.30 below that morphisms spaces in D(W, V ) are finitely generated over
k. Since a k-algebra which is finitely generated as a k-module is semi-perfect
(see [La, Example 23.3]), it then follows from [CYZ, Theorem A.1] that D(W, V )
is a Krull–Schmidt category.

2.7. The quadratic relations. Below we will explain that (under suitable
assumptions) the split Grothendieck group of the category D⊕

BS(W, V ) identifies
with the Hecke algebra H(W,S). The following lemma expresses in categorical terms

that the quadratic relations in H(W,S) are satisfied in D⊕
BS(V,W ) (without any

further assumption).

Lemma 2.22. For any s ∈ S there exists an isomorphism

Bs ⋆ Bs ∼= Bs(1)⊕ Bs(−1)
in D⊕

BS(V,W ).

Proof. To prove the lemma we need to construct morphisms

f1 : B(s,s) → Bs(1), f2 : B(s,s) → Bs(−1),
f3 : Bs(1)→ B(s,s), f4 : Bs(−1)→ B(s,s)

which satisfy

f1 ◦ f3 = id, f1 ◦ f4 = 0, f2 ◦ f3 = 0, f2 ◦ f4 = id

and

f4 ◦ f2 + f3 ◦ f1 = id .

These morphisms are defined as follows (where all lines are labelled s, and δs is as
in Lemma 2.17):

f1 =

δs

, f2 = − , f3 = , f4 =
s(δs)

.

We have

(2.13) f1 ◦ f3 = δs = •
• + s(δs) = id

where the second equality uses the nil-Hecke relation (and the fact that ∂s(δs) = 1)
and the third one the Frobenius unit relation and the needle relation. A very similar
computation shows that f2 ◦ f4 = id and that f1 ◦ f4 = 0. (In the former case we

9This restriction is not necessary for the definition to make sense, but we will only consider
it in this generality.
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use that ∂s(s(δs)) = −1; in the latter case we use that ∂s(δss(δs)) = 0.) The fact
that f2 ◦ f3 = 0 follows directly from the needle relation.

Finally, we have

f4 ◦ f2 + f3 ◦ f1 =

δs

−

s(δs)

.

Using Frobenius associativity and then the nil-Hecke relation we see that

δs

=

δs

= • • +

s(δs)

.

It follows that f4 ◦ f2 + f3 ◦ f1 = id, in view of the Frobenius associativity relation
and the Frobenius unit relation. □

2.8. The categorification theorem and indecomposable objects. Elias
and Williamson prove in [EW2] that, under appropriate assumptions, the cate-
gories D⊕

BS(W, V ) and D(W, V ) have properties very similar to those of the category
of Soergel bimodules, see §1.4.

First, they explain in [EW2, §6.5] that there exists a morphism

chD : [D⊕
BS(W, V )]⊕ → H(W,S)

which, for any expression w and any n ∈ Z, satisfies

chD([Bw(n)]) = vn ·Hw

(where Hw is defined in (1.11)). (This construction relies on the construction of the

light leaves basis presented in §2.10 below; see §2.11 for some details.) Since the
classes [Bw(n)] generate the Z-module [D⊕

BS(W, V )]⊕, the morphism η is therefore
an algebra morphism.

For the next results, we assume that k is a field or a complete local domain.
In [EW2, Theorem 6.26], Elias and Williamson prove the following analogue of
Theorem 1.16.

Theorem 2.23. For any w ∈ W there exists a unique indecomposable object
Bw ∈ D(W, V ) which satisfies the property that for any reduced expression w for w,
Bw is the unique indecomposable summand of Bw which is not a direct summand
of an object By(n) with y a reduced expression for an element y < w and n ∈ Z.
Moreover, the assignment

(w, n) 7→ Bw(n)

induces a bijection between W × Z and the set of isomorphism classes of indecom-
posable objects in D(W, V ).

Under the assumption that k is a field or a complete local domain, it is clear
that we have an identification

[D⊕
BS(W, V )]⊕ ∼= [D(W, V )]⊕.
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Using the characterization of Bw in Theorem 2.23, one easily checks by induction
on the length of w that for any reduced expression w for an element w ∈ W there
exist nonnegative integers b

w
y,n such that

(2.14) Bw ∼= Bw ⊕
⊕

y∈W,y<w
n∈Z

(By(n))
bwy,n .

Using the same considerations as for Corollary 1.18, one deduces the following
result. (Here again, the positivity statement follows from the explicit description
of chD.)

Corollary 2.24. The morphism chD is an isomorphism. Moreover, for any
w ∈ W we have

chD([B
bim
w ]) ∈ Hw +

∑
y<w

Z≥0[v, v
−1] ·Hy.

Remark 2.25. (1) It follows from the first sentence in Corollary 2.24
that, when k is a complete local domain, the assignment

Hs 7→ [Bs]

extends to an algebra morphismH(W,S) → [D(W, V )]⊕, which provides an
analogue of Theorem 1.14. The proof of this fact is however quite different
from that of the latter theorem; in particular the fact that the elements
([Bs] − v : s ∈ S) satisfy the braid relations is not checked explicitly.
For an interpretation of this relation in the category D(W, V ), see [EW2,
Remark 6.29].

(2) In fact one can prove that there exists an algebra isomorphism

H(W,S)
∼= [D⊕

BS(W, V )]⊕

without any assumption on k, see [ARV, Theorem 6.13].10 The proof
in this setting does not use the classification of indecomposable objects
(because no classification is known); instead it is based on the construction
of analogues of the Rouquier complexes (see Remark 1.15(2)).

For w ∈ W we set

Hw(V ) := chD([B
bim
w ]).

Corollary 2.24 implies that the family

(2.15)
(
Hw(V ) : w ∈ W

)
is a basis of H(W,S). This basis “encodes” the combinatorics of the category
D(W, V ), in the sense that computing it is equivalent (in theory) to computing
the integers b

w
y,n appearing in (2.14).

The same proof as for Lemma 1.21 (using Exercise 2.11 as a replacement for
the arguments involving the duality D) gives the following result.

Lemma 2.26. Let w ∈ W and s ∈ S.

10In [ARV] the technical conditions of §2.4 are not mentioned. They should be imposed
however, since the proof involves the standard properties of the category DBS(W, V ) (in particular,

the double leaves basis of §2.10 below.).
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(1) If sw > w, then there exist nonnegative integers dy,nw,s for y ∈ W such that
y < sw and n ∈ Z such that

Bs ⋆ Bw ∼= Bsw ⊕
⊕

y∈W,y<sw
n∈Z

(By)
⊕dy,n

w,s .

Moreover, for any y and n we have dy,nw,s = dy,−nw,s .
(2) If sw < w we have

Bs ⋆ Bw ∼= Bw(1)⊕ Bw(−1).

In particular, as a consequence of Lemma 2.26(2), for any w ∈ W and s ∈ S
such that sw < w we have

(2.16) Hs ·Hw(V ) = (v + v−1) ·Hw(V ).

Remark 2.27. (1) The comments in Remark 1.22, as well as Proposi-
tion 1.23, also apply in this context, with identical proofs.

(2) As explained in Remark 1.19, usual Soergel bimodules have “singular”
variants. In the setting of the Elias–Williamson diagrammatic category,
such a theory is not available in full generality as of now. In the case of di-
hedral groups, it was developed (under appropriate assumptions) in [El].
A solution to this problem has been announced by Elias–Williamson in
(finite and affine) type A, but no detailed treatment appears in the lit-
erature at present. For some details, see [EMTW, Chap. 24]. For an
important application, see [ELo].

2.9. Rex moves. We now come back to the general setting of §2.5 (i.e. we
omit the condition that k is a complete local domain.)

To any w ∈ W we associate its “rex graph” Γw constructed as follows. The
vertices of this graph are the reduced expressions for w, and an edge connects two
vertices if they differ by the application of a braid relation, i.e. by the replacement
of a subexpression (s, t, · · · ) by (t, s, · · · ), where (s, t) ∈ S2◦ , and each sequence
alternates the letters s and t and has length ms,t. In these terms, Matsumoto’s
lemma in the theory of Coxeter groups states that the graph Γw is connected, for
any w ∈ W.

If w and w′ are two vertices in Γw connected by an edge (associated with a pair
(s, t) of simple reflections as above), then we have canonical morphisms

(2.17) Bw → Bw′ and Bw′ → Bw

in DBS(W, V ) obtained by adding vertical lines to the morphisms B(s,t,··· ) →
B(t,s,··· ) and B(t,s,··· ) → B(s,t,··· ) appearing in the generators of DBS(W, V ).

Lemma 2.28. Let w ∈ W, and let w and w′ be two vertices in Γw connected by
an edge. Then there exist words x1, · · · , xr of length at most ℓ(w)−2 and morphisms
f1, · · · , fr : Bw → Bw where each fi factors through a shift of Bxi

such that the
composition

Bw → Bw′ → Bw

(where both morphisms are as in (2.17)) equals id+
∑r
i=1 fi.

Proof. Let s, t be the simple reflections associated with the edge under consid-
eration. By Remark 2.19(2), the morphism we consider is obtained from JW(s,t,··· )
by adding appropriate vertical lines on both sides. Hence it is sufficient to prove the
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similar claim for the morphism JW(s,t,··· ). Now, by construction, this morphism
is obtained from JW(s,t,··· ) by the deformation-retract process explained in §2.4.
The morphism JW(s,t,··· ) is a linear combination of the identity morphism (giving
rise to the identity morphism in DBS(W, V )) and nontrivial two-colored crossingless
matchings. Each of these matchings has a cup

on top. Hence its image in DBS(W, V ) has a diagram of the form

•

on top. This image therefore factors through an object associated with a word of
length at most ms,t − 2, which implies our claim. □

We continue with our element w ∈ W and the rex graph Γw. We will call
“rex move” a directed path in Γw. To each (directed) edge in this path we have
associated above a morphism in DBS(W, V ). By composing these morphisms we
therefore obtain a morphism

Bw → Bw′

in DBS(W, V ), where w, resp. w′, is the starting point, resp. the end point, of our
path. Given a rex move from w to w′, we can also consider the “reversed” rex
move, a path from w′ to w. The following statement is an immediate consequence
of Lemma 2.28, which will be used in Chapter 6.

Proposition 2.29. Let w ∈ W, and consider a rex move from a vertex w
to a vertex w′. Then there exist words x1, · · · , xr of length at most ℓ(w) − 2 and
morphisms f1, · · · , fr : Bw → Bw where each fi factors through a shift of Bxi

such
that the composition

Bw → Bw′ → Bw

(where the first morphism is the morphism associated with our given rex move,
and the second one is the morphism associated with the reversed rex move) equals
id+

∑r
i=1 fi.

2.10. Light leaves and double leaves. One of the main technical tools used
in [EW2] is the construction of bases of morphism spaces in DBS(W, V ) inspired by
a construction in the setting of “usual” Soergel bimodules due to Libedinsky [Li1,
Li3], that we review here.

Given an expression w = (s1, · · · , sr), we call subexpression of w a sequence
e = (e1, · · · , er) where ei ∈ {0, 1} for any i. We will say that e expresses the
element (s1)

e1 · · · (sr)er ∈ W. To such a subexpression we assign its Bruhat stroll,
the sequence x0 = e, x1, · · · , xr with

xi = (s1)
e1 · · · (si)ei

for any i, and a sequence (X1, · · · , Xr) of labels in {U0, U1, D0, D1} with

Xi =


U1 if ei = 1 and xi−1si > xi−1;

U0 if ei = 0 and xi−1si > xi−1;

D1 if ei = 1 and xi−1si < xi−1;

D0 if ei = 0 and xi−1si < xi−1.
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(Here “D” stands for “down”, and “U” for “up”.) We define the defect d(e) of e
by

d(e) = #{i ∈ {1, · · · , r} | Xi = U0} −#{i ∈ {1, · · · , r} | Xi = D0}.
To each expression w and each subexpression e, with associated Bruhat stroll

(x0, · · · , xr) and sequence of labels (X1, · · · , Xr) we will assign a “light leaf” mor-
phism

LLw,e : Bw → Bx(d(e))

for some reduced expression x for xr. (This construction will depend on some
choices; in particular we do not specify the choice of x.) The construction pro-
ceeds by induction on the length on w. If w = ∅ is the empty expression,
then there is only one choice for e, namely e = ∅, and the corresponding mor-
phism LL∅,∅ is the identity morphism of B∅. Now consider a nonempty ex-
pression w = (s1, · · · , sr) and a subexpression e. Denote by w<r the expression
(s1, · · · , sr−1) and by e<r = (e1, · · · , er−1) the subexpression of w<r induced by e,
and assume that the morphism

LLw<r,e<r
: Bw<r

→ Bx′(d(e<r))

has been defined. (Here x′ is a certain reduced expression for xr−1.) Then we will
set

LLw,e = ϕr ◦ (LLw<r,e<r
⋆ idBsr

)

for a certain morphism

ϕr : Bx′ ⋆ Bsr (d(e<r))→ Bx(d(e))

where x is a reduced expression of xr. This morphism is determined by the following
rules. (Here, to lighten notation, ϕr is described as an element in the graded k-
module Hom•

DBS(W,V )(Bx′ ⋆ Bsr ,Bx).)

• If Xr = U1, then (x′, sr) is a reduced expression for xr. In this case, we
choose a reduced expression x for xr and a rex move from (x′, sr) to x and
define ϕr to be the associated morphism. (Here we can choose x = (x′, sr)
and the rex move staying at this reduced expression, but we do not impose
this.)

• If Xr = U0, then x′ is a reduced expression for xr. We choose a reduced
expression x for xr and a rex move from x′ to x, denote by f the associated
morphism, and set

ϕr = f ⋆
•
sr

.

• If Xr = D1, then we choose a reduced expression y for xr−1 which has sr
in position r − 1, and a rex move from x′ to y; we denote by f : Bx′ →
By the associated morphism. We denote by z the reduced expression

for xr obtained by deleting the rightmost sr in y, and choose a reduced
expression x for xr and a rex move from z to x; we denote by g : Bz → Bx
the associated morphism. Then we set

ϕr = g ◦

idBz
⋆

sr

srsr

 ◦ (f ⋆ idBsr
).
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• If Xr = D0, then we choose a reduced expression y for xr−1 which has sr
in position r− 1, and a rex move from x′ to y; we denote by f : Bx′ → By
the associated morphism. Next we choose a reduced expression x for xr
and a rex move from z to x; we denote by g : By → Bx the associated

morphism. Then we set

ϕr = g ◦

(
idBz

⋆
sr sr

)
◦ (f ⋆ idBsr

).

Now that light leaves morphisms have been defined, we can define the double
leaves morphisms. These are associated to a pair of expressions (x, y) and a pair
of subexpressions (e, f) of x and y respectively which express the same element
w ∈ W. Thanks to the construction above we have morphisms

LLx,e : Bx → Bw(d(e)), LLy,f : By → Bw′(d(f))

where w and w′ are reduced expressions for w. We choose a rex move from w to
w′, denote by f : Bw → Bw′ the associated morphism, and set

LLy,fx,e :=
(
ι(LLf,f )(d(e))

)
◦
(
f(d(e))

)
◦ LLx,e : Bx → By(d(e) + d(e′)).

(Here, ι is the functor of Lemma 2.20.)
The following statement is proved in [EW2, Theorem 6.12], and is the main

step for the proof of Theorem 2.23.

Theorem 2.30. Let x, y be expression, and choose for any subexpressions e, f
of x and y respectively expressing the same element of W a double leaf mor-

phism LLy,fx,e . Then the family of such morphisms is a (homogeneous) basis of
Hom•(Bx,By) both as a left R-module and as a right R-module. In particular, this

space is graded free as a left R-module and as a right R-module.

2.11. Some quotient categories and the diagrammatic character. The
light leaves morphisms themselves can also be described as a spanning set for a space
of morphisms, as follows.

Recall that an ideal in W is a subset U ⊂ W such that if w ∈ U then {y ∈
W | y ≤ w} ⊂ U . Fix w ∈ W, and consider the ideal {y ∈ W | y < w}. Given ex-
pressions x, y, let us consider the sub-R-module Hom•(Bx,By)

<w of Hom•(Bx,By)

spanned by morphisms which factor through (a shift of) an object Bw where w
is a reduced expression for an element y which satisfies y < w. As explained
in [EMTW, §11.3] (see also [EW2, §6.4–6.5]), for any choice of double leaves basis

as in Theorem 2.30, Hom•(Bx,By)
<w is spanned by the morphisms LLy,fx,e where e

and f express an element y which satisfies y < w; as a consequence, the quotient

Hom•
̸<w(Bx,By) := Hom•(Bx,By)/Hom•(Bx,By)

<w

is a free R-module, spanned by images of double leaves morphisms associated with
expressions e, f which express an element y satisfying y ̸< w. It is clear that the

subspaces Hom•(Bx,By)
<w form a 2-sided ideal in DBS(V,W), so that one can

define a category DBS(V,W) ̸<w with objects the same as those of DBS(V,W), and
morphisms given by appropriate graded components of the spaces Hom•

̸<w(Bx,By).

It is clear that the images in DBS(V,W )̸<w of the objects Bw with w a reduced
expression for an element y such that y < w vanish.
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The images in this quotient category DBS(V,W) ̸<w of the objects Bw for w
a reduced expression for w coincide; for simplicity we will denote them by Bw.
Then, for any expression y, the R-module Hom•

̸<w(By,Bw) is free, and spanned

by the light leaves morphisms LLy,e where e expresses w. (In particular, we have

Hom•
̸<w(Bw,Bw) = R.) With this definition, the morphism chD considered in §2.8

is defined by

chD(By) =
∑
w∈W

(
grkHom•

̸<w(By,Bw)
)
·Hw,

where grk is the graded rank (as an R-module).

Remark 2.31. In some references the ideal {y ∈ W | y < w} is replaced in this
construction by the ideal {y ∈ W | y ̸≥ w}. This does not affect the construction
of the diagrammatic character; see e.g. [EMTW, Remark 11.40].

2.12. Some applications. As explained above the main application of The-
orem 2.30 is to the proof of Theorem 2.23. But this theorem has other very inter-
esting implications, that we explore here. A general idea one can keep in mind is
that “the category DBS(W, V ) does not really depend on the choice of realization.”
This should not be taken in the strict sense, but in this subsection we explain a few
statements that go in this direction.

2.12.1. Extension of scalars, I. Recall from Remark 2.3 that given a realization
(V, (αs : s ∈ S), (α∨

s : s ∈ S)) of a Coxeter system (W,S) over a commutative
domain k and a ring morphism k→ k′ (where again k′ is a commutative domain) we
obtain naturally a realization of (W,S) over k′ with underlying k′-module k′⊗k V .
We will assume that the technical conditions considered in §2.4 are satisfied by V .
Then these conditions are also satisfied for our new realization over k′, so that we
can also consider the category DBS(W,k′ ⊗k V ). To distinguish the two cases, we
will add subscripts k or k′ to all the notations considered above.

Remark 2.32. We have to be a bit careful in case (W,S) admits a parabolic
subgroup of type H3. Namely, in this case we have explained in §2.4 that we need
to fix a corresponding “Zamolodchikov relation” in the definition of DBS(W, V ).
The image in DBS(W,k′ ⊗k V ) of this relation will be taken as the corresponding
Zamolodchikov relation in this category. Note that we have a natural morphism
from the algebra Rk involved in the definition of DBS(W, V ) to the algebra Rk′

involved in the definition of DBS(W,k′ ⊗k V ), which induces a morphism between
localizations at W-conjugates of the simple roots. Since the coefficients in [EW3,
§2] only involve elements in these localizations, the image considered above is indeed
suitable to be taken as a Zamolodchikov relation.

It is clear from definitions that there exists a canonical monoidal functor

k′ : DBS(W, V )→ DBS(W,k′ ⊗k V )

which is defined on objects by

k′(Bk
w(n)) = Bk′

w (n)

for any expression w and any n ∈ Z. From Theorem 2.30 we deduce that for any
expressions w,w′ and any n, n′ ∈ Z this functor induces an isomorphism

k′ ⊗k HomDBS(W,V )(B
k
w(n),B

k
w′(n′))

∼−→ HomDBS(W,k′⊗kV )(B
k′
w (n),B

k′
w′(n′)).



2. THE ELIAS–WILLIAMSON CATEGORY 121

In case k and k′ are complete local domains, this functor induces a functor

D(W, V )→ D(W,k′ ⊗k V )

which will again be denoted k′, and which has the same effect on morphism spaces
as above. The induced algebra morphism

[D(W, V )]⊕ → [D(W,k′ ⊗k V )]⊕

is an isomorphism; in fact, under the isomorphisms chD (used on both sides) it
identifies with the identity morphism ofH(W,S). What we will consider more closely
below is the effect of this functor on indecomposable objects.

We start with an easy case.

Lemma 2.33. Assume that k and k′ are complete local domains, and that the
morphism k→ k′ is surjective. Then for any w ∈ W there exists an isomorphism

k′(Bk
w)
∼= Bk′

w .

Proof. From the characterizations of the objects Bk
w and Bk′

w we see that it is
enough to prove that k′(Bk

w) is indecomposable. Now, as explained above we have
a canonical isomorphism

k′ ⊗k EndDBS(W,V )(B
k
w)

∼−→ EndDBS(W,k′⊗kV )(k′(Bk
w)).

We deduce that this ring is a quotient of the local ring EndDBS(W,V )(B
k
w), hence is

local, which finishes the proof. □

Lemma 2.33 implies that in this setting, for any w ∈ W we have

(2.18) Hw(V ) = Hw(k′ ⊗k V ).

Remark 2.34. Lemma 2.33 applies in particular in the case when k = O is a
complete local domain and k′ = F is its residue field. In this case there is another
natural morphism one can consider, namely the embedding O→ K where K is the
fraction field of O. For this morphism it is not true that K(BO

w) is indecomposable
in general. What follows from the characterization of indecomposable objects in
D(W, V ) and D(W,K ⊗O V ) is that there exist nonnegative integers (ay,w,n : y <
w ∈ W, n ∈ Z) such that

K(BO
w)
∼= BK

w ⊕
⊕
y<w
n∈Z

(BK
y (n))

⊕ay,w,n .

It is also not difficult to check that ay,w,n = ay,w,−n for any n ∈ Z; see Exercise 2.11.
If the basis

(Hw(K⊗O V ) : w ∈ W)

is known, the problem of computing the basis

(Hw(V ) : w ∈ W)

or, equivalently (see (2.18)), of the basis

(Hw(F⊗O V ) : w ∈ W),

is equivalent to the problem of computing the integers ay,w,n.
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2.12.2. Extension of scalars, II. Now we assume that k and k′ are fields. We
fix w ∈ W, and denote by

End+DBS(W,V )(B
k
w) ⊂ EndDBS(W,V )(B

k
w)

the ideal consisting of morphisms which factor through a sum of objects of the form
By(n) with y < w.

Lemma 2.35. Assume that k is a field. Then for any w ∈ W we have

EndDBS(W,V )(B
k
w) = End+DBS(W,V )(B

k
w)⊕ k · id .

Proof. First we remark that

End+DBS(W,V )(B
k
w) ∩ (k · id) = {0}.

In fact, this property is equivalent to saying that id does not belong to the ideal
End+DBS(W,V )(B

k
w), which follows from the fact that Bw is not a direct summand of

a sum of objects By(n) with y < w (by the Krull–Schmidt property). To conclude
it therefore suffices to show that

EndDBS(W,V )(B
k
w) = End+DBS(W,V )(B

k
w) + k · id .

For this, choose a reduced expression w for w and morphisms

Bk
w

i−→ Bk
w

p−→ Bk
w

such that p ◦ i = id. If f ∈ EndDBS(W,V )(B
k
w), then the morphism i ◦ f ◦ p can be

written in the double leaves basis of Theorem 2.30. Since w is a reduced expression,
and for degree reasons, we deduce that there exist λ ∈ k and a morphism g which
factors through a sum of objects By(n) with y < w such that

i ◦ f ◦ p = λ · id+g.
Then we have

f = (p ◦ i) ◦ f ◦ (p ◦ i) = λ · id+p ◦ g ◦ i,
which proves the claim and finishes the proof of the lemma. □

Once this lemma is established, using the same considerations as for Lemma 1.20
we deduce the following property.

Proposition 2.36. Assume that k and k′ are fields. Then for any w ∈ W we
have

k′(Bk
w)
∼= Bk′

w .

Proposition 2.36 shows that, in this setting, for any w ∈ W we have

(2.19) Hw(V ) = Hw(k′ ⊗k V ).

2.12.3. Diagrammatic Soergel modules. We explained in §1.9 that, in the set-
ting of reflection faithful representations, the category of Soergel bimodules has a
variant where the left (or right) action of R is “killed,” giving rise to the theory
of Soergel modules. Such a procedure has no obvious analogue in the setting of
the present section, but we can copy Proposition 1.26 to define a category which
plays the same role as Soergel modules. Namely, consider a balanced realization
(V, (αs : s ∈ S), (α∨

s : s ∈ S)) which satisfies the technical assumptions of §2.4.
Then we define the category DBS(W, V ) with

• objects the symbols Bw(n) where w is an expression and n ∈ Z;
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• morphisms from Bw(n) to Bw′(n′) the elements of degree n′ − n in the
graded k-module

k⊗R Hom•
DBS(W,V )(Bw,Bw′)

(where k is the trivial R-module concentrated in degree 0);
• composition induced in the obvious way by composition in DBS(W, V ).

Given expressions w and w′, we set

Hom•
DBS(W,V )

(Bw,Bw′) =
⊕
n∈Z

HomDBS(W,V )(Bw,Bw′(n))

= k⊗R Hom•
DBS(W,V )(Bw,Bw′).

Of course, From Theorem 2.30 we deduce that these spaces are graded free over k,
with bases consisting of images of double leaves morphisms. We will also denote by

D
⊕
BS(W, V ) the additive hull of DBS(W, V ). In case k is a complete local domain,

we denote by D(W, V ) the Karoubian envelope of D
⊕
BS(W, V ). It is easily seen that

this category is Krull–Schmidt.
There exists a canonical bifunctor

⋆ : DBS(W, V )× DBS(W, V )→ DBS(W, V )

which defines a right action of the monoidal category DBS(W, V ) on DBS(W, V ).
We have obvious functors

DBS(W, V )→ DBS(W, V ), D⊕
BS(W, V )→ D

⊕
BS(W, V ).

In case k is a complete local domain, the second functor induces a functor

(2.20) D(W, V )→ D(W, V ).

Lemma 2.37. Assume that k is a complete local domain. The functor (2.20)
sends indecomposable objects to indecomposable objects. As a consequence, denoting
for w ∈ W by Bw the image of Bw in D(W, V ), the assignment

(w, n) 7→ Bw(n)

induces a bijection between W × Z and the set of isomorphism classes of indecom-
posable objects in D(W, V ).

Proof. From the definition we see that for anyM,N ∈ D(W, V ), with images
M and N respectively, our functor induces an isomorphism

k⊗R

(⊕
n∈Z

HomD(W,V )(M,N(n))

)
∼−→
⊕
n∈Z

HomD(W,V )(M,N(n)).

In particular, if M is indecomposable then EndD(W,V )(M) is a quotient of the local

ring EndD(W,V )(M), hence is local. It follows that M is indecomposable. The rest
of the proof is similar to that of Corollary 1.28. □

Lemma 2.37 implies that, if k is a complete local domain, the functor (2.20)
induces an isomorphism

[D(W, V )]⊕
∼−→ [D(W, V )]⊕

sending [Bw] to [Bw] for any w ∈ W. Combining this with Corollary 2.24 we deduce
an isomorphism

H(W,S)
∼−→ [D(W, V )]⊕.
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These properties can be translated roughly as saying that that “the categories
D(W, V ) and D(W, V ) contain the same combinatorial information.” Another in-
carnation of this idea is that if the integers b

w
y,n are as in (2.14) we have

(2.21) Bw ∼= Bw ⊕
⊕

y∈W,y<w
n∈Z

(By(n))
bwy,n .

2.12.4. Functoriality. To avoid subtleties related to the Zamolodchikov rela-
tion, from now in this subsection we assume that (W,S) does not admit a parabolic
subgroup of type H3.

There exists a notion of morphism of realizations, defined as follows. Given
realizations

(V, (αs : s ∈ S), (α∨
s : s ∈ S)) and (Ṽ , (α̃s : s ∈ S), (α̃∨

s : s ∈ S))

of a Coxeter system (W,S) over the same ring k, a morphism of realizations from

(V, (αs : s ∈ S), (α∨
s : s ∈ S)) to (Ṽ , (α̃s : s ∈ S), (α̃∨

s : s ∈ S)) is a k-linear
morphism f : V → Ṽ which satisfies

α̃s ◦ f = αs and f(α∨
s ) = α̃∨

s

for any s ∈ S. Note that in this situation we have

⟨αs, α∨
t ⟩ = ⟨α̃s, α̃∨

t ⟩

for any s, t ∈ S. In particular, all the technical conditions involving the quantum
numbers are satisfied for (V, (αs : s ∈ S), (α∨

s : s ∈ S)) if and only if they are

satisfied for (Ṽ , (α̃s : s ∈ S), (α̃∨
s : s ∈ S)).

Fix a morphism

f : (V, (αs : s ∈ S), (α∨
s : s ∈ S))→ (Ṽ , (α̃s : s ∈ S), (α̃∨

s : s ∈ S)),

and assume that the technical conditions of §2.4 are satisfied for these realizations.
If we denote by R, resp. R̃, the symmetric algebra of V ∗, resp. of Ṽ ∗, then f induces
a morphism of graded k-algebras

f∗ : R̃→ R.

In this setting we can consider the categories DBS(W, Ṽ ) and DBS(W, V ). The
objects in both categories are in a canonical bijection with pairs (w, n) where w

is an expression and n ∈ Z; to distinguish them we will denote by B̃w(n) the

object attached to (w, n) in DBS(W, Ṽ ), and by Bw(n) the corresponding object in
DBS(W, V ). We have a monoidal functor

f∗ : DBS(W, Ṽ )→ DBS(W, V )

which is defined on objects by

f∗(B̃w(n)) = Bw(n)

for any expression w and any n ∈ Z, and which sends a box labeled by r ∈ R̃ to
the box labeled by f∗(r), and each other generating morphism of DBS(W, Ṽ ) to
the corresponding morphism in DBS(W, V ). In case k is a complete local domain,

f∗ induces a functor D(W, Ṽ )→ D(W, V ) such that the induced morphism

[D(W, Ṽ )]⊕ → [D(W, V )]⊕
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is an isomorphism. (Under the isomorphisms chD, this morphism corresponds to
the identity morphism of H(W,S).)

The following lemma is a consequence of Theorem 2.30, once one remarks that
double leaves morphisms do not involve “box” morphisms.

Lemma 2.38. For any expressions w,w′, the functor f∗ induces an isomorphism
of graded left R-modules, resp. graded right R-modules

R⊗R̃ Hom•
DBS(W,Ṽ )

(B̃w, B̃w′)
∼−→ Hom•

DBS(W,V )(Bw,Bw′),

resp. Hom•
DBS(W,Ṽ )

(B̃w, B̃w′)⊗R̃ R
∼−→ Hom•

DBS(W,V )(Bw,Bw′).

It is clear that the composition of f∗ with the functor (2.20) (for V ) factors
through a functor

f
∗
: DBS(W, Ṽ )→ DBS(W, V ).

The following statement is a direct consequence of Lemma 2.38.

Lemma 2.39. The functor f
∗
is a equivalence of categories.

From now on we assume that k is a complete local domain. Under this as-
sumption we can consider the “normalized” indecomposable objects (Bw : w ∈ W)

in DBS(W, V ), and the corresponding “normalized” indecomposable objects (B̃w :

w ∈ W) in DBS(W, Ṽ ).

Proposition 2.40. For any w ∈ W we have

f∗(B̃w) ∼= Bw.

Proof. We proceed by induction on w (for the Bruhat order). The claim is
clear if w = e. Now let w ∈ W, and assume the claim is known for smaller elements.
Let w be a reduced expression for w, and consider the decompositions

B̃w ∼= B̃w ⊕
⊕

y∈W,y<w
n∈Z

(B̃y(n))
b̃wy,n , Bw ∼= Bw ⊕

⊕
y∈W,y<w

n∈Z

(By(n))
bwy,n ,

see (2.14). The comments above (2.21) and Lemma 2.39 imply that for any y and n

we have b̃
w
y,n = b

w
y,n. On the other hand, applying f∗ and using induction we have

Bw ∼= f∗(B̃w)⊕
⊕

y∈W,y<w
n∈Z

(By(n))
b̃wy,n .

Hence by the Krull–Schmidt property we must have f∗(B̃w) ∼= Bw, as desired. □

It follows from Proposition 2.40 that in this setting we have

(2.22) Hw(V ) = Hw(Ṽ ) for any w ∈ W.

2.12.5. Independence. We continue to assume that (W,S) does not admit any
parabolic subgroup of type H3. Consider a complete local domain k and a realiza-
tion

(V, (αs : s ∈ S), (α∨
s : s ∈ S))

of (W,S) over k which satisfies the conditions of §2.4. Let us assume furthermore
that

(2.23)
∑
t∈S

k · ⟨αs, α∨
t ⟩ = k for any s ∈ S.
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(This condition holds automatically if 2 is invertible in k.) Under this assumption,
we will show that the basis

(Hw(V ) : w ∈ W)

only depends on the choice of k and of the matrix

(⟨αs, α∨
t ⟩)s,t∈S

(sometimes called the Cartan matrix of the realization), but not on the full datum
of the realization.

Consider the k-module defined by Ṽ = k⊕S , with canonical basis denoted
(α̃∨
s : s ∈ S), and for s ∈ S denote by

α̃s : Ṽ → k

the morphism defined by

⟨α̃s, α̃∨
t ⟩ = ⟨αs, α∨

t ⟩

for any t ∈ S. Then
(Ṽ , (α̃s : s ∈ S), (α̃∨

s : s ∈ S))

is a realization of (W,S) which satisfies the conditions of §2.4. (In fact, the quantum
numbers for this realization are the same as for the initial one, which justifies all
the conditions except for Demazure surjectivity. The latter property holds by our
assumption (2.23).) Moreover, the morphism of k-modules

Ṽ → V

sending α̃∨
s to α∨

s for any s ∈ S is a morphism of realizations. By (2.22) we deduce

that Hw(V ) = Hw(Ṽ ) for any w ∈ W, which justifies our assertion.

2.13. Relation with “usual” Soergel bimodules. One of the main moti-
vations for the construction of the category DBS(W, V ) was the desire to describe
the category of Soergel bimodules studied in Section 1 by generators and relations.
We now explain how this goal can be achieved. Let k be a field of characteristic
different from 2, and consider a balanced realization

(V, (αs : s ∈ S), (α∨
s : s ∈ S))

of (W,S) over k which satisfies the condition related to type H3 discussed in §2.4.
The condition on char(k) implies that this realization also satisfies Demazure sur-
jectivity. We will assume moreover that V is a reflection faithful representation of
(W,S); then (2.4) is automatically satisfied. In fact k is a field with char(k) ̸= 2,
and for any (s, t) ∈ S2◦ the action of ⟨s, t⟩ on V ∗ is faithful. By Exercise 2.2(5) we
also have ker(αs) ̸= ker(αt), hence kαs ̸= kαt. The claim therefore follows from
Lemma 2.5.

Then we can consider the categories D(W, V ) and SBim(W, V ). The following
statement is proved in [EW2].

Theorem 2.41. Under the assumptions above, there exists a canonical equiva-
lence of monoidal categories

D(W, V )
∼−→ SBim(W, V ).
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The proof of this statement proceeds in two steps. First, one needs to construct
a functor

DBS(W, V )→ SBim(W, V ).

On objects, this functor will send Bw(n) to Bbim
w (n) for any expression w and any

n ∈ Z. To define the functor on morphisms, one needs to describe the image of each
generating morphism, and then check that these morphisms satisfy the appropriate
relations. Here the image of a polynomial is defined to be multiplication by this
polynomial on R, and the image of

•
s

, resp. •
s

, resp.

s

s s

, resp.
s

ss

is given by

f ⊗ g 7→ fg, resp. f 7→ fδs ⊗ 1− f ⊗ s(δs),
resp. f ⊗ g 7→ f ⊗ 1⊗ g, resp. f ⊗ g ⊗ h 7→ f∂s(g)⊗ h

for f, g, h ∈ R. (Here, δs ∈ V ∗ is an element such that ⟨δs, α∨
s ⟩ = 1; the morphism

described above does not depend on the choice of this element.) If (s, t) ∈ S2◦ ,
the image of the corresponding 2ms,t-valent morphism is the unique morphism of
graded bimodules

Bbim
(s,t,··· ) → Bbim

(t,s,··· )

sending the vector

1⊗ 1⊗ · · · ∈ R⊗Rs R⊗Rt · · ·
to the vector

1⊗ 1⊗ · · · ∈ R⊗Rt R⊗Rs · · ·
(The existence and unicity of such a morphism follows from [Li1, §§4.1–4.3]; see in
particular [Li1, Proposition 4.3]. See also Exercise 2.4.) The verification that such
morphisms satisfy the relations of DBS(W, V ) is explained in [EW2, Claim 5.14].
(This verification relies on the results of [El] and some computer computations. For
a different approach to this question based on later work of Abe, see Remark 3.12
below.)

Once this functor is constructed, since SBim(W, V ) is additive and Krull–

Schmidt we obtain a canonical “extension” to a fully faithful functor D(W, V )
∼−→

SBim(W, V ). To conclude it then suffices to prove that this functor induces an
isomorphism

Hom•
D(W,V )(Bw,Bw′)

∼−→
⊕
n∈Z

HomSBim(W,V )(B
bim
w ,Bbim

w′ (n))

for any expressions w,w′. (In fact, this will prove that this functor is fully faithful;
essential surjectivity easily follows.) This follows from the fact that this func-
tor sends the “double leaves” basis considered in §2.10 to the similar basis in
SBim(W, V ) constructed by Libedinsky [Li1].

Remark 2.42. In the course of the proof of Theorem 2.41, it is claimed
in [EW2] that, for any balanced realization satisfying Demazure surjectivity, there
exists a monoidal functor

DBS(W, V )→ R-ModZ-R
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sending, for any expression w = (s1, · · · , sr), the object Bw to the graded bimodule

R⊗Rs1 · · · ⊗Rsr R(r).

Unfortunately, the proof of this claim is incomplete, as discussed in [EW3, §5.3].
Later work of Abe allows to complete the proof of this claim under the assump-
tion that (2.4) is satisfied, which is sufficient for the proof of the theorem; see
Remark 3.12 below for details. (As always, in case (W,S) admits a parabolic
subgroup of type H3, one also needs to impose the extra assumption considered
in §2.4.)

2.14. The p-canonical basis.
2.14.1. Definition. Consider a generalized Cartan matrix A, with rows and

columns parametrized by a finite set I. Let (W,S) be the associated Coxeter
system (see §1.2.3), and let p be either 0 or a prime number. In this subsection we
explain the definition of the p-canonical basis

(pHw : w ∈ W)

of H(W,S). This basis (for special choices of A) will play a major role in later
chapters. In fact, we will explain that it contains extremely interesting information
regarding questions of geometric nature (see Proposition 3.5 in Chapter 3) and of
representation-theoretic nature (see §2.14.2 below, and Chapters 5–6).

First, let us consider the case when either p ̸= 2 or each line and column of A
contains an odd number. Consider a Kac–Moody root datum

(X, (αi : i ∈ I), (α∨
i : i ∈ I))

associated with A. If k is a field of characteristic p, we can consider the Cartan re-
alization of (W,S) over k associated with (X, (αi : i ∈ I), (α∨

i : i ∈ I)), constructed
in §2.2.2. This realization satisfies Demazure surjectivity by assumption, and it is
balanced and satisfies (2.4) as explained in §2.2.2.

Our assumptions imply that the condition (2.23) is satisfied, hence the consid-
erations in §2.12.5 show that the basis of H(W,S) produced from such a realization
(see (2.15)) does not depend on the choice of the Kac–Moody root datum as above.
(In this case, the realization used in §2.12.5 is the realization associated with the
simply-connected datum from Example 2.6.) By (2.19), it does not depend on the
choice of k either (but only on p). This basis is the p-canonical basis of H(W,S)

associated with A.
In case p = 2 and A has a line or column containing only even numbers, one has

to be more careful. We claim that the basis constructed as above is independent of
the choice of a Kac–Moody root datum (X, (αi : i ∈ I), (α∨

i : i ∈ I)) which satisfies
the following properties:

• Z′ = Z;
• the vectors (αi : i ∈ I) are linearly independent over Z, and moreover
X/(

∑
i Zαi) has no torsion.

In fact, denote by Xuniv the underlying Z-module of the universal datum from
Example 2.6, and denote the bases of Xuniv and X∨

univ considered in this example
by (α̃i, βi)i∈I and (β∨

i , α̃
∨
i )i∈I . Our second assumption above ensures that for any

i ∈ I there exists ui ∈ X∨ such that ⟨αj , ui⟩ = δi,j for any j ∈ I. We then consider
the morphism of Z-modules

f : X∨
univ → X∨
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sending α̃∨
i to α∨

i and βi to ui, for any i. For any i, j ∈ I we have

⟨αi ◦ f, α̃∨
j ⟩ = ⟨αi, α∨

j ⟩ = aj,i, ⟨αi ◦ f, β∨
j ⟩ = ⟨αi, uj⟩ = δi,j ,

hence αi◦f = α̃i. This shows that the morphism k⊗Zf is a morphism of realizations
from the realization over k associated with the universal Kac–Moody root datum
to that associated with our given datum. In view of (2.22) it follows that the
associated bases of H(W,S) coincide. By (2.19), this basis does not depend on the
choice of k either.

The first important property of the p-canonical basis is the following.

Proposition 2.43. For p = 0, we have

0Hw = Hw for any w ∈ W.

Proof. Consider a triple (h, (αi : i ∈ I), (α∨
i : i ∈ I)) as in §1.2.3, and a lattice

X ⊂ h∗ as in §1.2.4. Then (X, (αi : i ∈ I), (α∨
i : i ∈ I)) is a Kac–Moody root datum

for A, which can be used to compute the basis (0Hw : w ∈ W). More specifically,
we will choose as base field (of characteristic 0) the field R.

As explained in §1.2.3 the representation of (W,S) on Q⊗ZX
∨ ∼−→ h is reflection

faithful, hence so is the representation on R ⊗Z X∨. In view of Theorem 2.41, we
deduce an equivalence of monoidal categories

D(W,R⊗Z X∨)
∼−→ SBim(W,R⊗Z X∨).

Now, as explained in §1.8, Soergel’s conjecture is known in SBim(W,R ⊗Z X∨),
which implies that 0Hw = Hw for any w ∈ W, as desired. □

Corollary 2.44. For any prime number p, there exist polynomials

(pay,w)y<w∈W

in Z≥0[v, v
−1], invariant under the replacement of v by v−1, and such that

pHw = Hw +
∑
y<w

pay,w ·Hy

for any w ∈ W.

Proof. To prove this property one can assume that our base field is Fp. Then
the claim follows from Proposition 2.43 and Remark 2.34 applied to the complete
local domain Zp. □

Another important property of the p-canonical basis is the following.

Proposition 2.45. For any fixed w ∈ W, there exists a positive integer Nw
such that pHw = Hw for any prime number p ≥ Nw.

Let us insist that the integer Nw might depend on w; unless W is finite, there
might not exist a bound which has the property above with respect to all elements
of W. In this book we will give two proofs of Proposition 2.45: one based on
geometric considerations in Chapter 3, and one based on diagrammatic arguments
in §1.4 in Chapter 5.

In particular, if W is finite there are only a finite number of prime numbers for
which the p-canonical basis differs from the Kazhdan–Lusztig basis. Determining
exactly what these prime numbers are is however a very difficult problem, which is
open in most cases. This subject will be discussed further in Chapter 5.
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The p-canonical basis can be computed algorithmically using a procedure de-
scribed in [GJW]. This algorithm becomes soon prohibitively heavy to run, but
at least in some relatively small cases it can be used to describe this basis explic-
itly, and these cases already suggest that its behavior seems difficult to describe in
general. For some examples of computation of this basis, see §2.15 below; for many
more examples, see [JW] and [Je].

Remark 2.46. We have explained above that the p-canonical basis only de-
pends on A, and not on the choice of k or of the Kac–Moody root datum. But
different generalized Cartan matrices can have the same associated Coxeter system,
hence the same associated Hecke algebra. The corresponding p-canonical bases can
differ. For an explicit example, see [JW, §5.4]. For another illustration of this
idea, note that the p-canonical basis might not be stable under Coxeter group
automorphisms which do not come from automorphisms of the associated Kac–
Moody group; e.g. in types B2 or G2, these bases are not always invariant under
the exchange of the two simple reflections; see [JW, §§5.1–5.2].

The coefficients in the expansion of pHw in the standard basis are called the p-
Kazhdan–Lusztig polynomials and denoted (phy,w : y, w ∈ W), with the convention
that

pHw =
∑
y

phy,w ·Hy.

Note that phy,w is a Laurent polynomial in v, but not necessarily a polynomial. Its
coefficients are nonnegative by construction.

2.14.2. The case of modular category O. Consider the setting of §1.11, assum-
ing in addition that p /∈ {2, 3}. In particular, W = W is now the Weyl group of
(G,T). In view of Remark 1.31, Theorem 2.41 applies in this setting. Hence, for
any w ∈W , the element ∑

y

(Pw : My) · y

is pHw|v=1, where we use the notation introduced at the end of §1.9. In other
words, for y, w ∈W we have

(Pw : My) =
phy,w(1).

Proposition 4.10 in Chapter 1 shows that, if the formula (4.11) in Chapter 1
holds for a given p, then phy,w(1) = hy,w(1) for any y, w ∈ W . In view of Corol-
lary 2.44 and since Kazhdan–Lusztig polynomials have nonnegative coefficients, this
in fact implies that

pHw = Hw

for any w ∈W .

2.15. Examples.
2.15.1. Type B2. Consider the Cartan matrix of type B2, given by

A =

(
2 −2
−1 2

)
.

We denote by s the reflection associated with the first line, and t the reflection
associated with the second line. Then we have

⟨αs, α∨
s ⟩ = ⟨αs, α∨

s ⟩ = 2, ⟨αs, α∨
t ⟩ = −1, ⟨αt, α∨

s ⟩ = −2,
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and ms,t = 4. We claim that

(2.24) pHsts =

{
Hsts +Hs if p = 2;

Hsts if p ̸= 2.

In fact, for any field k, Bk
sts is a direct summand of Bk

(s,t,s), and we have

chD(B
k
(s,t,s)) = Hs ·Ht ·Hs = Hsts +Hs.

Using also Corollary 2.44, we deduce that for any p we have
pHsts ∈ {Hsts, Hsts +Hs}.

To determine what is the correct solution between the two options, one should
determine if Bk

s is a direct summand of Bk
(s,t,s) or not. For that we consider the

double leaves basis of Hom•(Bk
(s,t,s),B

k
s), see Theorem 2.30. In this case the natural

choices lead to the basis consisting of the diagrams

•
ts s

s

,
• •

ts s

s

,
• ••
•

ts s

s

and
•
•
ts s

s

,

of respective degrees 0, 2, 4 and 2. Hence Hom(Bk
(s,t,s),B

k
s) is 1-dimensional, and

spanned by the diagram

•
ts s

s

.

Applying the autoequivalence ι of Lemma 2.20, we deduce that Hom(Bk
s,B

k
(s,t,s)) is

also 1-dimensional, and spanned by the diagram

•
ts s

s

.

These considerations show that any composition of morphisms

(2.25) Bk
s → Bk

(s,t,s) → Bk
s

is a multiple of the morphism

(2.26) αt .

To decide wether Bk
s is a direct summand of Bk

(s,t,s), we need to determine if the

identity morphism can appear as a composition (2.25) or, in other words, if it is a
multiple of (2.26). Now we observe that

∂s(αt) = ⟨αt, α∨
s ⟩ = −2.

The same computation as in (2.13) therefore shows that the morphism (2.26) equals
−2 id. Of course, if p ̸= 2 then id is a multiple of this morphism, but if p = 2 this
is not the case, which justifies (2.24).
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Remark 2.47. See [Ac, Exercise 7.7.7] for a geometric computation of the
same p-Kazhdan–Lusztig element. See [JW, §5.1] for a slightly different way of
performing this computation, based on a more systematic method of computation
of the p-canonical basis. (The main ingredient of this method will be discussed in
Chapter 5.)

2.15.2. Type Ã1. Consider now the Cartan matrix of type Ã1, given by

A =

(
2 −2
−2 2

)
.

We will denote by s and s0 the elements of S; then W is the infinite dihedral
group with generators s and s0. We are particularly interested in the element
s0ss0s ∈ W. Let k be a field, and p be its characteristic. By Exercise 2.14 we have
pHs0s

= Hs0s
= Hs0

Hs; in other words, Bk
(s0,s)

is indecomposable. A straightfor-

ward computation shows that

Hs0
HsHs0

Hs = Hs0ss0s
+ 2Hs0s

.

As in §2.15.1, this implies that pHs0ss0s is either Hs0ss0s + 2Hs0s (if Bk
(s0,s,s0,s)

is indecomposable), or Hs0ss0s
+Hs0s

(if Bk
(s0,s,s0,s)

∼= Bk
s0ss0s ⊕ Bk

s0s), or Hs0ss0s

(if Bk
(s0,s,s0,s)

∼= Bk
s0ss0s ⊕ (Bk

s0s)
⊕2). What we have to determine is therefore the

multiplicity of Bk
(s0,s)

as a direct summand of Bk
(s0,s,s0,s)

.

Using e.g. the light leaves basis, one sees that End(Bk
(s0,s)

) = k · id. One can

therefore consider the bilinear form

(2.27) Hom(Bk
(s0,s,s0,s)

,Bk
(s0,s)

)×Hom(Bk
(s0,s)

,Bk
(s0,s,s0,s)

)→ End(Bk
(s0,s)

) = k

given by (g, f) 7→ g ◦ f . Since no composition Bk
s0s → Bk

s0ss0s → Bk
s0s can be

nonzero, we see that the multiplicity of Bk
(s0,s)

as a direct summand of Bk
(s0,s,s0,s)

is the rank of (2.27).
Using the light leaves basis one can check that Hom(Bk

(s0,s,s0,s)
,Bk

(s0,s)
) has

dimension 2, and is spanned by

p1 := •
s0s0

s0

s s

s

and p2 := •
s s

s

s0 s0

s0

.

Applying ι, we deduce that Hom(Bk
(s0,s)

,Bk
(s0,s,s0,s)

) also has dimension 2, and is

spanned by

i1 := •
s0s0

s0

s s

s

and i2 := •
s s

s

s0 s0

s0

.

We next compute the compositions between these morphisms. First, using the same
considerations as in §2.15.1 and the fact that ∂s(αs0) = −2 we find that

p1 ◦ i1 = −2 id, p2 ◦ i2 = −2 id .
On the other hand we have

p2 ◦ i1 = •
• = id,
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and similarly p1 ◦ i2 = id. Hence the matrix of our bilinear form (2.27) in the bases
(p1, p2) and (i1, i2) is (

−2 1
1 −2

)
,

whose determinant is 3. If p ̸= 3, this matrix has rank 2, so that Bk
(s0,s,s0,s)

∼=
Bk
s0ss0s ⊕ (Bk

s0s)
⊕2, and hence

pHs0ss0s
= Hs0ss0s

.

But if p = 3, the matrix has rank 1, so that Bk
(s0,s,s0,s)

∼= Bk
s0ss0s ⊕Bk

s0s, and hence

3Hs0ss0s
= Hs0ss0s

+Hs0s
.

Remark 2.48. See [JW, §5.3] for another method of computation of the p-

canonical basis in type Ã1, based on the geometric Satake equivalence (see §5.1 in
Chapter 3).

2.15.3. More examples. See [JW] for a discussion of most of the known exam-
ples of description of the p-canonical basis. The situation is particularly interesting
in type A. In this case, it is known by [W2, Theorem 1.3] that the p-canonical
basis coincides with the Kazhdan–Lusztig basis in types A1, · · · ,A6. In type A7,
the bases coincide if p ̸= 2, but they differ when p = 2. The first examples of
this phenomenon were found by Braden using geometric considerations, see the
appendix to [W2]. We will discuss a diagrammatic version of this computation
in Example 1.10 in Chapter 5, following [HW]. A complete description of the
2-canonical basis in type A7 is given in [JW, §5.6].

As far as we know, the p-canonical bases in types Am with m ≥ 8 are not
known completely. In particular, an example by P. Polo shows that the 3-canonical
basis differs from the Kazhdan–Lusztig basis in type A11, but it is not known if
this is the first instance for p = 3.

In Chapter 5 we will discuss a more efficient way to perform computations of
the p-canonical basis, and (following [W3]) a way to generate examples of pairs
(p,m) such that the p-canonical basis and the Kazhdan–Lusztig basis differ in type
Am−1.

3. Abe’s algebraic incarnation of the diagrammatic Hecke category

In this section we explain a different approach to the Hecke category, introduced
by N. Abe in [Ab1]. This definition is closer to Soergel’s original definition, and
also solves the deficiencies of the latter approach when the representation under
consideration is not reflection faithful.

3.1. Definition.
3.1.1. Setup. The starting data for Abe’s construction are as follows. One

considers a Coxeter system (W,S), a noetherian integral domain k, and a triple(
V, (αs : s ∈ S), (α∨

s : s ∈ S)
)

where V is a free k-module11 of finite rank, (αs : s ∈ S) is a collection of elements in
V ∗ := Homk(V,k), and (α∨

s : s ∈ S) is a collection of elements in V , which satisfy
the following conditions:

11Here, in order to make the comparison by Soergel’s and Elias–Williamson’s approaches
easier, we deviate from Abe’s notation: his “V ” corresponds to V ∗ here.
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(1) for any s ∈ S we have ⟨αs, α∨
s ⟩ = 2;

(2) the assignment

s 7→
(
v 7→ v − ⟨αs, v⟩α∨

s

)
defines an action of W on V ;

(3) for any s ∈ S, α∨
s : V ∗ → k is surjective and αs ̸= 0.

Here Condition (1) implies Condition (3) in case 2 is invertible in k. Condition (3)
ensures that Lemma 2.17 applies for any s ∈ S. Of course, any realization in the
sense of §2.2.1 which satisfies Demazure surjectivity gives rise to such data.

In this setting we will denote by R the symmetric algebra of V ∗ over k (a
noetherian integral domain), which we will consider as a Z-graded k-algebra where
V ∗ is concentrated in degree 2. We will also set

Q := R

[
1

w(αs)
: s ∈ S, w ∈ W

]
.

This localization makes sense thanks to the second part of Condition (3); it is en-
dowed with a natural Z-grading. (Note that w(αs) only depends on the reflection
wsw−1, up to an invertible constant; see [Ab1, Lemma 2.1].) The W-action on
V from Condition (2) induces actions on R and on Q by graded algebra automor-
phisms.

Remark 3.1. In [Ab1], Q is defined as the fraction field of R; however, with
this definition it is not clear that the bimodulesMI andM

I introduced above [Ab1,
Lemma 2.4] are graded. As explained to us by N. Abe, the modified definition of Q
considered above solves this difficulty, so that all the statements from [Ab1] hold
true after this modification. But in fact the two possible definitions of Q lead in the
end to equivalent categories DAbe

BS (W, V ) as in §3.1.5 below. Indeed there exists a
natural fully faithful functor from the category C′ of §3.1.2 to its analogue defined
with Q replaced by the field of fractions of R, which restricts to a fully faithful
functor on DAbe

BS (W, V ).

3.1.2. The category C′. Given the data above, Abe defines a category C′ with

• objects the triples (M, (Mw
Q : w ∈ W), ξM ) where M is a graded R-

bimodule, each Mw
Q is a graded (R,Q)-bimodule such that

(3.1) m · f = w(f) ·m for any f ∈ R and m ∈Mw
Q ,

this bimodule being 0 for all but finitely many w’s, and

ξM :M ⊗R Q
∼−→
⊕
w∈W

Mw
Q

is an isomorphism of graded (R,Q)-bimodules;
• morphisms from (M, (Mw

Q : w ∈ W), ξM ) to (N, (Nw
Q : w ∈ W), ξN ) given

by morphisms of graded R-bimodules φ :M → N such that

ξN ◦ (φ⊗R Q) ◦ ξ−1
M (Mw

Q ) ⊂ Nw
Q

for any w ∈ W.

Often the data of the collection (Mw
Q : w ∈ W) and the isomorphism ξM will

be omitted, and the triple (M, (Mw
Q : w ∈ W), ξM ) will be simply denoted M .

Note that if (M, (Mw
Q : w ∈ W), ξM ) ∈ C′, (3.1) and the isomorphism ξM imply

that any element w(αs) acts invertibly on the left on M ⊗RQ, so that this module
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becomes a graded Q-bimodule. Similarly eachMw
Q has a natural structure of graded

Q-bimodule (such that the formula in (3.1) holds for any f ∈ Q), and ξM is an
isomorphism of graded Q-bimodules.

These considerations allow to define a monoidal product ⋆ on C′. Namely, if
M = (M, (Mw

Q : w ∈ W), ξM ) and N = (N, (Nw
Q : w ∈ W), ξN ) are objects of

C′, the objectM ⋆N is defined as the triple consisting of M ⊗R N , the collection
defined by

(M ⊗R N)wQ =
⊕
x,y∈W
xy=w

Mx
Q ⊗Q N

y
Q

(where we use the left Q-module structure on Ny
Q explained above), and the iso-

morphism

(M ⊗RN)⊗RQ =M ⊗R (N ⊗RQ) = (M ⊗RQ)⊗Q (N ⊗RQ) ∼=
⊕
w∈W

(M ⊗RN)wQ

induced by ξM and ξN (where in the second identification we use the left Q-module
structure on N ⊗R Q explained above).

The unit for this monoidal product is the object Re with underlying graded
bimodule R (with the obvious structure), objects ((Re)

w
Q : w ∈ W) defined by

(Re)
w
Q =

{
Q if w = e;

0 otherwise,

and the obvious morphism ξR.

Remark 3.2. The assignment (M, (Mw
Q : w ∈ W), ξM ) 7→M defines a faithful

functor

C′ → R-ModZ-R.

This functor is however not full in general.

3.1.3. The category C. Next, Abe considers the full subcategory C of C′ con-
sisting of triples (M, (Mw

Q : w ∈ W), ξM ) such that M is finitely generated as an
R-bimodule and flat as a right R-module. These conditions have the following
consequence.

Lemma 3.3. If (M, (Mw
Q : w ∈ W), ξM ) ∈ C, then M is a finitely generated as

a left R-module and as a right R-module.

Proof. Since M is flat as a right R-module, the natural morphism

M →M ⊗R Q

is injective. Now, ξM allows to identify the right-hand side with
⊕

w∈W Mw
Q , and

in this sum only finitely many terms are nonzero. For any w ∈ W , the image of
M in Mw

Q is finitely generated as an R-bimodule, hence as a left R-module and

as a right R-module in view of (3.1). Since M embeds in a direct sum of finitely
many such modules, it is also finitely generated as a left R-module and as a right
R-module. □

This property implies that the monoidal product ⋆ restricts to a monoidal
product on C. In fact, if M = (M, (Mw

Q : w ∈ W), ξM ) and N = (N, (Nw
Q : w ∈

W), ξN ) belong to C, thenM⊗RN is finitely generated as a right R-module because
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M and N are, hence a fortiori it is finitely generated as an R-bimodule. And if
X ↪→ Y ↠ Z is an exact sequence of left R-modules, then so is

N ⊗R X → N ⊗R Y → N ⊗R Z

because N is flat as a right R-module, and then so is

(M ⊗R N)⊗R X → (M ⊗R N)⊗R Y → (M ⊗R N)⊗R Z

since M is flat as a right R-module; this proves that M ⊗R N is flat as a right
R-module.

For any r ∈ Z, the shift-of-grading functor (r) induces in the natural way
an autoequivalence of C′ which stabilizes C. This autoequivalence will again be
denoted (r).

3.1.4. Some objects. For any s ∈ S, we define the object BAbe
s as follows. The

underlying graded R-bimodule is R ⊗Rs R(1). Since e and s act differently on R,
there exists at most one decomposition

(R⊗Rs R)⊗R Q ∼= (BAbe
s )eQ ⊕ (BAbe

s )sQ

such that the condition (3.1) is satisfied on (BAbe
s )eQ and (BAbe

s )sQ. To prove that
such a decomposition exists, we will use the following lemma.

Lemma 3.4. Let δs ∈ V ∗ be such that ⟨δs, α∨
s ⟩ = 1. For any f ∈ R, in R⊗Rs R

we have

f · (δs ⊗ 1− 1⊗ s(δs)) = (δs ⊗ 1− 1⊗ s(δs)) · f,
f · (δs ⊗ 1− 1⊗ δs) = (δs ⊗ 1− 1⊗ δs) · s(f).

Proof. It suffices to prove the formulas when f ∈ V ∗. Moreover, using (2.10)
and the fact that the formulas are obvious if f ∈ (V ∗)s, it suffices to consider the
case f = δs. Now

δs · (δs ⊗ 1− 1⊗ s(δs)) = (δ2s ⊗ 1− δs ⊗ s(δs))
= δs ⊗ (δs + s(δs))− 1⊗ s(δs)δs − δs ⊗ s(δs) = (δs ⊗ 1− 1⊗ s(δs)) · δs

where the second equality uses (2.11), and similarly we have

δs · (δs ⊗ 1− 1⊗ δs) = (δ2s ⊗ 1− δs ⊗ δs)
= δs ⊗ (δs + s(δs))− 1⊗ s(δs)δs − δs ⊗ δs = (δs ⊗ 1− 1⊗ δs) · s(δs),

which proves the desired formula. □

From Lemma 2.17 we obtain that R⊗RsR is free of rank 2 as a right R-module,
with a basis consisting of (δs ⊗ 1) and (1⊗ 1). Hence (R ⊗Rs R)⊗R Q has rank 2
as a right Q-module, with the same basis. The matrix of the family

(δs ⊗ 1− 1⊗ s(δs), δs ⊗ 1− 1⊗ δs)

in this basis is (
1 1

−s(δs) −δs,

)
whose determinant is s(δs) − δs = −αs, hence it is invertible; it follows that this
family is also a basis, or in other words that

(R⊗Rs R)⊗R Q = (δs ⊗ 1− 1⊗ s(δs)) ·Q⊕ (δs ⊗ 1− 1⊗ δs) ·Q.
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Here Lemma 3.4 shows that the first, resp. second, factor satisfies the condition
required for (BAbe

s )eQ, resp. (B
Abe
s )sQ. Hence we can set

(BAbe
s )eQ = (δs ⊗ 1− 1⊗ s(δs)) ·Q, (BAbe

s )sQ = (δs ⊗ 1− 1⊗ δs) ·Q.

We will denote by us the vector (1⊗ 1) ∈ R⊗Rs R.
Once these objects are defined, we can extend the definition to expressions: if

w = (s1, · · · , sr) is an expression we set

BAbe
w := BAbe

s1 ⋆ · · · ⋆ BAbe
sr .

The underlying graded R-bimodule is

(R⊗Rs1 R)⊗R · · · ⊗R (R⊗Rsr R)(r) = R⊗Rs1 · · · ⊗Rsr R(r).

In case w is the empty word, this is to be interpreted as the unit object Re. We
denote by uw the vector us1 ⊗ · · · ⊗ usr .

3.1.5. Definition. We can finally define12 the category DAbe
BS (W, V ) as the mo-

noidal k-linear category with

• objects the pairs (w, n) where w is an expression for (W,S) and n ∈ Z;
• morphisms from (w, n) to (w′, n′) given by HomC(B

Abe
w (n),BAbe

w′ (n′)).

This category admits a natural monoidal product, defined on objects by (w, n) ⋆
(w′, n′) = (ww′, n+ n′), and on morphisms using the obvious identification

BAbe
w ⋆ BAbe

y = BAbe
wy .

By construction there exists a fully faithful monoidal functor

(3.2) DAbe
BS (W, V )→ C

sending (w, n) to BAbe
w (n). The autoequivalence (1) of C induces an autoequivalence

of DAbe
BS (W, V ), again denoted (1), and defined on objects by (w, n)(1) = (w, n +

1). We will also denote by DAbe,⊕
BS (W, V ) the additive hull of DAbe

BS (W, V ). The

functor (3.2) (and the induced functor on DAbe,⊕
BS (W, V )) will usually be omitted

from notation, and DAbe
BS (W, V ) and DAbe,⊕

BS (W, V ) will usually be identified with
their images in C.

In case k is a complete local domain, we will denote by DAbe(W, V ) the full
subcategory of C whose objects are direct sums of direct summands of objects

BAbe
w (n); this category identifies with the Karoubian closure of DAbe,⊕

BS (W, V ). It is
not difficult to show that this category is Krull–Schmidt.

3.2. Abe’s assumption. In order to analyze the categories DAbe
BS (W, V ) and

DAbe(W, V ), one needs one more assumption.

Assumption 3.5. For any pair (s, t) ∈ S2◦ , there exists a morphism

BAbe
(s,t,··· ) → BAbe

(t,s,··· )

in C (where each word has length ms,t) which sends the vector u(s,t,··· ) to u(t,s,··· ).

12Of course this category depends on the choice of Coxeter generators S. However it depends
only on the W-action on V , not on the choice of roots and coroots.
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In this subsection we explain how this condition can be checked in practice.
First, Abe explains in [Ab1] that this assumption holds if k is a field and

moreover, for any s, t as above, the representation of the subgroup ⟨s, t⟩ on V
is reflection faithful. If fact, in this case, by Theorem 1.16 one can consider the
indecomposable bimodule Bbim

ws,t
associated with the longest element ws,t in ⟨s, t⟩.

We have embeddings as direct summands

Bbim
ws,t
⊂ Bbim

(s,t,··· ) and Bbim
ws,t
⊂ Bbim

(t,s,··· ).

By (1.13), the image of Bbim
ws,t

in Bbim
(s,t,··· ) contains u(s,t,··· ), and its image in Bbim

(t,s,··· )
contains u(t,s,··· ). As a consequence, the composition

Bbim
(s,t,··· ) → Bbim

ws,t
→ Bbim

(t,s,··· )

where the first map is a projection on the direct summand Bbim
ws,t

is a morphism of
graded R-bimodules sending u(s,t,··· ) to u(t,s,··· ). By Exercise 2.18 this morphism

defines a morphism BAbe
(s,t,··· ) → BAbe

(t,s,··· ) in C, which proves the desired claim.

A more satisfactory solution to this problem is given in [Ab3], whose main
result is the following proposition.

Proposition 3.6. Let (s, t) ∈ S2◦ . If[
ms,t

k

]
s,t

=

[
ms,t

k

]
t,s

= 0

for any k ∈ {1, · · · ,ms,t − 1}, then there exists a morphism

BAbe
(s,t,··· ) → BAbe

(t,s,··· )

in C (where each word has length ms,t) which sends the vector u(s,t,··· ) to u(t,s,··· ).

In particular, given a realization (in the sense of §2.2.1) which satisfies De-
mazure surjectivity and (2.4), we obtain the data needed to define Abe’s category,
and Assumption 3.5 is satisfied.

3.3. The character map. If Q′ is the fraction field of R, it is clear from
definitions that the assignment

[M ] 7→
∑
w∈W

dimQ′(Mw
Q ⊗Q Q′) · w

defines an algebra morphism

[DAbe,⊕
BS (W, V )]⊕ → H(W,S)/v · H(W,S) = Z[W].

One of the first important results of [Ab1] is that this morphism can be “lifted” to
an algebra morphism

[DAbe,⊕
BS (W, V )]⊕ → H(W,S),

provided Assumption 3.5 is satisfied.
More explicitly, for M ∈ C and w ∈ W we will denote by Mw the image of M

under the composition

M ↪→M ⊗R Q
ξM−−→

⊕
y∈W

My
Q →Mw

Q

where the rightmost map is projection on the factor parametrized by w. Then Mw

is a graded R-bimodule. Next, given a finitely generated free graded R-module M
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we denote by grk(M) ∈ Z[v, v−1] its graded rank, with the following normalization:
if M admits a homogenous basis (mi : i ∈ I), then

grk(M) =
∑
i∈I

v−deg(mi)

where deg(mi) is the degree of mi. With this convention we have

grk(M(1)) = v · grk(M).

The following statement is proved in [Ab1, Theorem 3.4]. (For a brief discus-
sion of the proof, see §3.4 below.)

Proposition 3.7. Suppose that Assumption 3.5 is satisfied. For any expression
x = (s1, · · · , sr) and any w ∈ W, the graded R-bimodule (BAbe

x )w is free as a graded
left module. Its graded rank is the coefficient of Hw in

Hx = Hs1
· · ·Hsr

.

Proposition 3.7 allows to define a map

chAbe : [D
Abe,⊕
BS (W, V )]⊕ → H(W,S)

by the formula

chAbe([M ]) =
∑
w∈W

grk(Mw) ·Hw,

where we omit the functor (3.2). This proposition also implies that

chAbe([B
Abe
x (n)]) = vn ·Hx

for any n ∈ Z and any expression x. Since the classes [BAbe
x (n)] generate the

Z-module [DAbe,⊕
BS (W, V )]⊕, it follows that chAbe is an algebra morphism.

3.4. Indecomposable objects and categorification theorem. In this sub-
section we assume that Assumption 3.5 is satisfied, and that k is a complete local
domain. The next important result of [Ab1] is a classification of indecomposable
objects in DAbe(W, V ) under these assumptions.

Theorem 3.8. For any w ∈ W there exists a unique indecomposable object
BAbe
w ∈ DAbe(W, V ) which satisfies

(BAbe
w )x ̸= 0 ⇒ x ≤ w

and BAbe
w
∼= R(ℓ(w)) as left R-modules. Moreover:

• the assignment (w, n) 7→ BAbe
w (n) defines a bijection between W × Z and

the set of isomorphism classes of indecomposable objects in DAbe(W, V );
• for any reduced expression w for an element w ∈ W, there exist nonneg-
ative integers c

w
y,n such that

BAbe
w
∼= BAbe

w ⊕
⊕

y∈W,y<w
n∈Z

BAbe
y (n)⊕c

w
y,n

and c
w
y,n = c

w
y,−n for any n ∈ Z.

From this theorem, we easily deduce the following analogue of Corollary 1.18
(see [Ab1, Theorem 4.3]).
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Corollary 3.9. The morphism chAbe is an isomorphism. Moreover, for any
w ∈ W we have

(3.3) chAbe([B
Abe
w ]) ∈ Hw +

∑
y<w

Z≥0[v, v
−1] ·Hy.

The proofs of Proposition 3.7 and Theorem 3.8 rely on the construction of
a certain family of morphisms which adapts to this setting the construction of
Libedinsky’s “light leaves basis,” see [Li1]. In particular Abe proves in this way
that, for any expressions w and y, the space⊕

n∈Z
HomDAbe(W,V )(B

Abe
w ,BAbe

y (n))

is free as a graded left R-module and as a graded right R-module, he gives a
formula for its graded rank (see [Ab1, Theorem 4.6]), and constructs an explicit
basis (see [Ab1, Theorem 5.5]).

Remark 3.10. (1) The obvious analogue of Lemma 1.21 holds in the cat-
egory DAbe(W, V ) under our present assumptions, with the same proof.

(2) In [Ab2], Abe develops an analogue of part of the theory of singular
Soergel bimodules from [W1] (see Remarks 1.19 and 2.27).

3.5. Relation with the Elias–Williamson category. Consider a noether-
ian integral domain k, and a balanced realization(

V, (αs : s ∈ S), (α∨
s : s ∈ S)

)
of (W,S) over k in the sense of §2.2.1. We assume furthermore that this realization
satisfies Demazure surjectivity, together with the technical conditions considered
in §2.4. We can therefore consider the category DBS(W, V ), and also the category
DAbe

BS (W, V ),
The following result is [Ab3, Theorem 3.15].

Theorem 3.11. Under the assumptions above, there exists a canonical equiva-
lence of monoidal categories

DBS(W, V )
∼−→ DAbe

BS (W, V ).

The proof of Theorem 3.11 is similar to that of Theorem 2.41. It proceeds
in two steps. First, one needs to define a monoidal functor from DBS(W, V ) to
DAbe

BS (W, V ). This functor will send Bw(n) to BAbe
w (n) for any expression w and

n ∈ Z; one therefore only needs to specify the images of the generating morphisms,
and verify that these images satisfy the required relations. As for Theorem 3.11,
the image of a polynomial is multiplication by this polynomial on R, and the image
of

•
s

, resp. •
s

, resp.

s

s s

, resp.
s

ss

is given by

f ⊗ g 7→ fg, resp. f 7→ fδs ⊗ 1− f ⊗ s(δs),
resp. f ⊗ g 7→ f ⊗ 1⊗ g, resp. f ⊗ g ⊗ h 7→ f∂s(g)⊗ h

for f, g, h ∈ R, where δs is as in Lemma 3.4. (To justify that these morphisms
indeed define morphisms in DAbe

BS (W, V ), one can work in the full subcategory



3. ABE’S ALGEBRAIC INCARNATION OF THE DIAGRAMMATIC HECKE CATEGORY 141

DAbe
BS ({e, s}, V ) and apply Exercise 2.18.) For (s, t) ∈ S2◦ , the image of the 2ms,t-

valent morphism attached to (s, t) is the morphism constructed in the proof of
Proposition 3.6 in [Ab3]. The verification that these morphisms satisfy the re-
quired relations is essentially done in [EW3]; see [Ab3, Lemma 3.14] for details.
(The verification of the Zamolodchikov relation partly relies on computer com-
putations; see [EW3, §3.5].) Finally, one needs to prove that this functor is an
equivalence of categories; this follows from the fact that by construction it sends
the bases of morphism spaces in DBS(W, V ) considered in §2.10 to the similar bases
in DAbe

BS (W, V ) mentioned in §3.4.
Of course, in case k is a complete local domain, the equivalence of Theorem 3.11

induces an equivalence of monoidal categories

D(W, V )
∼−→ DAbe(W, V )

which, for any w ∈ W, sends the object Bw to BAbe
w .

Remark 3.12. Composing the equivalence of Theorem 3.11 with the functor
of Remark 3.2 we obtain a monoidal functor

DBS(W, V )→ R-ModZ-R

sending, for any expression w = (s1, · · · , sr), the object Bw to the graded bimodule

R⊗Rs1 · · · ⊗Rsr R(r),

which solves the problem mentioned in Remark 2.42 under our present assumptions.





CHAPTER 3

Parity complexes

The formalism of parity complexes is due to Juteau–Mautner–Williamson,
see [JMW2]. This formalism is extremely flexible, and can be adapted in many dif-
ferent settings; it is however difficult to explain it in a generality that encompasses
all the known applications. Here we will present this theory in a setting that covers
essentially all the sheaf-theoretic contexts where this formalism has found appli-
cations. For a presentation in a more abstract setting, which applies to different
situations but not to all the contexts considered here, see e.g. [AR4].

The considerations in this chapter will involve the theory of perverse sheaves.
For a very nice study of this theory (together with some of its main application to
Representation Theory) we refer to the excellent book [Ac].

1. Motivation: Bott–Samelson sheaves on flag varieties

Before developing the general theory, we explain how one can compute the di-
mensions of stalks of intersection cohomology complexes with rational coefficients
using parity considerations. This result was first proved by Kazhdan–Lusztig [KL2],
but the presentation here follows Springer [Sp1]. This example was one of the mo-
tivations for developing the general theory of parity complexes.

1.1. Characters of Bruhat constructible sheaves on flag varieties. We
fix a complex connected reductive algebraic group G , and choose a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. (More generally, all the considerations in this
section apply when G is a Kac–Moody group over C; see REF below for details.)
We will denote by W = NG (T )/T the Weyl group of (G ,T ) and by S ⊂ W the
system of Coxeter generators associated with the choice of B.

The flag variety of G is the projective complex algebraic variety

X := G /B.

The Bruhat decomposition G =
⊔
w∈W BwB induces a stratification

(1.1) X =
⊔
w∈W

Xw with Xw := BwB/B ≃ Aℓ(w)
C for w ∈ W.

(Here ℓ is the length function inW, with respect to the system of Coxeter generators
S).

Let k be a field, and let

Db
(B)(X ,k)

be the derived category of Bruhat-constructible complexes of k-sheaves on X ; in
other words the full subcategory of the bounded derived category of the category
of sheaves of k-vector spaces on X consisting of complexes F such that the sheaf
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Hi(F|BwB/B) is constant (or, equivalently, locally constant) for any w ∈ W and
i ∈ Z.

Recall the Hecke algebra attached to (W,S), see Definition 4.1 in Chapter 1.
Out of objects of Db

(B)(X ,k) one can construct interesting elements in H(W,S) as

follows: for F ∈ Db
(B)(X ,k) we set

ch(F) =
∑
w∈W
k∈Z

dimk
(
H−ℓ(w)−k(FwB)

)
· vkHw ∈ H(W,S)

(where FwB denotes the stalk of the complex F at the point in X associated
with w, a complex of k-vector spaces). Note that ch(F [1]) = v ch(F) for any F in
Db

(B)(X ,k).

1.2. Computation for Bott–Samelson sheaves. For s ∈ S, we will denote
by Ps ⊂ G the associated minimal standard parabolic subgroup, and consider the
associated partial flag variety

X s := G /Ps.

If we set Ws := {w ∈ W | ℓ(ws) > ℓ(w)}, then Ws is a set of representatives for
the quotient W/{e, s}, and the Bruhat decomposition provides a stratification

X s =
⊔

w∈Ws

X s
w with X s

w := BwPs/Ps ≃ Aℓ(w)
C for w ∈ Ws.

We will denote by

Db
(B)(X

s,k)

the derived category of complexes of sheaves of k-vector spaces on X s constructible
with respect to this stratification.

The natural projection morphism πs : X →X s induces (derived) functors

(πs)∗ : Db
(B)(X ,k)→ Db

(B)(X
s,k), (πs)

∗ : Db
(B)(X

s,k)→ Db
(B)(X ,k).

(We also have !-versions of these functors, but we have canonical identifications
(πs)∗ = (πs)! and (πs)

! = (πs)
∗[2] since πs is proper and smooth.) For s1, · · · , sn ∈

S, we set

E(s1, · · · , sn) = (πsn)
∗(πsn)∗ · · · (πs1)∗(πs1)∗kXe

[n],

We will call such complexes the Bott–Samelson sheaves.

Proposition 1.1. For any s1, · · · , sn ∈ S and w ∈ W, we have

Hi
(
E(s1, · · · , sn)wB

)
= 0 unless i ≡ n (mod 2).

Moreover, we have

ch
(
E(s1, · · · , sn)

)
= Hs1 · · ·Hsn = (Hs1 + v) · · · (Hsn + v).

Proposition 1.1 is a direct consequence of the next lemma.

Lemma 1.2. Let F ∈ Db
(B)(X ,k) be such that Hk(F) = 0 unless k is even,

and let s ∈ S. Then Hk((πs)
∗(πs)∗F) = 0 unless k is even, and

ch
(
(πs)

∗(πs)∗F
)
= ch(F) · v−1Hs.
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Proof. For y ∈ W, we have

Hk
(
((πs)

∗(πs)∗F)yB

)
= Hk

(
((πs)∗F)yPs

)
= Hk

(
π−1
s (yPs),F|π−1

s (yPs)

)
.

We distinguish two cases.
First case: ys > y. Fix g ∈Ps. Then we have

yxB ∈

{
BysB/B if x /∈ B;

ByB/B if x ∈ B.

Now, π−1
s (yPs) = {ygB : g ∈Ps} ≃Ps/B ≃ P1

C. We use the long exact sequence
associated with the standard distinguished triangle

j!j
∗ → id→ i∗i

∗ [1]−→

for the decomposition of Ps/B into the closed subset B/B (whose embedding in
Ps/B is denoted i) and the open subset Ps/B ∖ (B/B) (whose embedding in
Ps/B is denoted j, and which we identify with A1

C) to obtain an exact sequence

· · · → Hkc (A1,F|A1
C
)→ Hk

(
((πs)

∗(πs)∗F)yB

)
→ Hk(pt,F|pt)→ · · · .

Note that F|A1
C
, resp. F|pt, is constant with value FysB, resp. FyB. Now we have

Hkc (A1
C,F|A1

C
) ≃ Hk−2(FysB) because

Hkc (A1,kA1
C
) =

{
k if k = 2;

0 otherwise.

Similarly, we have Hk(pt,F|pt) ≃ Hk(FyB) and hence

dimHk
(
((πs)

∗(πs)∗F)yB

)
=

{
0 if k is odd;

dimHk−2(FysB) + dimHk(FyB) if k is even.

Second case: ys < y. In this case also we have π−1
s (yPs) = π−1

s (ysPs) =
{ysgB : g ∈Ps} ≃Ps/B ≃ P1, with

ysgB ∈

{
ByB/B if x /∈ B

BysB/B if x ∈ B.

The same considerations as above show that we have

dimHk
(
((πs)

∗(πs)
∗F)yB

)
=

{
0 if k is odd,

dimHk−2(FyB) + dimHk(FysB) if k is even.

Now we consider the Hecke algebra side. One can easily check that

Hw(v
−1Hs + 1) =

{
v−1Hws +Hw if ws > w;

v−2Hw + v−1Hws if ws < w.
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Using this fact, one sees that ch(F) · (Hs + v)v−1 is equal to∑
w∈W
k∈Z

dimH−ℓ(w)−k(FwB)vkHw

 · (v−1Hs + 1)

=
∑
w∈W
ws>w
k∈Z

(
dimH−ℓ(w)−k(FwB) · vk−1Hws + dimH−ℓ(w)−k(FwB) · vkHw

)

+
∑
w∈W
ws<w
k∈Z

(
dimH−ℓ(w)−k(FwB) · vk−2Hw + dimH−ℓ(w)−k(FwB) · vk−1Hws

)

=
∑
y∈W
ys>y
k∈Z

(
dimH−ℓ(y)−k(FyB)vk + dimH−ℓ(ys)−k(FysB)vk−1

)
·Hy

+
∑
y∈W
ys<y
k∈Z

(
dimH−ℓ(y)−k(FyB)vk−2 + dimH−ℓ(ys)−k(FysB)vk−1

)
·Hy

=
∑
y∈W
ys>y
j∈Z

(
dimH−ℓ(y)−j(FyB) + dimH−ℓ(y)−j−2(FyB)

)
· vjHy

+
∑
y∈W
ys<y
j∈Z

(
dimH−ℓ(y)−j−2(FyB) + dimH−ℓ(y)−j(FysB)

)
· vjHy,

which coincides with ch
(
(πs)

∗(πs)
∗F
)
by the above calculations. □

1.3. Application: computation of stalks of characteristic-0 intersec-
tion cohomology complexes on X . In this subsection we choose k = Q. For
w ∈ W, we consider the simple perverse Q-sheaf

ICw := jw!∗(QXw
[ℓ(w)]) ∈ Perv(B)(X ,Q),

where jw : Xw ↪→X denotes the embedding.
The main result of this section is the following.

Theorem 1.3. We have Hk(ICw) = 0 unless k ≡ ℓ(w) (mod 2). Moreover,
for any w ∈ W we have

ch(ICw) = Hw.

Proof. The stalks condition in the characterization of intersection cohomology
complexes shows that ch(ICw) ∈ Hw +

∑
y<x vZ[v]Hy. Below we will prove the

parity vanishing condition and the fact that ch(ICw) is self-dual with respect to the
Kazhdan–Lusztig involution; together, these facts will show that ch(ICw) satisfies
the properties that characterize Hw.

For any s ∈ S, since the morphism πs is smooth of relative dimension 1, with
connected fibers, the functor (πs)

∗ sends intersection cohomology complexes to
intersection cohomology complexes, see [BBD, p. 110]. On the other hand, since πs
is proper the functor (πs)

∗ sends intersection cohomology complexes to direct sums
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of cohomological shifts of intersection cohomology complexes1 by the Decomposition
Theorem, see [BBD, Théorème 6.2.5]. (Here we use our assumption that the field
of coefficients has characteristic 0.)

Now, choose a reduced expression w = s1 · · · sn. The considerations above show
that E(s1, · · · , sn) is a direct sum of cohomological shifts of intersection cohomology
complexes. We have

E(s1, · · · , sn)|Xw
≃ Q

Xw
[ℓ(w)],

and E(s1, · · · , sn) is supported on Xw; hence ICw is a direct summand of the
complex E(s1, · · · , sn). In view of Proposition 1.1, this shows that Hk(ICw) = 0
unless k has the parity of ℓ(w).

Finally we show by induction on w that ch(ICw) is self-dual with respect to
the Kazhdan–Lusztig involution. This claim is obvious if w = e. Now we assume
that ℓ(w) > 0, and that ch(ICy) is self-dual for any y ∈ W such that y < w.
Once again we choose a reduced expression w = s1 · · · sn. Proposition 1.1 shows
that ch(E(s1, . . . , sn)) is self dual. Now if D is the Verdier duality functor on
Db

(B)(X ,Q), then we have

D ◦ (πs)∗ = (πs)! ◦ D ∼= (πs)∗ ◦ D and D ◦ (πs)∗ = (πs)
! ◦ D ∼= (πs)

∗ ◦ D[2];
we deduce that

D(E(s1, · · · , sn)) ∼= E(s1, · · · , sn).
As explained above the complex E(s1, . . . , sn) is a direct sum of ICw and objects of
the form ICy[k] with k ∈ Z and y ∈ W satisfying y < w. By Verdier self-duality, for
each such y and k the multiplicity of ICy[k] as a direct summand of E(s1, . . . , sn)
is equal to that of ICy[−k]. This implies that ch(ICw) is self-dual, and finishes the
proof. □

2. Parity complexes

2.1. Preliminaries. We start with some general considerations in Homologi-
cal Algebra. Let k be a field, and let D be a k-linear triangulated category endowed
with a bounded t-structure whose heart will be denoted A, and whose cohomology
functors will be denoted H. Let X be an object of A, and denote by ⟨X⟩∆ the
triangulated subcategory of D generated by X.

Lemma 2.1. Assume that

End(X) = k and Hom(X,X[1]) = 0.

Then for Y in D the following conditions are equivalent:

(1) Y belongs to ⟨X⟩∆;
(2) for any n ∈ Z, the object Hn(Y ) is isomorphic to a direct sum of copies

of X.

Proof. Using appropriate truncation triangles, one can easily check by induc-
tion on the cardinality of {n ∈ Z | Hn(Y ) ̸= 0} that if each Hn(Y ) is isomorphic
to a direct sum of copies of X, then Y belongs to ⟨X⟩∆. To prove the converse,
it suffices to prove that if Y is an object such that each Hn(Y ) is isomorphic to a
direct sum of copies of X, and if we are given a distinguished triangle

Y → Z → X[m]
[1]−→

1An object of this form is called a semisimple complex.
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for some Z ∈ D and m ∈ Z, then each Hn(Z) is isomorphic to a direct sum of copies
of X. The long exact sequence of cohomology associated with this triangle shows
that

Hn(Z) ∼= Hn(Y )

unless n ∈ {−m,−m+1}. For these values of n, there is therefore nothing to prove.
Now, consider the following portion of this long exact sequence:

0→ H−m(Y )→ H−m(Z)→ X
f−→ H−m+1(Y )→ H−m+1(Z)→ 0.

If f = 0, then H−m+1(Y ) ∼= H−m+1(Z) and H−m(Z) is an extension of X by
H−m(Y ). By assumption H−m(Y ) is a direct sum of copies ofX; since Hom(X,X[1])
we then have H−m(Z) ∼= H−m(Y ) ⊕ X, so that the desired condition holds. On
the other hand if f ̸= 0, then since H−m+1(Y ) is a direct sum of copies of X
and since End(X) = k, f is the embedding of a direct summand. Then we have
H−m(Z) ∼= H−m(Y ), and H−m+1(Z) is isomorphic to a direct sum of copies of X.
The desired condition is again satisfied in this case, which finishes the proof. □

We continue with the setting above.

Lemma 2.2. Assume that

End(X) = k and Hom(X,X[2n+ 1]) = 0 for any n ∈ Z≥0.

Then for Y in D the following conditions are equivalent:

(1) Y belongs to ⟨X⟩∆ and Hm(Y ) = 0 for any m ∈ Z odd;
(2) there exist even integers n1, · · · , nr and an isomorphism

Y ∼=
r⊕
i=1

X[ni].

Proof. It is clear that if Y is isomorphic to a direct sum of even cohomological
shifts ofX, then Y belongs to ⟨X⟩∆ and Hm(Y ) = 0 for anym ∈ Z odd. Conversely,
we will prove that induction on the cardinality of {n ∈ Z | Hn(Y ) ̸= 0} that if Y
belongs to ⟨X⟩∆ and satisfies Hm(Y ) = 0 for any m ∈ Z odd, then Y is isomorphic
to a direct sum of even cohomological shifts of X. First, if this cardinality is 0
then Y = 0 and there is nothing to prove. Now, assume that this set is nonempty,
and choose m maximal such that Hm(Y ) ̸= 0. Then m is even, and we have a
truncation triangle

Z → Y → Hm(Y )[−m]
[1]−→

such that

Hn(Z) =

{
Hn(Y ) if n ̸= −m;

0 if n = −m.

By induction, Z is then isomorphic to a direct sum of even shifts of X. Moreover,
by Lemma 2.1 Hm(Y ) is a direct sum of copies of X. Since Hom(X,X[n]) = 0
for any n odd the transition morphism Hm(Y )[−m] → Z[1] is our distinguished
triangle vanishes; this implies that

Y ∼= Z ⊕ Hm(Y )[−m],

and finishes the proof. □
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2.2. Geometric setting. We consider an algebraically closed field F, and an
F-algebraic variety X. We assume we are given a decomposition

X =
⊔
λ∈Λ

Xλ

where Λ is a finite set, each Xλ is a smooth connected locally closed subvariety in
X, and for any λ ∈ Λ the closure Xλ is a union of strata Xµ with µ ∈ Λ. For any
λ ∈ Λ, we will denote by jλ the embedding of Xλ in X.

We will consider another field k, and some categories of sheaves D(Y, k) for each
locally closed union of strata Y ⊂ X. The various settings we want to consider
are the following. (For concrete examples in each of these settings, see Section 3
below.)

(1) (Analytic setting) Here F = C, k is arbitrary, and D(Y, k) denotes the con-
structible derived category of k-sheaves on Y with respect to the analytic
topology.

(2) (Étale setting) Here F is arbitrary, k is a either a finite field of charac-
teristic different from char(F) or a finite extension of Qℓ for some prime
number ℓ ̸= char(F), and D(Y,k) denotes the constructible derived cate-
gory of étale k-sheaves on Y .

(3) (Equivariant analytic setting) Here F and k are as in (1), but we assume we
are given an affine C-algebraic group H acting on X and stabilizing each
Xλ, and D(Y, k) denotes the H-equivariant constructible derived category
of k-sheaves on Y (in the sense of Bernstein–Lunts [BL]) with respect to
the analytic topology.

(4) (Equivariant étale setting) Here F and k are as in (2), but we assume we
are given an affine F-algebraic group H acting on X and stabilizing each
Xλ, and D(Y, k) denotes the H-equivariant constructible derived category
of étale k-sheaves on Y (in the sense of Bernstein–Lunts [BL]).

Recall that an additive category C is called Krull–Schmidt if any object has a
decomposition as a direct sum of indecomposable objects with local endomorphism
rings. Such a category is Karoubian (in other words, each idempotent splits), and
any object admits a unique (up to isomorphisms and permutations of the factors)
decomposition as a direct sum of indecomposable objects. Moreover, an object is
indecomposable if and only if its endomorphism ring is Krull–Schmidt. It is noted
in [CYZ, Corollary A.2] that if C is a k-linear additive category (for some field bk)
such that Hom(X,Y ) is finite-dimensional for any objects X,Y , then C is Krull–
Schmidt if and only if it is Karoubian. Since, on the other hand, a triangulated
category which admits a bounded t-structure is Karoubian (by the main result
of [LC]), in each of the settings above the categories D(Y,k) are Krull–Schmidt.

In each of the settings considered above, for any λ ∈ Λ we have (derived)
functors

(jλ)∗, (jλ)! : D(Xλ,k)→ D(X,k), (jλ)
∗, (jλ)

! : D(X,k)→ D(Xλ,k).
We will additionally assume we are given, for any λ ∈ Λ, a local system Lλ on Xλ

(assumed to be H-equivariant in settings (3) and (4)) such that

(2.1) EndD(Xλ,k)(Lλ) = k and HomD(Xλ,k)(Lλ,Lλ[2n+ 1]) = 0 for any n ∈ Z≥0.

We will then set

∆λ := (jλ)!Lλ[dim(Xλ)], ∇λ := (jλ)∗Lλ[dim(Xλ)].
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Remark 2.3. In the cases we will consider, the local systems Lλ will al-
ways have rank 1. In this case, the assumption (2.1) amounts to requiring that
Hn(Xλ;k) = 0 for all odd integers n, where we consider:

• the ordinary (singular) cohomology in setting (1);
• the étale cohomology in setting (2);
• the H-equivariant cohomology in setting (3);
• the H-equivariant étale cohomology in setting (4).

In the first two cases, this condition is automatic if Xλ admits a paving by affine
spaces. (In fact this condition is well known to guarantee that Hnc (Xλ;k) = 0 for
odd n’s, and then one concludes by Poincaré duality, since Xλ is smooth.) In the
last two cases, this condition holds e.g. if both HnH(pt;k) and Hn(Xλ,k) vanish for
odd n’s. (To justify this one uses the standard spectral sequence

Ep,q2 = HpH(pt;k)⊗ Hq(Xλ;k)⇒ Hp+qH (Xλ,k),

which degenerates since it vanishes “like a chessboard.”) As above the second
condition holds ifXλ admits a paving by affine spaces. The first condition holds ifH
is a torus, or ifH is reductive and char(k) avoids a few prime numbers (see [JMW2,
§2.6] for details), or if H is a semidirect product of a group isomorphic (as a variety)
to an affine space and a group which satisfies these conditions.

We will make the following additional assumption:

(2.2) for any λ, µ ∈ Λ we have (jµ)
∗∇λ ∈ ⟨Lµ⟩∆,

where we use the notation of §2.1 with respect to the triangulated category D(Xµ,k).
Then, for any locally closed union of strata Y ⊂ X we will denote by DΛ(Y,k) the
triangulated subcategory of D(Y,k) consisting of objects F such that F|Xµ

∈ ⟨Lµ⟩∆
for any µ ∈ Λ. (Of course this subcategory depends on the choice of local systems
Lλ and not only on the stratification, although this is not apparent in the notation.)
With this notation, our assumption means that each ∇λ belongs to DΛ(X,k). In
fact it is not difficult to check that DΛ(X,k) is the triangulated subcategory of
D(X,k) generated by the objects (∇λ : λ ∈ Λ), and also the triangulated subcat-
egory of D(X,k) generated by the objects (∆λ : λ ∈ Λ). It is clear also that if
the assumption (2.2) is satisfied, then the similar assumption is satisfied with any
locally closed union of strata Y ⊂ X (with respect to the stratification by strata
contained in Y , and the local systems Lλ associated with these strata), and that
DΛ(Y,k) is the same when considered with respect to the data relative to X or
those relative to Y . One can also check that for any locally closed unions of strata
Y,Z ⊂ X with Z ⊂ Y , if we denote by j : Y → Z the embeddings then the functors
j∗, j!, j

∗ and j! induce functors

j∗, j! : DΛ(Z,k)→ DΛ(Y,k), j∗, j! : DΛ(Y,k)→ DΛ(Z,k).

Recall that for any λ ∈ Λ the category D(Xλ,k) is Krull–Schmidt. Our as-
sumption (2.1) implies in particular that Lλ is indecomposable; it follows that a
direct summand of an object which is a direct sum of copies if Lλ is itself a di-
rect sum of copies of Lλ; in view of Lemma 2.1 this shows that the subcategory
DΛ(Xλ,k) ⊂ D(Xλ,k) is stable under direct summands, and then that the sub-
category DΛ(X,k) ⊂ D(X,k) is stable under direct summands. We deduce that
DΛ(X,k) is also a Krull–Schmidt category.
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Remark 2.4. Verdier duality will not restrict to an autoequivalence of the
category DΛ(X,k) unless each Lλ is self-dual. However, in the general setting,
if (2.1) is satisfied for a collection of local systems (Lλ : λ ∈ Λ), then it will
also be satisfied for the collection (L∨

λ : λ ∈ Λ) where L∨ is the local system
dual to L. We can then also consider the category DΛ,dual(X,k) defined using the
same stratification, but this new collection of localy systems, and D will induces
equivalences

DΛ(X,k)
∼−→ DΛ,dual(X,k), DΛ,dual(X,k)

∼−→ DΛ(X,k)
which will again be denoted D.

2.3. Parity complexes. We consider one of the settings introduced in §2.2,
assuming that conditions (2.1) and (2.2) hold.

We can now state the definition of the parity complexes, what are our main
objects of study in this chapter.

Definition 2.5. Let F ∈ DΛ(X,k).
(1) F is said to be ∗-even, resp. ∗-odd, if for all λ ∈ Λ we have

Hn(j∗λF) = 0

unless n is even, resp. odd.
(2) F is said to be !-even, resp. !-odd, if for all λ ∈ Λ we have

Hn(j!λF) = 0

unless n is even, resp. odd.
(3) F is said to be even if it is both ∗-even and !-even, and odd if it is both
∗-odd and !-odd.

(4) F is called a parity complex if it is isomorphic to the direct sum of an
even object and an odd object.

It is clear that a direct summand of an even, resp. odd, resp. parity, complex is
again even, resp. odd, resp. parity. Since the category DΛ(X,k) is Krull–Schmidt
(see §2.2), this implies that its full subcategory ParityΛ(X,k) whose objects are the
parity complexes is again Krull–Schmidt.

The following statement gathers some basic properties of parity complexes.
(Here, Verdier duality should be interpreted in the sense of Remark 2.4: it takes
values in a different category, but where the parity formalism still applies.)

Lemma 2.6. Let F in DΛ(X,k).
(1) If |Λ| = 1, then the following are equivalent:

(a) F is ∗-even.
(b) F is !-even.
(c) F is even.
(d) F is a direct sum of objects Lλ[n] with n even, where λ is the only

element in Λ.
Moreover, if F ,G are even, for n ∈ Z we have HomDΛ(X,k)(F ,G[n]) = 0
unless n is even.

(2) F is !-even, resp. !-odd, if and only if D(F) is ∗-even, resp. ∗-odd. In
particular, F is a parity complex if and only if D(F) is a parity complex.

(3) F is even, resp. odd, if and only if F [1] is odd, resp. even. In particular,
F is a parity complex if and only if F [1] is a parity complex.
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(4) F is even if and only if Hn(F) = Hn(D(F)) = 0 for all odd integers n.

Proof. (1) The equivalence between the first three assertions is clear. The
equivalence with the fourth one follows from Lemma 2.2. The concluding statement
is clear from the fourth description and our assumption (2.1).

(2) We treat the even case; the odd case is similar. By (1), F is !-even if
and only if for any λ ∈ Λ the object j!λF is a direct sum of objects Lλ[n] with
n even. Now, if we denote by Dλ the Verdier duality functor in D(Xλ,k), since
Dλ(Lλ) ∼= L∨

λ [2 dim(Xλ)], the latter condition is equivalent to the condition that
for any λ ∈ Λ the object Dλ(j!λF) is a direct sum of objects L∨

λ [n] with n even.
Since

Dλ(j!λF) ∼= j∗λD(F),

this proves the desired equivalence.
(3) This property is clear from definitions.
(4) A sheaf G on X is 0 iff j∗λ(G) = 0 for any λ ∈ Λ. Since Hn(j∗λF) ∼= j∗λH

n(F)
for any n, we deduce that F is ∗-even if and only iff Hn(F) = 0 for all odd integers
n. We conclude using (2). □

We now state some immediate properties of compatibility with pushforwards
and pullbacks.

Lemma 2.7. Let Y ⊂ X be a locally closed union of strata and f : Y ↪→ X be
the embedding.

(1) If Y is closed and F ∈ DΛ(Y,k) is parity, then f∗F ∈ DΛ(X,k) is parity.
(2) If Y is open and F ∈ DΛ(X,k) is parity then f∗F ∈ DΛ(Y,k) is parity.

Proof. (1) Let λ ∈ Λ. First, assume that Xλ ⊂ X and denote by jλ the
embedding of Xλ in Y . Applying the base change theorem to the cartesian diagram

Xλ

j′λ // Y

f

��
Xλ

jλ // X

we see that j!λf∗F ∼= (j′λ)
!F . Similarly, since f∗ = f! we have j∗λf∗F ∼= (j′λ)

∗F .
If Xλ is not contained in Y , since jλ factors through the embedding of the open

complement to Y we have j!λf∗F = j∗λf∗F = 0.
These descriptions show that if F is ∗-even, resp. ∗-odd, resp. !-even, resp. !-

odd, then so is f∗F , which implies our claim.
(2) For any λ ∈ Λ such that Xλ ⊂ Y , if we denote by j′λ the embedding of Xλ

in Y we have

(j′λ)
∗f∗F ∼= (f ◦ j′λ)∗F ∼= j∗λF ,

which shows that if F is ∗-even, resp. ∗-odd, then so is f∗F . Similarly, since f∗ ∼= f !

we see that

(j′λ)
!f∗F ∼= j!λF ,

which shows that if F is !-even, resp. !-odd, then so is f∗F . The desired claim
follows. □
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2.4. Morphisms spaces between parity complexes. If Y ⊂ X is a locally
closed union of strata, for F ,G ∈ DΛ(Y, k), we set

Hom•
DΛ(Y,k)(F ,G) =

⊕
n∈Z

HomDΛ(Y,k)(F ,G[n]).

Depending on the context, this space will be considered either as a plain vector
space, or as a graded vector space (with the grading provided by the right-hand
description.) The following statement is not difficult, but turns out to be crucial
for the study of parity complexes.

Proposition 2.8. Let F ,G ∈ DΛ(X,k). If F is a direct sum of a ∗-even and
a ∗-odd object, and if G is a direct sum of a !-even and a !-odd object, then there
exists a (non-canonical) isomorphism of graded vector spaces

Hom•
DΛ(X,k)(F ,G) ≃

⊕
λ∈Λ

Hom•
DΛ(Xλ,k)(j

∗
λF , j!λG).

Proof. It suffices to prove the claim in case F is ∗-even and G is !-even. We
proceed by induction on the number of strata contained in the support2 of F . Of
course, if this number is 0 we have F = 0, and there is nothing to prove.

Let Y be the support of F , and let Xµ ⊂ Y be an open stratum. Let j :
X ∖ (Y ∖Xµ) ↪→ X be the (open) embedding, and let i be the embedding of the
complementary closed subvariety. We consider the associated distinguished triangle

j!j
!F → F → i∗i

∗F [1]−→ .

Here we have j!j
!F = j!j

∗F = (jµ)!j
∗
µF . Applying the functor HomDΛ(X,k)(−,G)

we deduce a long exact sequence

(2.3) · · · → HomDΛ(X,k)(i∗i
∗F ,G[n])→ HomDΛ(X,k)(F ,G[n])

→ HomDΛ(Xµ,k)((jµ)!j
∗
µF ,G[n])→ . . . ,

where
HomDΛ(X,k)((jµ)!j

∗
µF ,G[n]) ∼= HomDΛ(X,k)(j

∗
µF , j!µG[n])

vanishes unless n is even (see Lemma 2.6(1)). By the induction hypothesis (applied
to i∗i

∗F) we have

(2.4) Hom•
DΛ(X,k)(i∗i

∗F ,G) ≃
⊕
λ∈Λ
λ ̸=µ

Hom•
DΛ(Xλ,k)(j

∗
λF , j!λG);

in particular, this graded vector space is concentrated in even degrees.These facts
imply that the long exact sequence (2.3) breaks into short exact sequences

0→ HomDΛ(X,k)(i∗i
∗F ,G[n])→ HomDΛ(X,k)(F ,G[n])

→ HomDΛ(X,k)((jµ)!j
∗
µF ,G[n])→ 0

for any n ∈ Z. It follows that
HomDΛ(X,k)(F ,G[n]) = 0

if n is odd, and that

HomDΛ(X,k)(F ,G[n]) ∼= HomDΛ(X,k)(i∗i
∗F ,G[n])⊕HomDΛ(Xµ,k)(j

∗
µF , j!µG[n])

2By the support of a complex H we mean the closure of the union of the strata Xν such that
j∗νH ̸= 0. In particular, this support is a closed union of strata.
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if n is even. Using (2.4) once again, we deduce the isomorphism of the proposition.
□

Proposition 2.8 has the following consequences.

Corollary 2.9. (1) Let F ,G ∈ DΛ(X,k). If F is ∗-even and G is !-odd,
then HomDΛ(X,k)(F ,G) = 0.

(2) Let F ,G ∈ DΛ(X,k) be parity complexes. Let U ⊂ X be an open union of
strata, and denote by j : U ↪→ X the embedding. Then the morphism

HomDΛ(X,k)(F ,G)→ HomDΛ(U,k)(j
∗F , j∗G)

induced by the functor j∗ is surjective.
(3) Let F ∈ DΛ(X,k) be an indecomposable parity complex. Let U ⊂ X be an

open union of strata, and denote by j : U ↪→ X the embedding. Then j∗F
is either 0 or indecomposable.

Proof. (1) By Proposition 2.8 we have

HomDΛ(X,k)(F ,G) ≃
⊕
λ∈Λ

HomDΛ(Xλ,k)(j
∗
λF , j!λG).

Here for any λ ∈ Λ the object j∗λF is even, and the object j!λG is odd. Hence
HomDΛ(Xλ,k)(j

∗
λF , j!λG) = 0 by Lemma 2.6(1), which implies the desired vanishing.

(2) We can assume that F and G are even. Let i : X ∖ U ↪→ X be the closed
embedding. Then we have a distinguished triangle

G → j∗j
∗G → i!i

!G[1] [1]−→,
where i!i

!G is !-odd. Hence we get and exact sequence

HomDΛ(X,k)(F ,G)→ HomDΛ(X,k)(F , j∗j∗G)→ HomDΛ(X,k)(F , i!i!G[1]).
Here the third term vanishes by (1), hence the first arrow is surjective. By adjunc-
tion, this morphism identifies with the morphism of the lemma, hence the claim is
proved.

(3) By (2), the morphism

EndDΛ(X,k)(F)→ EndDΛ(U,k)(j
∗F)

induced by j∗ is surjective. Since F is indecomposable, the left-hand side is a
local ring. Hence the right-hand side is either 0 or a local ring, which implies the
claim. □

2.5. Classification theorem – unicity. We can finally state the classifica-
tion theorem for parity complexes.

Theorem 2.10. For each λ ∈ Λ, there exists at most one (up to isomorphism)
indecomposable parity complex Eλ supported on Xλ and such that

Eλ|Xλ
∼= Lλ[dim(Xλ)].

Moreover, any indecomposable parity complex is isomorphic to Eλ[n] for some uni-
que (λ, n) ∈ Λ× Z.

Proof. We first prove the unicity of Eλ. Assume that we have two indecom-
posable parity complexes Eλ and E ′λ supported on Xλ and such that

Eλ|Xλ
∼= Lλ[dim(Xλ)] ∼= E ′λ|Xλ

.
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By Corollary 2.9(2), restriction induces a surjective morphism

HomDΛ(X,k)(Eλ, E ′λ) ↠ HomDΛ(Xλ,k)(Eλ|Xλ
, E ′λ|Xλ

) ∼= k.

In other words, there exists a morphism f : Eλ → E ′λ whose restriction to Xλ is
an isomorphism. Similarly, there exists a morphism g : E ′λ → Eλ whose restriction
to Xλ is an isomorphism. Then the element g ◦ f of the local ring End(Eλ) is not
nilpotent (since its restriction to Xλ is not nilpotent), hence is invertible. Similarly,
f ◦ g is invertible. Hence f and g are isomorphisms, which proves that Eλ ∼= E ′λ.

Now, let us prove that all indecomposable parity complexes are of the form
Eλ[n]. Let F be an indecomposable parity complex, and let Y be its support.
First, we claim that there exists a unique λ ∈ Λ such that Xλ is open in Y .
Indeed, if Xλ and Xµ are distinct strata which are open in Y , then Xλ ∪ Xµ

is open in Y and the object F|Xλ∪Xµ
= F|Xλ

⊕ F|Xµ
would be decomposable,

contradicting Corollary 2.9(3). Then Y is the closure of Xλ, and Corollary 2.9(3)
shows that F|Xλ

is indecomposable. In view of Lemma 2.6(1), this implies that
F|Xλ

∼= Lλ[dim(Xλ) + n] for some n ∈ Z; then the unicity of Eλ (already proved
above) implies that F ∼= Eλ[n]. □

Remark 2.11. (1) Let λ ∈ Λ, and assume that the indecomposable par-
ity complex Eλ ∈ DΛ(X,k) from Theorem 2.10 exists. Then the indecom-
posable parity complex E∨λ ∈ DΛ,dual(X,k) associated with λ also exists,
and we have D(Eλ) ∼= E∨λ . (In fact, this follows from the unicity claim in
Theorem 2.10.)

(2) The existence of Eλ might be a subtle question in general. In particular,
there are examples where these objects do not exist; see [JMW2, §2.3.4].
In Setting (1) of §2.2, and if each Xλ is contractible (which forces Lλ ∼=
kXλ

for any λ), then existence is guaranteed by [JMW2, Corollary 2.28].
(3) The objects Eλ are called parity sheaves in [JMW2]. In these notes we

will avoid this terminology, which can sometimes be misleading.

2.6. Some comparison results. We will now show that the formalism of
parity complexes is compatible in the most natural way with extension of scalars.
We consider a field extension k → k′. (If we are in Settings (2) or (4) of §2.2, we
assume that this extension is finite.) Then we have a functor

k′ ⊗k (−) : D(X,k)→ D(X,k′),

such that the natural morphism

k′ ⊗k HomD(X,k)(F ,G)→ HomD(X,k′)(k′ ⊗k F ,k′ ⊗k G)
is an isomorphism for any F ,G in D(X,k). In fact there exists a similar functor for
any locally closed union of strata in X, and these functors are compatible (in the
obvious way) with pushforward and pullback under locally closed embeddings.

If we are given a collection (Lλ : λ ∈ Λ) of local systems which satisfy the
assumptions (2.1) and (2.2) for the category D(X,k), then the collection (k′⊗kLλ :
λ ∈ Λ) also satisfies these assumptions for the category D(X,k′). We can therefore
consider the categories Dλ(X,k) and DΛ(X,k′), and the functor k′⊗k (−) restricts
to a functor

DΛ(X,k)→ DΛ(X,k′),
which will be denoted similarly. It is clear that this functor sends ∗-even complexes
to ∗-even complexes, and similarly for all the notions introduced in Definition 2.5.
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Proposition 2.12. Let λ ∈ Λ, and assume that the object Ekλ ∈ DΛ(X,k) as-

sociated to λ as in Theorem 2.10 exists. Then the object Ek′λ ∈ DΛ(X,k′) associated
to λ as in Theorem 2.10 exists, and moreover we have

Ek
′

λ
∼= k′ ⊗k Eλ.

Proof. It is clear that k′⊗k Eλ is a parity complex supported on Xλ, and that
its restriction to Xλ is k′ ⊗k Lλ. What remains to be proved is that this object is
indecomposable. Now restriction induces a surjective k-algebra morphism

EndDΛ(X,k)(Eλ)→ EndDΛ(Xλ,k)(Eλ|Xλ
) = k.

The kernel of this morphism is the unique maximal ideal in EndDΛ(X,k)(Eλ); it
therefore consists of nilpotent elements. Tensoring with k′, we deduce a surjective
k′-algebra morphism

EndDΛ(X,k′)(k′ ⊗k Eλ)→ k′

whose kernel consists of nilpotent elements. It follows that an element in the ring
EndDΛ(X,k′)(k′ ⊗k Eλ) is either nilpotent or invertible, hence that this ring is local.
This shows that k′ ⊗k Eλ is indeed indecomposable, which finishes the proof. □

We will now study the compatibility of the parity formalism with with for-
getting the equivariance. We assume we are in settings (3) or (4) of §2.2, but we
will also consider the corresponding non-equivariant category (which falls into set-
ting (1) or (2) respectively). The equivariant category will be denoted DH(X,k),
and the non-equivariant one will be denoted D(X,k); we then have a canonical
forgetful functor

ForH : DH(X,k)→ D(X,k),
and a similar functor for each locally closed union of strata in X.

We assume we are given a collection (Lλ : λ ∈ Λ) of local systems which satisfy
the assumptions (2.1) and (2.2) for the category DH(X,k), and moreover that for
any λ ∈ Λ the morphism

Hom•
DH(Xλ,k)(Lλ,Lλ)→ Hom•

D(Xλ,k)(For
H(Lλ),ForH(Lλ))

is surjective. Then the collection (ForH(Lλ) : λ ∈ Λ) satisfies the assumptions (2.1)
and (2.2) for the category D(X,k). We can therefore consider the categories

DH,Λ(X,k) and DΛ(X,k). The functor ForH restricts to a functor

DH,Λ(X,k)→ DΛ(X,k)

which will be denoted similarly. This functors sends ∗-even complexes to ∗-even
complexes, and similarly for all the notions introduced in Definition 2.5.

Lemma 2.13. Let F ,G ∈ DH,Λ(X,k). If F is a direct sum of a ∗-even and
a ∗-odd object, and if G is a direct sum of a !-even and a !-odd object, then the
morphism

HomDH,Λ(X,k)(F ,G)→ HomDΛ(X,k)(For
H(F),ForH(G))

is surjective.

Proof. It suffices to prove the claim in case F is ∗-even and G is !-even. We
proceed by induction on the number of strata contained in the support of F . Of
course, if this number is 0 we have F = 0, and there is nothing to prove.
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Let Y be the support of F , and let Xµ ⊂ Y be an open stratum. Let j :
X ∖ (Y ∖Xµ) ↪→ X be the (open) embedding, and let i be the embedding of the
complementary closed subvariety. Considering the associated distinguished triangle

j!j
!F → F → i∗i

∗F [1]−→,

as in the proof of Proposition 2.8 we obtain exact sequences

HomDH,Λ(X,k)(i∗i
∗F ,G) ↪→ HomDH,Λ(X,k)(F ,G) ↠ HomDH,Λ(X,k)(j!j

!F ,G)

and

HomDΛ(X,k)(i∗i
∗ForH(F),ForH(G)) ↪→ HomDH,Λ(X,k)(For

H(F),ForH(G))

↠ HomDH,Λ(X,k)(j!j
!ForH(F),ForH(G))

The functor ForH provides a morphism from the first of these exact sequences to
the second one. By induction the morphism relating the first terms is surjective.
Now by adjunction we have isomorphisms

HomDH,Λ(X,k)(j!j
!F ,G) ∼= HomDH,Λ(X,k)(j

!F , j!G),

HomDΛ(X,k)(j!j
!F ,G) ∼= HomDΛ(X,k)(j

!F , j!G).

Using Lemma 2.6(1), we see that our assumption implies that the morphism relating
the third terms in our exact sequence is also surjective. By the four lemma, we
deduce that the morphism relating the second terms is surjective, which finishes
the proof. □

Using Lemma 2.13 we deduce the following claim.

Proposition 2.14. Let λ ∈ Λ, and assume that the object EHλ ∈ DH,Λ(X,k)
associated to λ as in Theorem 2.10 exists. Then the object Eλ ∈ DΛ(X,k) associated
to λ as in Theorem 2.10 exists, and moreover we have

Eλ ∼= ForH(EHλ ).

Proof. As in the proof of Proposition 2.12, it suffices to prove that ForH(EHλ )

is indecomposable. Now by Lemma 2.13 the functor ForH induces a surjection

EndDH,Λ(X,k)(EHλ )→ EndDΛ(X,k)(For
H(EHλ )).

Since EndDH,Λ(X,k)(EHλ ) is a local ring, and since EndDΛ(X,k)(For
H(EHλ )) is nonzero,

this ring is local, which implies that ForH(EHλ ) is indecomposable, as desired. □

3. The case of Kac–Moody flag varieties

In this section we apply the parity formalism in the setting of (possibly para-
bolic) flag varieties of Kac–Moody groups.

3.1. Flag varieties. There are several different things we might want to call
“flag varieties,” which we introduce now.
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3.1.1. “Finite” flag varieties. Let F be an algebraically closed field, and let G
be a connected reductive algebraic group over F. Let B be a Borel subgroup of G ,
and let T be a maximal torus contained in G . Let W = NG (T )/T be the Weyl
group of (G ,T ), and let S ⊂ W be the subset of Coxeter generators determined
by B. As in §1.1 we can consider the flag variety

X := G /B,

a smooth projective algebraic variety over F. The Bruhat decomposition determines
a stratification

X =
⊔
w∈W

Xw with Xw = BwB/B ∼= Aℓ(w)
F .

More generally, for any subset I ⊂ S we have a standard parabolic subgroup PI ,
and the corresponding parabolic flag variety

X I := G /PI ,

which is again a smooth projective algebraic variety over F. If we denote byWI ⊂W
the subgroup generated by I, and by W I ⊂W the subset of elements w which are
minimal in the corresponding coset wWI , then we have a stratification

X I =
⊔

w∈W I

X I
w with X I

w = BwPI/PI
∼= Aℓ(w)

F .

3.1.2. “Kac–Moody” flag varieties. 3

Let A be a generalized Cartan matrix, whose rows and columns are parame-
trized by some finite set I, and let (W,S) be the associated Coxeter system;
see §1.2.3 in Chapter 2. Let also

(X, (αi : i ∈ I), (α∨
i : i ∈ I))

be a Kac–Moody root datum associated with A; see §1.2.4 in Chapter 2.

3.2. Parabolic Kazhdan–Lusztig polynomials. We now explain a general
construction from Coxeter groups combinatorics, which gives rise to two different
families of “parabolic” Kazhdan–Lusztig polynomials.

Let (W,S) be a Coxeter system, and let I ⊂ S be a subset. Recall (see e.g. §2.8
in Chapter 1) that to I we attach a standard parabolic subgroup WI ⊂ W; then
the Hecke algebra H(WI ,I) (see Definition 4.1 in Chapter 1) embeds naturally in
H(W,S).

We consider two natural right modules for H(WI ,I), denoted Z[v, v−1]triv and

Z[v, v−1]sgn respectively, and called the trivial module and the sign module. In
both cases the module is equal to Z[v, v−1] with the natural action of Z[v, v−1]. For
the trivial module, each Hs (s ∈ I) acts by multiplication by v−1, and for the sign
module each Hs (s ∈ I) acts by multiplication by −v for any s ∈ I. (It is easily seen
that these rules uniquely extend to right H(WI ,I)-actions.) Then the corresponding
“spherical” and “antispherical” right H(W,S)-modules are defined by

MI
(W,S) := Z[v, v−1]triv ⊗H(WI ,I)

H(W,S),

N I
(W,S) := Z[v, v−1]sgn ⊗H(WI ,I)

H(W,S).

3Intuitively, an ind-scheme is a formal inductive limit of schemes, with transition maps given
by closed immersions. A very nice treatment of this subject is provided in the first section of [Rz].
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Let us denote by IW ⊂ W the subset of elements w that are minimal in their
coset WIw (see §2.8.1 in Chapter 1). From the “standard” basis (Hw : w ∈ W)
of H(W,S) we deduce a standard basis (M I

w : w ∈ IW) of MI
(W,S) (as a Z[v, v−1]-

module) and a standard basis (N I
w : w ∈ IW) of N I

(W,S) (as a Z[v, v−1]-module),

where for w ∈ IW we set

M I
w := 1⊗Hw ∈MI

(W,S), N I
w := 1⊗Hw, ∈ N I

(W,S).

In terms of this basis, the action ofH(W,S) on N I
(W,S) is determined by the following

rule for w ∈ IW and s ∈ S (see [S3, §3]):

(3.1) N I
w ·Hs =


N I
ws + vN I

w if ws ∈ IW and ws > w;

N I
ws + v−1N I

w if ws ∈ IW and ws < w;

0 if ws /∈ IW.

Recall the Kazhdan–Lusztig involution ι ofH(W,S), see §4.2 in Chapter 1. Then
the assignment

a⊗H 7→ ι(a)⊗ ι(H)

for a ∈ Z[v, v−1] and H ∈ H(W,S) defines involutions ιMI of MI
(W,S) and ιNI of

N I
(W,S), which satisfy

ιMI (M ·H) = ιMI (M) · ι(H), ιNI (N ·H) = ιNI (N) · ι(H)

for any M ∈MI
(W,S), N ∈ N

I
(W,S) and H ∈ H(W,S).

The following theorem is due to Deodhar [De]. For an easy proof, we refer
to [S3, Theorem 3.1].

Theorem 3.1. (1) For any w ∈ IW, there exists a unique element M I
w ∈

MI
(W,S) such that

ιMI (M I
w) =M I

w, M I
w ∈M I

w +
∑
y∈IW

vZ[v]M I
y .

The elements (M I
w : w ∈ IW) form a Z[v, v−1]-basis of MI

(W,S), called

the Kazhdan–Lusztig basis ofMI
(W,S).

(2) For any w ∈ IW, there exists a unique element N I
w ∈ N I

(W,S) such that

ιNI (N I
w) = N I

w, N I
w ∈ N I

w +
∑
y∈IW

vZ[v]N I
y .

The elements (N I
w : w ∈ IW) form a Z[v, v−1]-basis of N I

(W,S), called the

Kazhdan–Lusztig basis of N I
(W,S).

If one writes

M I
x =

∑
y∈IW

mI
y,x ·M I

y , N I
x =

∑
y∈IW

nIy,x ·N I
y ,

then the polynomials (mI
y,x : y, x ∈ IW) are called the spherical Kazhdan–Lusztig

polynomials attached to I, and the polynomials (nIy,x : y, x ∈ IW) are called the
antispherical Kazhdan–Lusztig polynomials attached to I. These polynomials sat-
isfy

mI
y,x ̸= 0 ⇒ y ≤ x, nIy,x ̸= 0 ⇒ y ≤ x
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for any y, w ∈ IW.

Remark 3.2. The polynomials (mI
y,x : y, x ∈ IW) and (nIy,x : y, x ∈ IW) are

sometimes called parabolic Kazhdan–Lusztig polynomials. We find this terminology
confusing since there are two different families of such polynomials, and prefer using
the terminology above.

The Kazhdan–Lusztig bases ofMI
(W,S) (in many cases) and of N I

(W,S) have a

simple relation with the Kazhdan–Lusztig basis of H(W,S), as explained e.g. in [S3,
Proposition 3.4 and its proof]. First we consider the spherical case; in this case we
assume that I is finitary, i.e. thatWI is finite, and denote by wI the longest element
in WI . Under this assumption there exists a unique morphism of H(W,S)-modules

ζI :MI
(W,S) ↪→ H(W,S)

which sends M I
e to HwI

. This morphism is in fact injective, and satisfies

ζI(M
I
w) = HwIw

for any w ∈ IW. From this formula one deduces that for any y, w ∈ IW and any
x ∈ WI we have

(3.2) mI
y,w = vℓ(wI)−ℓ(x)hxy,wIw.

Remark 3.3. This formula shows that we have already encountered a special
case of spherical Kazhdan–Lusztig polynomials: in fact the polynomials that appear
in Lusztig’s conjecture (Conjecture 4.6 in Chapter 1) are such polynomials for the
Coxeter system (Waff , Saff) and the parabolic subgroup generated by S ⊂ Saff ,
i.e. W .

Next we turn to the antispherical case (without any assumption on I). By
definition we have a canonical surjective morphism of right H(W,S)-modules

ξI : H(W,S) → N I
(W,S),

sending an element H to 1⊗H. For any w ∈ W, this morphism satisfies

ξI(Hw) =

{
N I
w if w ∈ IW;

0 otherwise.

As a consequence, we obtain that for any y, w ∈ IW we have

(3.3) nIy,w =
∑
x∈WI

(−1)ℓ(x)hxy,w.

Remark 3.4. As in the case of ordinary Kazhdan–Lusztig polynomials (see §1.8
in Chapter 2), one might wonder wether the spherical and antispherical Kazhdan–
Lusztig polynomials have nonnegative coefficients. In case I is finitary, this property
is obvious for the spherical versions in view of (3.2). For the antispherical versions,
this property is known for all I thanks to work of Libedinsky–Williamson [LW].

3.3. Parabolic p-Kazhdan–Lusztig polynomials. In this subsection we
explain how to define “p-canonical” versions of the spherical and anti-spherical
Kazhdan–Lusztig polynomials. Our definitions might seem arbitrary at first sight,
but as we will see below these definitions allow to express interesting combinatorial
quantities of topological or representation-theoretic interest, which we consider as
evidences that these are the “correct” definitions.
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3.3.1. Spherical case. First we consider the spherical case, under the assump-
tion that I is finitary. (We do not know how to define the spherical p-Kazhdan–
Lusztig polynomials without this assumption.) We fix a prime number p. For any
s ∈ S and any element w ∈ W such that sw < w, by (2.16) in Chapter 2 we have

Hs · pHw = (v + v−1)pHw.

Using Exercise 1.17 we deduce that if w is the longest element in its coset WIw,
then pHw belongs to the image of ζI . In particular, if w ∈ IW, applying this

property to wIw, we deduce that there exists a unique element pM I
w ∈ MI

(W,S)

such that
pHwIw

= ζI(
pM I

w).

It is not difficult to check that the family (pM I
w : w ∈ IW) is a Z[v, v−1]-basis of

MI
(W,S), which by definition is the p-canonical basis of this module. The corre-

sponding p-Kazhdan–Lusztig polynomials are defined by the formula

pM I
w =

∑
y∈IW

pmI
y,w ·M I

y .

It is not difficult to check that this basis has the same kind of properties as the
p-canonical basis of H(W,S) (see §2.14), and that the corresponding polynomials
satisfy

(3.4) pmI
y,w = vℓ(wI)−ℓ(x) · phxy,wIw

for y, w ∈ IW and x ∈ WI .

3.3.2. Antispherical case. Next we consider the antispherical case. For w ∈ IW
we set

pN I
w = ξI(

pHw).

Once again it is not difficult to check that the family (pN I
w : w ∈ IW) is a Z[v, v−1]-

basis of N I
(W,S), which by definition is the p-canonical basis of this module. The

corresponding p-Kazhdan–Lusztig polynomials are defined by the formula

pN I
w =

∑
y∈IW

pnIy,w ·N I
y .

One again checks easily that this basis has the same kind of properties as the
p-canonical basis of H(W,S) (see §2.14), and that the corresponding polynomials
satisfy

(3.5) pnIy,w =
∑
x∈WI

(−1)ℓ(x) · phxy,w

for y, w ∈ IW.

3.4. Geometric interpretation of the p-canonical basis. Consider a Kac–
Moody group G , the associated Coxeter system (W,S), and the flag variety X =
G /B. The B-orbits on X are parametrized byW. Fix also a prime number p and
a finite extension K of Qp, and denote by O the ring of integers in K and by F the
residue field of O. For w ∈ W, we consider:

• for E = O, K or F, the intersection cohomology complex ICw(E) with
coefficients in E;

• the normalized indecomposable partity complex Ew(F) with coefficients in
F.
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For x ∈ X , we denote by ix : {x} → X the embedding. Given a complex F
in D(B)(X ,O), we will say that the stalks (resp. costalks) of F are torsion-free if

for any x ∈ X and any n ∈ Z, the cohomology group Hn(i∗xF), resp. Hn(i!xF), is
torsion free.

Proposition 3.5. Let w ∈ W. The following conditions are equivalent:

(1) the stalks and costalks of the complex ICw(O) are torsion-free;
(2) we have ICw(O) ∼= Ew(O);
(3) we have ICw(F) ∼= Ew(F);
(4) pHw = Hw.

If these conditions are satisfied then we have

ICw(F) = F
L
⊗O ICw(O), ICw(K) = K

L
⊗O ICw(O),

and for any y ∈ W, any x ∈ Xy, and any n ∈ Z the dimension of the F-vector
space H−ℓ(w)−n(i∗xICw(F)) is the coefficient of vn in hy,w.

Proof. Cf. [W2, Prop. 3.11]. □

Remark 3.6. Instead of working over rings O and F as above, one can consider
for any w ∈ W the intersection cohomology complex ICw(Z) with coefficients in Z.
Since O is flat over Z, we have

ICw(O) ∼= O⊗Z ICw(Z).
Hence the condition in Proposition 3.5 is also equivalent to the condition that
for any x ∈ X and n ∈ Z, the finitely generated Z-modules Hn(i∗xICw(Z)) and
Hn(i!xICw(Z)) have no p-torsion.

COMMENT ON CHARACTERISTIC 2.

3.5. To be added. Mention convolution.
Remarks: affine Schubert varieties for SL(2) are rationally smooth.
Schubert varieties are smooth in codimension 1, cf. Example 4.8.
Behaviour of categories of perverse sheaves under Langlands duality, cf. J. Lou-

renço.

4. The case of affine flag varieties

4.1. Affine flag varieties. Let F be an algebraically closed field, and let G be
a connected reductive algebraic group over F. We fix a Borel subgroup B ⊂ G and a
maximal torus T contained in B. Let R be the root system of (G,T ), and R+ ⊂ R
be the system of positive roots consisting of the T -weights in Lie(G)/Lie(B). Let
also R∨ be the corresponding system of coroots. We will denote by

W := NG(T )/T

the Weyl group of (G,T ), and by S ⊂ W the system of Coxeter generated deter-
mined by B. We will consider the (extended) affine Weyl group

Wext :=W ⋉X∗(T ).

Given λ ∈ X∗(T ), we will denote by tλ the corresponding element in Wext. Let
also ZR∨ be the root lattice, i.e. the sublattice in X∗(T ) generated by R∨. It is a
standard fact that the subgroup

Waff :=W ⋉ ZR∨
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admits a natural system Saff of Coxeter generators, consisting of S together with
the elements of the form tβ∨sβ where β ∈ R is a maximal root.

Let us consider the function

ℓ :W → Z≥0

given by

ℓ(wtλ) =
∑
α∈R+

w(α)∈R+

|⟨λ, α∨⟩|+
∑
α∈R+

w(α)∈−R+

|1 + ⟨λ, α∨⟩|

Then it is known that the restriction of ℓ to Waff is the length function for the
Coxeter system (Waff , Saff), and moreover that if we set

Ω = {w ∈W | ℓ(w) = 0}

then Ω is a finitely generated abelian group, that the conjugation action of Ω on
Wext stabilizes Sa, so that this group acts onWaff by Coxeter group automorphisms,
and finally that multiplication induces a group isomorphism

Ω⋉Waff
∼−→Wext.

To G one associates two functors LG and L+G from the category of F-algebras
to the category of set, by setting

LG(R) = G(R((z))), L+G(R) = G(R[[z]]).

(Here, for an F-algebra A, we denote by G(A) the group of A-points of G, or in
other words of morphisms of F-schemes from Spec(A) to G.) It is a standard fact
that the functor L+G is representable by a group scheme over F (not of finite type),
and that LG is representable by a group ind-scheme. (See e.g. [Rz] for a proof of
a much more general claim.)

To each finitary subset A ⊂ Saff one can associate a “parahoric subgroup”
QA ⊂ LH, and consider the functor from F-algebras to sets given by

R 7→ LH(R)/QA(R).

Again, it is a standard fact that the fppf sheafification of this functor is representable
by an ind-scheme

FlA

which is ind-projective.

Example 4.1. Assume that A ⊂ S. Then A determines a parabolic subgroup
PA ⊂ G. We have a natural morphism LG → G, induced by the morphisms
R[[z]] → R sending z to 0. For such a subset, the parahoric subgroup QA is the
preimage of PA in LG. Two special cases of this setting will play important roles
below:

• in case A = ∅, Q∅ is the standard Iwahori subgroup of LG; it will be
denoted I, and we will write Fl for Fl∅ (this is the familiar “affine flag
variety” of G);
• in case A = S, QS = LG, and the ind-scheme FlS is called the affine flag
variety of G and denoted Gr.

4.2. The equivariant case.

4.3. The Whittaker case.
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5. The case of the affine Grassmannian

5.1. The geometric Satake equivalence. In this subsection we briefly re-
view an important construction in Geometric Representation Theory, namely the
geometric Satake equivalence. We will only state the results that will be required
below, and not say anything about their proofs. There exist already a number of
presentations of this construction in the literature, of various lengths and degrees
of generality and details, including [Zh], [BaR], [AR7, Chap. 1], [Ac, Chap. 8].

Let us consider the particular case of the affine Grassmannian Gr, and the
natural action of L+G on it. In this case the L+G-orbits on Gr are parametrized in
the obvious way by the set X∗(T )

+ of dominant cocharacters of T . We will denote

by Grλ the L+G-orbit associated with λ, so that we have a stratification

(Grλ : λ ∈ X∗(T )
+)

of Gr. It is a standard fact that for any λ ∈ X∗(T )
+ we have

dim(Grλ) = ⟨2ρ, λ⟩

where 2ρ ∈ X∗(T ) is the sum of the positive roots, and that for λ, µ ∈ X∗(T ) we
have

(5.1) Grλ ⊂ Grµ iff µ− λ is a sum of positive coroots.

It is known that the connected components of Gr are in a canonical bijection with
the quotient X∗(T )/ZR∨, and that the orbit Grλ is included in the component
corresponding to a coset Λ ∈ X∗(T )/ZR∨ if and only if λ ∈ Λ. This implies the fol-
lowing property, that is crucial for many considerations involving parity complexes
on Gr.

Lemma 5.1. Let λ, µ ∈ X∗(T )
+. If Grλ and Grµ belong to the same connected

component of Gr, then dim(Grλ) and dim(Grµ) have the same parity.

Let us now assume (for simplicity) that k is a field, and consider the L+G-
equivariant derived category

Db
L+G(Gr,k)

of k-sheaves on Gr. The same considerations as in REF above show that there
exists a natural convolution product

(−) ⋆L+G (−) : Db
L+G(Gr,k)×D

b
L+G(Gr,k)→ Db

L+G(Gr,k)

which endows Db
L+G(Gr,k) with the structure of a monoidal category.

Such a construction can be considered for any parahoric subgroup (or any
parabolic subgroup of a Kac–Moody group), but there is a kind or “miracle” in
this setting, which is that this convolution product is t-exact on both sides with
respect to the perverse t-structure. In other words, if we denote by

PervL+G(Gr,k)

the heart of the perverse t-structure on Db
L+G(Gr,k), then for any objects A,B ∈

PervL+G(Gr,k) the product A ⋆L+G B belongs to PervL+G(Gr,k). Restricting the
convolution product, we therefore obtain a monoidal category(

PervL+G(Gr,k), ⋆L+G

)
.
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To each λ ∈ X∗(T )
+ one can associate 3 natural objects in PervL+G(Gr,k). Namely,

denote by jλ : Grλ → Gr the embedding. Then we set

J!(λ) := pH0(jλ! kGrλ [⟨2ρ, λ⟩]), J∗(λ) := pH0(jλ∗ kGrλ [⟨2ρ, λ⟩]).
There exists a canonical morphism of complexes

jλ! kGrλ [⟨2ρ, λ⟩]→ jλ∗ kGrλ [⟨2ρ, λ⟩],
which provides a canonical morphism

J!(λ)→ J∗(λ),
whose image is denoted J!∗(λ); in fact the general theory of perverse sheaves guar-
antees that this image is simple; this is the intersection cohomology complex asso-
ciated with the constant local system on the orbit Grλ.

Let us now denote by G∨
k a connected reductive algebraic group over k whose

root datum is
(X∗(T ),R∨, X∗(T ),R).

This means that G∨
k is endowed with a maximal torus T∨

k whose character lattice is
X∗(T ), the cocharacter lattice of T , and that the root system of (G∨

k , T
∨
k ) is R. Our

choice of Borel subgroup B ⊂ G has provided us with a system of positive roots
R+ ⊂ R. The corresponding coroots R∨

+ ⊂ R∨ define a system of positive roots for
G∨

k , and we denote by B∨
k ⊂ G∨

k the Borel subgroup containing T∨
k and such that

the set of T∨
k -weights on Lie(G∨

k )/Lie(B
∨
k ) is R∨

+. Note that the set of dominant
weights for this choice of positive roots is X∗(T )

+. Hence, for any λ ∈ X∗(T )
+ we

have representations M(λ), N(λ) and L(λ) constructed as in Chapter 1.
The geometric Satake equivalence, first proved in this generality by Mirković–

Vilonen [MV], is the following statement.

Theorem 5.2. There exists an equivalence of monoidal categories(
PervL+G(Gr,k), ⋆L+G

) ∼= (Rep(G∨
k ),⊗

)
which sends, for any λ ∈ X∗(T )

+, the perverse sheaf

J!(λ), resp. J∗(λ), resp. J!∗(λ),
to the representation

M(λ), resp. N(λ), resp. L(λ).

In the course of the proof of Theorem 5.2, Mirković and Vilonen prove the
following fact, which will be important for us. Denote by

Db
(L+G)(Gr,k)

the full subcategory of the constructible derived category of k-sheaves on Gr gen-
erated by the essential image of the functor

Db
L+G(Gr,k)→ Db

c (Gr,k)
forgetting the equivariance. In other words, a complex of k-vector spaces A on Gr
belongs to Db

(L+G)(Gr,k) if and only if for any n ∈ Z and λ ∈ X∗(T )
+ the sheaf

Hn(A|Grλ) is isomorphic to (kGrλ)⊕m for some m ∈ Z≥0. It is easily seen that the

perverse t-structure on Db
c (Gr,k) restricts to a t-structure on Db

(L+G)(Gr,k), which
will again be called the perverse t-structure. Its heart will be denoted

Perv(L+G)(Gr,k).
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It can be easily seen that Perv(L+G)(Gr,k) is the category of perverse sheaves on

Gr all of whose composition factors are of the form J!∗(λ) with λ ∈ X∗(T )
+. By

construction, forgetting the equivariance provides a canonical functor

PervL+G(Gr,k)→ Perv(L+G)(Gr,k).

The general theory of perverse sheaves implies that this functor is fully faithful,
but something even better occurs here: this functor is an equivalence of categories.
In other words, a perverse sheaf all of whose composition factors are of the form
J!∗(λ) is automatically L+G-equivariant.

Remark 5.3. If we work in the standard topological setting, then the cate-
gory Db

(L+G)(Gr,k) is just the constructible derived category associated with the

stratification (Grλ : λ ∈ X∗(T )
+).

5.2. Parity complexes and tilting modules. Let us now consider the set-
ting of Section 2 for the stratification (Grλ : λ ∈ X∗(T )

+). This theory provides us
with a collection (Eλ : λ ∈ X∗(T )

+) of normalized indecomposable parity complexes
in Db

(L+G)(Gr,k).
The following theorem is due to Mautner and the author (see [MR2]) in

full generality, after a proof under stronger assumptions (on char(k)) by Juteau–
Mautner–Williamson [JMW3].

Theorem 5.4. If char(k) is good for G, then Eλ is a perverse sheaf for any
λ ∈ X∗(T )

+.

The proof of this theorem in full generality requires a comparison with a cat-
egory of equivariant coherent sheaves on the Springer resolution of the group G∨

k .
The proof in [JMW3] is more elementary: it proceeds by an explicit check in some
“simple” cases (more explicitly when λ is either minuscule or quasi-minuscule), and
then a proof that these cases suffice to imply the theorem for all λ. This second
step is where stronger assumptions are necessary.

If the complex Eλ is perverse (which, by Theorem 5.4, is always true if char(k)
is good for G), the comments at the end of §5.1 show that this object “lifts”
canonically to the category PervL+G(Gr,k). One can therefore ask the question of
understanding its image under the equivalence of Theorem 5.2. The answer turns
out to be easy, and very interesting, as shown in [JMW3, Proposition 3.3].

Proposition 5.5. Let λ ∈ X∗(T )
+. If the complex Eλ is perverse, then its

image in Rep(G∨
k ) is T(λ).

Proof. Using Propositions 4.1–4.3 in Chapter A, to prove that the image of
Eλ is tilting it suffices to prove is that

Ext1PervL+G(Gr,k)(Eλ,J∗(µ)) = 0 = Ext1PervL+G(Gr,k)(J!(µ), Eλ)

for any µ ∈ X∗(T )
+, or equivalently (see §5.1) that

Ext1Perv(L+G)(Gr,k)
(Eλ,J∗(µ)) = 0 = Ext1Perv(L+G)(Gr,k)

(J!(µ), Eλ)

for any µ ∈ X∗(T )
+. The general theory of t-structures guarantees that for any

A,B in Perv(L+G)(Gr,k) we have an identification

Ext1Perv(L+G)(Gr,k)
(A,B) = HomDb

(L+G)
(Gr,k)(A,B[1]).
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Hence what we have to prove is that

HomDb
(L+G)

(Gr,k)(Eλ,J∗(µ)[1]) = 0 = HomDb
(L+G)

(Gr,k)(J!(µ), Eλ[1])

for any µ ∈ X∗(T )
+. In view of Lemma 5.1, it suffices to prove this when ⟨2ρ, λ⟩

and ⟨2ρ, µ⟩ have the same parity. We will prove the second equality (under this
assumption); the first one can be proved similarly, or deduced using Verdier duality.

Since the complex jλ! kGrλ [⟨2ρ, λ⟩] is concentrated in nonpositive degrees, we
have a truncation triangle

A → jµ! kGrµ [⟨2ρ, µ⟩]→ J!(µ)
[1]−→

where A is concentrated in negative perverse degrees. We deduce an exact sequence

HomDb
(L+G)

(Gr,k)(A, Eλ)→ HomDb
(L+G)

(Gr,k)(J!(µ), Eλ[1])→

HomDb
(L+G)

(Gr,k)(j
µ
! kGrµ [⟨2ρ, µ⟩], E

λ[1]).

Here the first term vanishes by general properties of t-structures because A is
concentrated in negative perverse degrees and Eλ is perverse. As explained above
we assume that ⟨2ρ, λ⟩ and ⟨2ρ, µ⟩ have the same parity. To fix notation, assume
that these numbers are even. Then the complex jµ! kGrµ [⟨2ρ, µ⟩] is ∗-even, and Eλ[1]
is odd (hence !-odd). By Corollary 2.9(1) this implies that the third term in our
exact sequence vanishes, and finishes the proof of our claim.

We have now proved that the image of Eλ is parity. It is indecomposable

because so is Eλ. Since Eλ is supported on Grλ and has nonzero restriction to Grλ,
its composition factors are of the form J!∗(µ) with λ−µ a sum of positive coroots,
with the case λ = µ occurring (see (5.1)). We deduce that the composition factors
of its image are of the form L(µ) with µ as above, with the case µ = λ occurring.
Hence this image is T(λ), as desired. □

In case char(k) is bad for G, then it is known that not all of the complexes
Eλ are perverse. But one can still consider, for any n ∈ Z, the perverse sheaf
pHn(Eλ), which defines defines an object in PervL+G(Gr,k). The following result
was conjectured in [JMW3], and proved in [BGMRR]

Theorem 5.6. For any n ∈ Z and λ ∈ X∗(T )
+, the image of the perverse

sheaf pHn(Eλ) in Rep(G∨
k ) is a tilting module. Moreover, any tilting module occurs

as a direct sum of direct summands of images of objects of the form pH0(Eλ) with
λ ∈ X∗(T )

+.

6. Mixed perverse sheaves and Koszul duality





CHAPTER 4

Tilting modules for reductive groups

In this chapter we will extensively use the notions and basic results about
highest weight categories recalled in Appendix A.

1. Tilting modules for reductive groups

1.1. Definition. We use the setting and notation of Chapter 1. In particular,
G is a connected reductive algebraic group over an algebraically closed field k of
characteristic p > 0, B ⊂ G is a Borel subgroup, and T ⊂ B is a maximal torus.

Recall from §1.3 in Chapter 1 the induced modules (N(λ) : λ ∈ X+) and the
Weyl modules (M(λ) : λ ∈ X+). By Theorem 2.3 from Chapter 1, these modules
define a structure of highest weight category on Rep(G), with weight poset (X+,⪯).
As a special case of the theory recalled in Section 5 of Appendix A, one can consider
the tilting objects in Rep(G), i.e. the finite-dimensional algebraic G-modules which
admit both a costandard filtration, i.e. a filtration with subquotients of the form
N(λ) (λ ∈ X+), and a standard filtration, i.e. a filtration with subquotients of the
form M(λ) (λ ∈ X+). We will denote by Tilt(G) ⊂ Rep(G) the full subcategory
whose objects are the tilting G-modules.

As an application of Propositions 4.1 and 4.3 in Appendix A we obtain the
following characterizations.

Proposition 1.1. Let M ∈ Rep(G).

(1) The following properties are equivalent:
(a) M admits a costandard filtration;
(b) for any λ ∈ X+ and any n > 0 we have ExtnRep(G)(M(λ),M) = 0;

(c) for any λ ∈ X+ we have Ext1Rep(G)(M(λ),M) = 0.

(2) The following properties are equivalent:
(a) M admits a standard filtration;
(b) for any λ ∈ X+ and any n > 0 we have ExtnRep(G)(M,N(λ)) = 0;

(c) for any λ ∈ X+ we have Ext1Rep(G)(M,N(λ)) = 0.

(3) The following properties are equivalent:
(a) M is tilting;
(b) for any λ ∈ X+ and any n > 0 we have

ExtnRep(G)(M(λ),M) = 0 and ExtnRep(G)(M,N(λ)) = 0;

(c) for any λ ∈ X+ we have

Ext1Rep(G)(M(λ),M) = 0 and Ext1Rep(G)(M,N(λ)) = 0.

Remark 1.2. In the algebraic groups literature, costandard filtrations are often
called “good filtrations” (see e.g. [J3, §II.4.16]), and standard filtrations are often
called “Weyl filtrations” (see e.g. [J3, §II.4.19]). In this book, since we mainly

169
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use the point of view of highest weight categories we have confined ourselves to the
case of finite-dimensional algebraicG-modules, but one can also consider analogous
notions for objects in Rep∞(G). Namely, we say that an object M ∈ Rep∞(G)
admits a good filtration if there exists a filtration

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M

by G-submodules such that M =
⋃
n≥0Mn and each subquotient Mn/Mn−1 (n ≥

1) is of the form N(λ) for some λ ∈ X+. If M ∈ Rep∞(G) satisfies

dimHomG(M(λ),M) <∞

for any λ ∈ X+, it is still true that M admits a standard filtration iff

ExtnRep(G)(M(λ),M) = 0

for any λ ∈ X+ and n > 0, and that this condition is equivalent to the property that
Ext1Rep(G)(M(λ),M) = 0 for any λ ∈ X+; see [J3, Proposition II.4.16]. In particular,

an injective object of Rep∞(G) which satisfies the condition above (e.g. the module
O(G) with the action induced by left or right multiplication) always admits a good
filtration in this sense.

If M ∈ Tilt(G), then for any λ ∈ X+ the number of occurrences of the module
N(λ) as a subquotient in a costandard filtration of M is independent of the choice
of filtration, and will be denoted (M : N(λ)); in fact we have

(1.1) (M : N(λ)) = dimk HomRep(G)(M(λ),M),

see Exercise 7.6. With this notation, it is clear that in the Grothendieck group
[Rep(G)] we have

(1.2) [M ] =
∑
λ∈X+

(M : N(λ)) · [N(λ)].

In particular, the coefficients in the expansion of the element [M ] in the basis
([N(λ)] : λ ∈ X+) are nonnegative.

The multiplicities (M : M(λ)) are defined similarly, considering now standard
filtrations instead of costandard filtrations. In this case we have

(M : M(λ)) = dimk HomRep(G)(M,N(λ)),

and

(1.3) [M ] =
∑
λ∈X+

(M : M(λ)) · [M(λ)]

in [Rep(G)]. In fact, since [M(λ)] = [N(λ)] in [Rep(G)] (see §1.9 in Chapter 1),
comparing (1.2) and (1.3) we see that

(M : N(λ)) = (M : M(λ))

for any M ∈ Tilt(G) and λ ∈ X+.
General considerations for highest weight categories (see Exercise 7.6) show

that for M and N in Tilt(G) we have

dimk HomRep(G)(M,N) =
∑
λ∈X+

(M : M(λ)) · (N : N(λ)).
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In this setting we therefore also have

dimk HomRep(G)(M,N) =
∑
λ∈X+

(M : N(λ)) · (N : N(λ)).

1.2. Classification. As a special case of general results on highest weight
categories (see §5.1 in Appendix A), it is known that any direct summand of a
tilting G-module is tilting. Therefore any tilting module can be written (in an
essentially unique way) as a direct sum of indecomposable tilting modules. Hence,
to describe all tilting G-modules it suffices to describe the indecomposable ones.

The following theorem answers this question; it gathers the results from Sec-
tion 5 in Appendix A, specialized to the case of the category Rep(G).

Theorem 1.3. For any λ ∈ X+, there exists a unique (up to isomorphism)
indecomposable tilting G-module T(λ) such that (T(λ) : N(λ)) = 1 and

(T(λ) : N(µ)) = 0 unless µ ⪯ λ.
Moreover, the assignment λ 7→ T(λ) induces a bijection between X+ and the set of
isomorphism classes of indecomposable tilting G-modules.

The indecomposable tilting G-modules (T(λ) : λ ∈ X+) will be the main object
of study in this chapter. Our goal will be to describe these modules in some simple
special cases, and explain why understanding these modules is relevant for the ques-
tion of computing characters of simple modules. Here, by “understanding” these
modules we mean computing their characters, or equivalently (see (1.2)) computing
the multiplicities (T(λ) : N(µ)) for λ, µ ∈ X+.

Remark 1.4. It follows from definitions that if V ∈ Rep(G) is tilting, then so
is V ∗. Of course, if V is moreover indecomposable then so is V ∗. In terms of the
parametrization in Theorem 1.3, weights considerations show that for any λ ∈ X+

we have T(λ)∗ ∼= T(−w0(λ)).

1.3. Stability by tensor product. The following theorem provides impor-
tant properties of tilting modules, which are very useful when trying to construct
new tilting modules out of known ones.

Theorem 1.5. (1) For any tilting G-modules M and N , the tensor prod-
uct M ⊗N is tilting.

(2) If M ∈ Tilt(G) and L ⊂ G is a Levi subgroup, then the restriction M|L is
a tilting L-module.

This theorem is sometimes stated as saying that the tensor product of two
modules admitting a costandard filtration (or the restriction to a Levi subgroup
of a module admitting a costandard filtration) admits a costandard filtration, or
similarly with standard filtrations. The various versions are in fact equivalent; see
e.g. Exercise 4.2.

This theorem admits several independent proofs:

(1) The first general proof was found by O. Mathieu [M1], after earlier proofs
imposing some technical assumptions by Wang and Donkin. The proofs of
Wang and Donkin are based on a case-by-case analysis and some (clever)
explicit computations. On the other hand Mathieu’s proof is uniform,
and based on geometric methods (and more precisely Frobenius splitting
techniques); see e.g. [J3, §G.15] for an exposition.
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(2) Lusztig later proved in [L5, §27.3] a result of crystal bases for quantum
groups that has Theorem 1.5 as a corollary (see [Kan] for details).

(3) Another general proof based on the Geometric Satake Equivalence was
recently found by R. Bezrukavnikov, D. Gaitsgory, I. Mirković, L. Rider
and the author in [BGMRR], based on an idea of Juteau–Mautner–
Williamson [JMW3].

See also [J3, §4.21] for other historical remarks. We will not review any of these
proofs here.

1.4. Tilting modules, blocks, and translation functors. For any λ ∈ X+,
since the tilting module T(λ) is indecomposable it must belong to the “block”
Rep(G)Waff ·pµ for some µ ∈ X (see §2.5 in Chapter 1). In fact, since we have
Hom(M(λ),T(λ)) ̸= 0 (see (1.1)) we in fact have

T(λ) ∈ Rep(G)Waff ·pλ.

In particular, this implies that (T(λ) : N(µ)) = 0 unless µ ∈Waff ·p λ.
As for the study of simple modules, the main tool we will use in the study of

indecomposable tilting modules are the translation functors. We begin with the
following general property.

Proposition 1.6. For any λ, µ ∈ X, the functor

Tµλ : Rep(G)Waff ·pλ → Rep(G)Waff ·pµ

sends tilting modules to tilting modules.

Proof. This property can be obtained as a consequence of Theorem 1.5, since
by Remark 2.19 in Chapter 1 the functor Tµλ can be described as the tensor prod-
uct with the indecomposable tilting module with highest weight the dominant W -
translate of µ− λ, followed by projection on the block attached to Waff ·p µ.

In case λ, µ ∈ C (which is the most interesting setting), this property can be
proved more directly by observing that Tµλ is exact and sends each N(w ·p λ) (with
w ∈Waff such that w ·p λ ∈ X+) to a module which admits a costandard filtration,
and dually for Weyl modules; see Proposition 2.27(4) in Chapter 1. □

As far as indecomposable tilting modules are concerned, the following result due
to Andersen describes what happens when translating to or from a “more singular”
weight. For details and references, see [J3, §II.E.11].

Proposition 1.7. Let λ, µ ∈ C ∩ X, and assume that µ belongs to the closure
of the facet of λ. Let w ∈ Waff such that w ·p µ ∈ X+, and assume moreover that
w ·p λ is maximal among the weights of the form wx ·p λ with x ∈ Stab(Waff ,·p)(µ).
Then we have

TλµT(w ·p µ) ∼= T(w ·p λ),
and TµλT(w ·p λ) is a direct sum of #(Stab(Waff ,·p)(µ)/Stab(Waff ,·p)(λ)) copies of
T(w ·p µ).

Using the results of §2.8 of Chapter 1, one can translate this proposition in
more Coxeter-theoretic terms.

Proposition 1.8. Let λ, µ ∈ C ∩ X, and assume that µ belongs to the closure

of the facet of λ. Let w ∈ fW
(µ)
aff . Then we have

TλµT(w ·p µ) ∼= T(w ·p λ),



1. TILTING MODULES FOR REDUCTIVE GROUPS 173

and TµλT(w ·p λ) is a direct sum of #(Stab(Waff ,·p)(µ)/Stab(Waff ,·p)(λ)) copies of
T(w ·p µ).

Remark 1.9. Let us note for later use the following extension of (part of) the

last claim in Proposition 1.8. Let λ, µ be as in the proposition, let w ∈ fW
(µ)
aff

and let x ∈ Stab(Waff ,·p)(µ), and assume that wx ∈ fW
(λ)
aff . If w′ ∈ fW

(µ)
aff and

x′ ∈ Stab(Waff ,·p)(µ) are such that w′x′ ≤ wx, then w′ ≤ w by [Dou, Lemma 2.2]. In
particular, if N(y ·pλ) is such that (T(wx·pλ) : N(y ·pλ)) ̸= 0, using Proposition 2.37
in Chapter 1 we see that TµλN(y ·p λ) is either 0 or of the form N(y′ ·p µ) for some

y′ ∈ fW
(µ)
aff such that y′ ≤ w. We deduce that w is maximal (for the Bruhat order)

in
{z ∈ fW

(µ)
aff | (T

µ
λT(wx ·p λ) : N(z ·p µ)) ̸= 0},

which implies that T(w ·p µ) is a direct summand in TµλT(wx ·p λ).

Assume for instance that p ≥ h, and that λ ∈ C. As explained in §2.8 of
Chapter 1, the weights in (Waff ·p µ) ∩ X+ are in a natural bijection with the

subset fW
(µ)
aff ⊂ Waff of elements w which are minimal in Ww and maximal in

wStab(Waff ,·p)(µ). For such w, the element w ·p λ is maximal among the weights
of the form wx ·p λ with x ∈ Stab(Waff ,·p)(µ), so that Proposition 1.7 applies, and
moreover all the latter weights are dominant (see in particular Remark 2.33). We
deduce the following formula.

Corollary 1.10. Assume that p ≥ h, and let λ ∈ C ∩X and µ ∈ C ∩X. Then

for any w, y ∈ fW
(µ)
aff and any x ∈ Stab(Waff ,·p)(µ) we have

(T(w ·p µ) : N(y ·p µ)) = (T(w ·p λ) : N(yx ·p λ)).

Proof. We have

(T(w ·p µ) : N(y ·p µ))
(1.1)
= dimk HomRep(G)(M(y ·p µ),T(w ·p µ))

= dimk HomRep(G)(T
µ
λM(yx ·p λ),T(w ·p µ))

by Proposition 2.37 in Chapter 1. By adjunction we deduce that

(T(w ·p µ) : N(y ·p µ)) = dimk HomRep(G)(M(yx ·p λ), TλµT(w ·p µ)).
The claim then follows from Proposition 1.7. □

Corollary 1.10 provides an explicit recipe for the computation of all multi-
plicities (T(λ) : N(µ)) once one knows these data in the special case when λ, µ ∈
(Waff · 0) ∩ X+ (assuming that p ≥ h).

1.5. First examples.
1.5.1. Minimal weights. As explained in §2.9.1 of Chapter 1, in case µ ∈ X+ is

minimal in (Waff ·p µ) ∩ X+, we have isomorphisms

M(µ) ∼= L(µ) ∼= N(µ).

In particular, this module is tilting in this case, and of course indecomposable. We
deduce that

T(µ) = L(µ).

This applies in particular if µ ∈ C ∩ X+, and if µ = (p − 1)ς in case there exists
ς ∈ X such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs.
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1.5.2. The alcove above the fundamental one. Now, assume that p ≥ h, so that
0 ∈ C, and that G is quasi-simple. Recall the simple reflection s◦ ∈ Saff ∖ S,
see §2.9.2 in Chapter 1, and choose a weight µ on the wall of C associated with
s◦. Then µ ∈ X+, and the considerations above show that T(µ) = L(µ). By
Proposition 2.27(3) in Chapter 1, there exist short exact sequences

N(0) ↪→ T 0
µL(µ) ↠ N(s◦ · 0),

M(s◦ ·p 0) ↪→ T 0
µL(µ) ↠ M(0).

These exact sequences show that T 0
µL(µ) is tilting (which could also have been

deduced from Proposition 1.6). In view of the description of N(s◦ · 0) in §2.9
of Chapter 1, we also know that T 0

µL(µ) has length three, with a filtration with
successive subquotients L(0), L(s◦ ·p 0), L(0). Since

Hom(T 0
µL(µ), L(s◦ ·p 0)) = Hom(L(µ), Tµ0 L(s◦ ·p 0)) = 0

(because Tµ0 L(s◦ ·p 0) = 0) and

Hom(T 0
µL(µ), L(0)) = Hom(L(µ), Tµ0 L(0)) = k,

the module T 0
µL(µ) has simple top (namely, L(0)), hence is irreducible. We have

thus proved that
T(s◦ ·p 0) = T 0

µL(µ).

(This could also have been obtained as an application of Proposition 1.7.) In
particular, the nonzero multiplicities (T(s◦ ·p 0) : N(λ)) are

(T(s◦ ·p 0) : N(s◦ ·p 0)) = 1 = (T(s◦ ·p 0) : N(0)).
1.5.3. The alcove above the Steinberg weight. Let us now assume that there

exists ς ∈ X such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs. Considerations similar to those
of §1.5.2 apply to show that

T(pς) = T pς(p−1)ςL((p− 1)ς),

that we have
(T(pς) : N((p− 1)ς + x(ς))) = 1

for any x ∈ W , and that these are the only nonzero multiplicities (T(pς) : N(λ)).
(Here again T(pς) has simple top and socle, isomorphic to L(pς − 2ρ).)

This tilting module plays a crucial role in the study of Soergel’s modular cate-
gory O in [S5], as explained in Section 3 in Chapter 1.

1.5.4. Tilting modules in the extended Steinberg block. We assume again that
there exists ς ∈ X such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs. Recall our conventions
on representations of G(1) from §2.4 in Chapter 1. For any dominant weight µ ∈
X∗(T(1)), we will denote by T(1)(µ) the associated indecomposable tilting G(1)-
module. Recall also the equivalence

Rep(G(1))
∼−→ RepStein(G)

considered in Corollary 2.42 of Chapter 1. Since this equivalence sends induced,
resp. Weyl, modules to induced, resp. Weyl, modules, it must send (indecompos-
able) tilting modules to (indecomposable) tilting modules. We deduce the following
claim.

Proposition 1.11. For any µ ∈ X∗(T(1)) dominant, we have

T((p− 1)ς)⊗ Fr∗G(T(1)(µ)) ∼= T((p− 1)ς + Fr∗T(µ)).
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1.6. Examples for classical groups. We now describe some tilting modules
for classical groups.

1.6.1. Special linear groups. Let us consider the setting of §1.4.1 of Chapter 1.
In this case, for any i ∈ {1, . . . , n − 1} we have seen that N(ωi) ∼=

∧
iV , and that

this module is also isomorphic to M(ωi) (see Exercise 1.6). It is therefore tilting.
Since it is indecomposable, we deduce that

T(ωi) ∼=
∧
iV.

See Exercise 4.3 for more details.

1.6.2. Symplectic groups. Now we consider the setting of §1.4.2 of Chapter 1.
The description of the induced modules explained there shows that for each m ≤ n,
the module

∧
mV admits a costandard filtrations. Since this module is self dual

(see (1.1) in Chapter 1), it also admits a standard filtration, hence is tilting. Con-
sidering highest weights we see that this module admits T(ωm) as a direct summand.
It is however not indecomposable in general. In fact, by [McN2, Proposition 6.3.5]
we have ∧

mV ∼=
⊕

e∈Y (m)

T(ωe),

where

Y (m) =

{
a ∈ {0, . . . ,m}

∣∣∣∣ a ≡ m (mod 2), p ∤
(

n− a
(m− a)/2

)}
.

(In case e = 0, ωe should be interpreted as 0.)

1.6.3. Odd orthogonal groups. We turn to the setting of §1.4.4 of Chapter 1. In
this case the modules

∧
mV (m ≤ n) are simple induced modules; they are therefore

tilting, and we have∧
mV ∼=

{
T(ωm) if m ≤ n− 1;

T(ε1 + · · ·+ εn) if m = n.

1.6.4. Even orthogonal groups. Finally, in the setting of §1.4.3 of Chapter 1, as
in §1.6.3 we have ∧

mV ∼=

{
T(ωm) if m ≤ n− 2;

T(ε1 + · · ·+ εn−1) if m = n− 1.

The case of
∧
nV is a bit more subtle since this module is not simple, already in

the characteristic-0 setting (see [FH, Theorem 19.2 and Exercise 24.43]). It can
however be treated as follows, following [McN1, Remark 3.4]. The description
of this module in characteristic 0 and Weyl’s character formula (Theorem 1.21 of
Chapter 1) imply that we have

ch
(∧

nV
)
= ch(N(2ωn−1)) + ch(N(2ωn)).

In particular, this module has at least two composition factors, namely L(2ωn−1)
and L(2ωn). Now, choose an orthogonal decomposition

V = L⊕H
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where L is a line and H an hyperplane. Then the special orthogonal group SO(H)
associated with the restriction of our symmetric bilinear form to H is an odd or-
thogonal group which identifies with a subgroup of G, and as SO(H)-modules we
have ∧

nV ∼=
∧
n−1H ⊕

∧
nH.

The considerations of §1.6.3 and duality imply that both direct summands in the
right-hand side are simple SO(H)-modules; therefore

∧
nV has length 2 as an

SO(H)-module, hence has length at most 2 as a G-module. Combining these two
facts we deduce that this module has length 2, with composition factors L(2ωn−1)
and L(2ωn), and that N(2ωn−1) and N(2ωn) are simple. We therefore have

N(2ωn) ∼= M(2ωn),

and using Proposition 2.5 of Chapter 1 we deduce that

Ext1Rep(G)(L(2ωn), L(2ωn−1)) = 0.

It finally follows that∧
nV ∼= L(2ωn−1)⊕ L(2ωn) ∼= T(2ωn−1)⊕ T(2ωn).

2. Tilting G-modules and injective bounded modules

In this section we explain the proof of a result of Jantzen [J1] which is the
key to the relation between characters of indecomposable tilting modules and of
simple modules. Our proof is essentially the same as that of [J1], rephrased in the
language of highest weight categories (which, in our opinion, makes it clearer).

2.1. Representations of the group scheme G1. Recall the Frobenius mor-
phism Fr : G → G(1), see §2.4 in Chapter 1. The Frobenius kernel G1 is the
scheme-theoretic kernel of Fr. Then G1 is a finite affine group scheme over k; in
other words its algebra of functions O(G1) is a finite-dimensional Hopf algebra over
k. In fact this Hopf algebra has a very concrete description, as follows. Consider
the Lie algebra g of G. As any Lie algebra of a group scheme over a field of char-
acteristic p, g has a “restricted p-th power” operation, denoted X 7→ X [p], see [J3,
§I.7.10]. (This operation is a nonlinear map from g to itself.) In the universal
enveloping algebra Ug, the elements of the form Xp −X [p] with X ∈ g are central;
they generate a subalgebra ZFr canonically isomorphic to O(g∗(1)). The restricted
enveloping algebra U0g of g is the quotient of Ug by the ideal generated by the
elements Xp − X [p] with X ∈ g. It is a finite-dimensional algebra, of dimension
pdim(G). Moreover, the natural Hopf algebra structure on Ug induces a Hopf algebra
structure on U0g, and there exists a canonical isomorphism of Hopf algebras

(2.1) O(G1) ∼= (U0g)∗;

see [J3, §I.9.6].
We will denote by Rep(G1) the category of finite-dimensional G1-modules. In

fact representations of the group scheme G1 are the same as comodules over O(G1),
which in turn are the same as modules for the algebra O(G1)

∗, hence (by (2.1)) as
modules over the (finite-dimensional) algebra U0g. In particular, in this category
we can consider the socle socG1

(M) (i.e. the largest semisimple submodule) and the
top topG1

(M) (i.e. the largest semisimple quotient) of a moduleM , and each simple
object N admits an injective hull characterized as the unique (up to isomorphism)
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injective module IN such that socG1
(IN ) ∼= N , and a projective cover characterized

as the unique projective module PN such that topG1
(PN ) ∼= N .

Since G1 is a subgroup scheme of G, there exists a canonical “restriction”
functor from Rep(G) to Rep(G1), which will be denoted M 7→ M|G1

. Using the
isomorphism (2.1), this functor can alternatively be described as follows. Differ-
entiating the G-action we obtain, for any V ∈ Rep(G), an action of Ug on (the
underlying vector space of) V . The elements of the form Xp−X [p] act trivially for
this structure; this action therefore factors through an action of U0g. The associ-
ated G1-module structure is the same as the one obtained by restriction along the
embedding G1 ⊂ G. Below we will use the important observation that for M in
Rep(G) the socle socG1

(M|G1
) is stable under the G-action, hence a G-submodule.

By [J3, Proposition I.9.5] the Frobenius morphism FrG induces an isomorphism
of k-group schemes

G/G1
∼−→ G(1).

In particular, a G-module is of the form Fr∗G(V ) for some G(1)-module V if and
only if its restriction to G1 is trivial.

One can classify the simple G1-modules in a way similar to the case of G,
replacing the Weyl modules by the baby Verma modules. Namely, let B+ be the
Borel subgroup of G opposite to B with respect to T, and let b+ be the Lie
algebra of B+. (In this way, the nonzero T-weights of b+ are the positive roots.)
As for G, we can consider the restricted enveloping algebra U0b+ of b+, and we
have a canonical injective algebra morphism U0b+ → U0g. For any λ ∈ X the 1-
dimensional B+-module kB+(λ) defines, by differentiation, a U0b+-module kb+(λ),
which depends only on the image of λ in X/pX. (Below this image will simply be
denoted λ.) The baby Verma module associated with λ is

Z(λ) := U0g⊗U0b+ kb+(λ),

seen as a G1-module via the identification (2.1).
For the following theorem, we refer to [J3, Proposition II.3.10].

Theorem 2.1. For any λ ∈ X, the top L1(λ) of Z(λ) is simple. Moreover, L1(λ)
only depends on the class of λ in X/pX, and the assignment λ 7→ L1(λ) induces a
bijection between X/pX and the set of isomorphism classes of simple G1-modules.

Recall the subset X+
res ⊂ X+ of restricted dominant weights defined in §2.4 of

Chapter 1. The relation between the simple G-modules and the simple G1-modules
is provided by the following classical result due to Curtis. (For a proof, see [J3,
Proposition II.3.15].)

Theorem 2.2. For any λ ∈ X+
res, the G1-module L(λ)|G1

is simple, and iso-
morphic to L1(λ).

In case D(G) is simply connected, the composition X+
res ↪→ X → X/pX is

surjective. (This follows from the existence of “fundamental weights,” i.e. weights
(ϖα : α ∈ Rs) such that ⟨ϖα, β

∨⟩ = δα,β for α, β ∈ Rs.) In this case, any
simple G1-module is therefore the restriction of a simple G-module. Under this
assumption, one can in fact describe the restriction of any simple G-module to G1

as follows. Let λ ∈ X+, and write λ = µ+pν with µ ∈ X+
res. (Such a decomposition

indeed exists, as explained in §2.4 in Chapter 1.) Then we have ν ∈ X+. Moreover,
the map Fr∗T : X∗(T(1))→ X given by the pullback under the Frobenius morphism
FrT is injective, with image pX; it follows that there exists ν̃ ∈ X∗(T(1)) such that
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pν = Fr∗T(ν̃). Since ν is dominant, so is ν̃ (for the conventions chosen in §2.4 of
Chapter 1). By Steinberg’s tensor product theorem (Theorem 2.9 in Chapter 1) we
then have

L(λ) ∼= L(µ)⊗ Fr∗G(L(1)(ν̃)),

which implies that

L(λ)|G1
∼= L1(µ)⊗ L(1)(ν̃),

where G1 acts trivially on L(1)(ν̃). In particular, L(λ)|G1
is always semisimple (and

more precisely a direct sum of copies of a single simple G1-module).
For later use, we note the following consequence.

Lemma 2.3. Assume that D(G) is simply connected. For λ ∈ X+, the G1-
module L(λ)|G1

is simple iff λ ∈ X+
res.

Proof. If λ ∈ X+
res, then L(λ)|G1

is simple by Theorem 2.2. On the other

hand, let λ ∈ X+ be such that L(λ)|G1
is simple. Write λ = µ + pν as above, so

that

L(λ)|G1
∼= L1(µ)⊗ L(1)(ν̃).

Then our assumption implies that dim(L(1)(ν̃)) = 1. In view of Lemma 1.19 in
Chapter 1 this implies that ⟨ν, α∨⟩ = 0 for any α ∈ R, hence that λ ∈ X+

res. □

Remark 2.4. If G is semisimple and simply connected the map X+
res → X/pX

considered above is a bijection. In general, this map induces a bijection

X+
res/pΠ

∼−→ X/pX,

where Π := {λ ∈ X | ∀α ∈ Rs, ⟨λ, α∨⟩ = 0} and pΠ acts on X+
res by addition. (Here,

restriction to T induces an isomorphism between the lattice of characters of G and
Π.)

Remark 2.5. An important difference between the representation theory of G
and that of G1 is that the set X/pX of labels of simple G1-modules has no partial
order having a representation-theoretic meaning. For instance, it is known that for
any w ∈W the G1-modules Z(λ) and Z(w ·p λ) have the same composition factors
(with multiplicities), see [H1, Theorem 2.2]. One way to fix this problem is to work
with G1T-modules; see Remark 2.8(1) below.

For λ ∈ X we will denote by Q(λ) the injective hull of the simple G1-module
L1(λ). (Once again, up to isomorphism, this module only depends on the class
of λ in X/pX.) As a special case of a general result on finite group schemes,
it is known that there exists an isomorphism of G1-modules O(G1) ∼= O(G1)

∗,
see [J3, Lemma I.8.7]; as a consequence, a G1-module is injective if and only if
it is projective. More precisely, by [J3, Equation II.11.5(4)], for any λ ∈ X the
G1-module Q(λ) is also the projective cover of L(λ).

2.2. Representations of G1T. The considerations of §2.1 have analogues
for the larger subgroup scheme G1T, defined as the preimage of T(1) under the
Frobenius morphism FrG : G → G(1) (or, in other words, the subgroup scheme
generated by G1 and T). Namely, the datum of a G1T-module structure on a
k-vector space V is equivalent to that of a G1-module structure (in other words,
an action of U0g) together with a T-module structure (i.e. an X-grading) such that
the restricted enveloping algebra U0t of t acts on the λ-graded part of V via the
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character U0t → k defined by the differential of λ, for any λ ∈ X. In particular,
each G1T-module has an action of T, hence we can speak of its T-weights.

The category of finite-dimensional representations of G1T will be denoted
Rep(G1T). We have natural “restriction” functors

Rep(G)→ Rep(G1T), Rep(G1T)→ Rep(G1),

which we will denote by V 7→ V|G1T, resp. V 7→ V|G1
. In terms of the description

above, the second functor corresponds to forgetting the T-action, i.e. the X-grading.
In this category we can again consider the socle socG1T(M) and the top topG1T(M)
of a G1T-module M , and each simple object has an injective hull and a projective
cover characterized as in the case of G1. Below we will use the fact that for
M ∈ Rep(G1T) we have

(2.2) socG1
(M|G1

) = socG1T(M)|G1
,

see [J3, Remark in §II.9.6].
For any λ ∈ X, the baby Verma module Z(λ) can be “lifted” to a G1T-module

Ẑ(λ), defined also as

Ẑ(λ) := U0g⊗U0b+ kb+(λ),

where T acts on kb+(λ) via the character λ, and U0g by multiplication on the left.

Now the G1T-module Ẑ(λ) really depends on λ, and not only on its class in X/pX.
In fact, for any λ ∈ X and µ ∈ X∗(T(1)) we have a canonical isomorphism

Ẑ(λ+ Fr∗T(µ))
∼= Ẑ(λ)⊗ kT(1)(µ),

where kT(1)(µ) is seen as a G1T-module via the canonical morphism G1T→ T(1).
The following theorem is an analogue of Theorem 2.1 and Theorem 2.2. For a

proof, see [J3, Proposition II.9.6].

Theorem 2.6. (1) For any λ ∈ X, the top L̂(λ) of Ẑ(λ) is simple. More-
over, for any λ ∈ X and µ ∈ X∗(T(1)) we have a canonical isomorphism

(2.3) L̂(λ+ Fr∗T(µ))
∼= L̂(λ)⊗ kT(1)(µ),

and the assignment λ 7→ L̂(λ) induces a bijection between X and the set of
isomorphism classes of simple G1T-modules.

(2) For any λ ∈ X, we have an isomorphism L̂(λ)|G1
∼= L1(λ).

(3) For any λ ∈ X+
res, the G1T-module L(λ)|G1T is simple, and isomorphic to

L̂(λ).

Let us note the following consequence for later use.

Corollary 2.7. For any λ ∈ X+
res we have L̂(λ)∗ ∼= L̂(−w0(λ)).

Proof. This follows from Theorem 2.6(3) and the corresponding isomorphism
for G-modules, see (1.4) in Chapter 1. □

As in §2.1, in case D(G) is simply connected, using Theorem 2.6 one can
describe the restriction to G1T of any simple G-module. Namely, let λ ∈ X+, and
write λ = µ + pν with µ ∈ X+

res and ν ∈ X. Then there exists a unique dominant
weight ν̃ for G(1) such that pν = Fr∗T(ν̃), and we have

L(λ)|G1T
∼= L̂(µ)⊗ L(1)(ν̃)|T(1) ,
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where G1T acts on L(1)(ν̃)|T(1) via the morphism G1T → T(1) induced by FrG.

(In other words, U0g acts trivially, and the X-grading is obtained from the action of
T(1) on L(1)(ν̃) by pullback along the map X∗(T(1))→ X induced by FrT.) Again,
this implies in particular that L(λ)|G1T is semisimple.

Remark 2.8. (1) Essentially, the representation theory does not change
when replacing G1 by G1T, except for the fact that the labelling set
X/pX is replaced by X. This replacement corrects the difficulty mentioned
in Remark 2.5, in that the order ⪯ also has a representation-theoretic

meaning for G1T; for instance, all the composition factors of Ẑ(λ) are

of the form L̂(µ) with µ ⪯ λ. But this fact creates other difficulties, in
particular because the poset (X,⪯) does not admit any minimal element.

(2) Any G1T-module is in particular a T-module, hence has a character.
If X ⊂ X is such that the composition X → X → X/pX is surjective,
the isomorphisms (2.3) reduce the question of determining the characters
of all simple G1T-modules to the case of modules parametrized by an
element in X. Assuming that DG is simply connected, and using this
observation in case X = X+

res, Theorem 2.6 shows that the question of
determining the characters of all simple G1T-modules is equivalent to
the question of determining the characters of the simple G-modules L(λ)
for λ ∈ X+

res, which is itself equivalent to the question of determining
characters of all simple G-modules by Steinberg’s tensor product theorem
(see §2.4 in Chapter 1).

We note the following fact for later use.

Lemma 2.9. For any λ ∈ X, the simple G1T-module L̂(2(p − 1)ρ − λ)∗ is a

composition factor of Ẑ(λ) with multiplicity 1.

Proof. By construction, Ẑ(λ) admits λ− 2(p− 1)ρ as a minimal weight (with

multiplicity 1). Hence Ẑ(λ)∗ admits 2(p − 1)ρ − λ as a maximal weight, so that

there exists a nonzero morphism of U0b+-T-modules kb+(2(p− 1)ρ− λ) → Ẑ(λ)∗.
Inducing to U0g we deduce a nonzero morphism of G1T-modules

Ẑ(2(p− 1)ρ− λ)→ Ẑ(λ)∗.

This implies that the top L̂(2(p − 1)ρ − λ) must appear as a composition factor

of Ẑ(λ)∗ (with multiplicity 1 since the weight 2(p − 1)ρ − λ has multiplicity 1).
Dualizing, we deduce the desired claim. □

For any λ ∈ X we will denote by Q̂(λ) the injective hull of the simple G1T-

module L̂(λ) in the category Rep(G1T); by [J3, §II.11.3] we then have

(2.4) Q̂(λ)|G1
∼= Q(λ).

Moreover, for λ ∈ X and µ ∈ X∗(T(1)) we have a canonical isomorphism

(2.5) Q̂(λ+ Fr∗T(µ))
∼= Q̂(λ)⊗ kT(1)(µ),

and Q̂(λ) is also the projective cover of L̂(λ) in the category of G1T-modules.
These objects behave in a way similar to injective objects in highest weight cate-
gories, as shown by the following result due to Humphreys. (For a proof, see [J3,
Proposition II.11.4].)
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Proposition 2.10. For any λ ∈ X, the G1T-module Q̂(λ) admits a filtration

with subquotients of the form Ẑ(µ) with µ ∈ X. Moreover, the number of occurrences

of Ẑ(µ) in such a filtration does not depend on the choice of filtration, and is equal

to the multiplicity [Ẑ(µ) : L̂(λ)] of L̂(λ) as a composition factor of Ẑ(µ).

The multiplicity in Proposition 2.10 is denoted (Q̂(λ) : Ẑ(µ)).
Below we will also use the following property, for which we refer to [J3, Propo-

sition II.10.2]. Here we assume (as e.g. in §2.10) that there exists a weight ς ∈ X
such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs.

Proposition 2.11. The Steinberg module L((p−1)ς) is injective and projective
as a G1-module and as a G1T-module. As a consequence we have

Q̂((p− 1)ς) = Ẑ((p− 1)ς) = L̂((p− 1)ς) = L((p− 1)ς)|G1T.

2.3. Existence of a G-module structure on injective hulls. For the rest
of this section we assume that D(G) is simply connected, and we fix a weight ς ∈ X
such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs.

The following definition is ad-hoc, and will be used only in the current chapter.
(This notion is taken from [J1], although our definition is slightly different.)

Definition 2.12. We say that a G-module V is p-bounded if for any weight µ
of V and any dominant short root α we have ⟨µ, α∨⟩ ≤ ⟨(2p− 1)ς, α∨⟩.

Remark 2.13. The coroots of the form α∨ with α a dominant short root are
exactly the coroots which are maximal (for the standard order). There are as many
such coroots as irreducible components in the root system of (G,T), and for such
α the integer ⟨ς, α∨⟩ + 1 is the Coxeter number of the corresponding component.
The main property we will use is that if λ ∈ X+ ∩ ZR, then we have ⟨λ, α∨⟩ ≥ 2
for some dominant short root α. (In fact, the nonzero dominant weights λ such
that ⟨λ, α∨⟩ ∈ {0, 1} for any α ∈ R+ are the minuscule dominant weights. It is
a standard fact that these weights are representatives for the nontrivial cosets in
X/ZR; in particular, none of them belongs to ZR.)

We will denote by X+
b the subset of X+ consisting of the dominant weights µ

which satisfy ⟨µ, α∨⟩ ≤ ⟨(2p − 1)ς, α∨⟩ for any dominant short root α. We will
also denote by Repb(G) the category of finite-dimensional p-bounded G-modules,
i.e. the Serre subcategory of Rep(G) generated by the simple modules L(µ) with
µ ∈ X+

b . The subset X+
b ⊂ X+ is an ideal for ⪯; therefore the category Repb(G)

has a natural highest weight structure, see Lemma 1.4(2) in Appendix A. Moreover,
each block in Rep(G) has only finitely many p-bounded simple modules; therefore
this category has enough injective (and projective) objects, see Theorem 2.1 in
Appendix A. For λ ∈ X+

b , we will denote by R(λ) the injective hull of L(λ) in
Repb(G).

Note that if λ is a restricted dominant weight then ⟨λ, α∨⟩ ≤ ⟨(p− 1)ς, α∨⟩ for
any simple root, hence for any positive root. As a consequence, we have X+

res ⊂ X+
b .

The main result of the present subsection is the following.

Theorem 2.14. Assume that p ≥ 2h − 2. For any λ ∈ X+
res, we have an

isomorphism of G1-modules
R(λ)|G1

∼= Q(λ).

In particular, Q(λ) admits a structure of G-module.
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2.4. Preliminaries. We start with some preliminary results. As in §2.4 of
Chapter 1, in addition to G-modules we will consider G(1)-modules, and we will
use the same conventions and notation as in this subsection. We will also denote by
R(1) ⊂ X∗(T(1)) the root system of (G(1),T(1)), by ρ(1) the halfsum of the positive

roots, by C(1) ⊂ R ⊗Z X
∗(T(1)) the corresponding fundamental alcove, and W

(1)
aff

the associated affine Weyl group. Here the Weyl group of (G(1),T(1)) identifies

canonically with W , so that we have W
(1)
aff =W ⋉ ZR(1).

Let M,N ∈ Rep(G). Then the vector space HomG1
(M,N) admits a natural

structure of module overG/G1
∼= G(1). By the linkage principle (see Corollary 2.14

in Chapter 1) for the group G(1), we have a canonical decomposition as G(1)-
modules

HomG1
(M,N) =

⊕
ν∈C(1)∩X∗(T(1))

Homν
G1

(M,N)

where all the composition factors of Homν
G1

(M,N) are of the form L(1)(λ) with λ

in the orbit of ν under the dot-action ofW
(1)
aff . Of course, we then have an inclusion

HomG(M,N) = (HomG1(M,N))G
(1)

⊂ Hom0
G1

(M,N).

The following lemma is the key step for the later proofs in this section.

Lemma 2.15. Assume that p ≥ 2h − 2. Let M,N ∈ Rep(G), such that M is
p-bounded and socG1

(N), resp. topG1
(N), is simple. Then the embedding

HomG(M,N) ⊂ Hom0
G1

(M,N), resp. HomG(N,M) ⊂ Hom0
G1

(N,M),

is an equality.

Proof. We explain the proof of the first variant; the other variant follows by
duality (or directly by similar arguments). We therefore assume that socG1

(N) is
simple. As explained in §2.1, this socle is a sub-G-module of N , which has to be
simple as G-module, hence isomorphic to L(λ) for some λ ∈ X+. By Lemma 2.3 we
have λ ∈ X+

res, and then by Theorem 2.2 and Theorem 2.6 (see also (2.2)) we have

socG1
(N) ∼= L1(λ), socG1T(N) ∼= L̂(λ).

We have

HomG(M,N) = (HomG1
(M,N))G

(1)

= (Hom0
G1

(M,N))G
(1)

;

since L(1)(0) has no nontrivial self-extensions (as follows e.g. from Proposition 2.5 in
Chapter 1), to prove our claim it therefore suffices to show that all the composition
factors of the G(1)-module Hom0

G1
(M,N) are isomorphic to L(1)(0). Assume the

contrary; then this module admits a composition factor of the form L(1)(µ) with

µ ∈ W
(1)
aff ·p 0 ∖ {0}. Write µ = (tµ′v) ·p 0 with µ′ ∈ ZR(1) and v ∈ W . Then

the considerations of §2.8 in Chapter 1 show that µ′ is dominant and nonzero. By
Remark 2.13, it follows that ⟨µ′, α∨⟩ ≥ 2 for some short dominant root α of G(1).
We deduce that

(2.6) ⟨µ, α∨⟩ = ⟨pµ′ + vρ(1) − ρ(1), α∨⟩

≥ 2p+ ⟨ρ(1), v−1α∨⟩ − ⟨ρ(1), α∨⟩ ≥ 2p− 2⟨ρ(1), α∨⟩,

because v−1α∨ is a coroot in the same component as α∨.
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On the other hand, the T-module Hom0
G1

(M,N) has a nonzero weight space
for the weight Fr∗T(w0(µ)) = w0(Fr

∗
T(µ)). Hence there exists a nonzero morphism

of G1T-modulesM⊗kT(1)(w0(µ))→ N . The image of this morphism must contain
socG1T(N); therefore M admits a nonzero vector of T-weight λ− w0Fr

∗
T(µ). The

image of R(1) under the embedding Fr∗T : X∗(T(1)) → X is pR. If we denote by
β ∈ R the dominant short root such that Fr∗T(α) is pβ, then the image of β∨ under
the morphism X∗(T)→ X∗(T

(1)) is pα∨. Since M is p-bounded, we then have

⟨λ− w0Fr
∗
T(µ),−w0β

∨⟩ ≤ (2p− 1)⟨ρ,−w0β
∨⟩.

Since λ is dominant, we deduce that

p⟨µ, α∨⟩ = ⟨Fr∗T(µ), β∨⟩ ≤ (2p− 1)⟨ρ, β∨⟩ = (2p− 1)⟨ρ(1), α∨⟩.

This inequality contradicts (2.6) as soon as p ≥ 2⟨ρ(1), α∨⟩, which is automatic if
p ≥ 2h− 2 (since the Coxeter number of G(1) is the same as that of G). □

The first consequence of Lemma 2.15 we will consider is the following.

Corollary 2.16. Assume that p ≥ 2h− 2. Let M be a p-bounded G-module,
and assume that M admits a unique simple sub-G-module, isomorphic to L(λ) for
some λ ∈ X+

res. Then socG1
(M) = L1(λ); in particular, M is indecomposable as a

G1-module.

Proof. Our assumption implies that any nonzero sub-G-module of M admits
a unique simple submodule, hence is indecomposable. This applies in particular to
the submodule socG1

(M) (see §2.1). If we choose a subset Λ ⊂ X+
res of representa-

tives for the quotient X/pX which contains λ (see Remark 2.4), then as G-modules
we have

socG1(M) =
⊕
µ∈Λ

HomG1(L(µ),M)⊗ L(µ)

=
⊕
µ∈Λ

⊕
ν∈C(1)∩X∗(T(1))

Homν
G1

(L(µ),M)⊗ L(µ).

By indecomposability, there exists exactly one pair (µ, ν) such that

Homν
G1

(L(µ),M) ̸= 0.

Since HomG(L(λ),M) ̸= 0, this pair must be (λ, 0), and by Lemma 2.15 (in its
second variant) we have

Hom0
G1

(L(λ),M) = HomG(L(λ),M) = k.

The claim follows. □

2.5. Proof of Theorem 2.14. We can now give the proof of Theorem 2.14.

Proof of Theorem 2.14. We assume that p ≥ 2h− 2, and fix λ ∈ X+
res. Let

us assume that there exists a G-module M which is p-bounded, which contains
L(λ) as a G-submodule, and which is injective as a G1-module. Then since R(λ)
is injective in Repb(G) the embedding L(λ) ↪→ R(λ) factors through a G-module
morphism M → R(λ). On the other hand, since M is injective as a G1-module and
contains L(λ) in its socle as a G1-module, it contains Q(λ) as a direct summand.

Consider now the composition Q(λ) ↪→M → R(λ), a morphism of G1-modules.
This morphism is injective on the G1-socle of Q(λ), hence is injective. Since Q(λ)
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is injective, its image must be a direct summand of R(λ) as a G1-module. On the
other hand, it follows from Corollary 2.16 that R(λ) is indecomposable as a G1-
module; hence our morphism Q(λ) → R(λ) is an isomorphism, which proves the
desired isomorphism.

To finish the proof, it remains to show the existence of a G-moduleM as above.
Since λ ∈ X+

res, we have (p − 1)(2ρ − ς) + w0λ ∈ X+. Hence we can consider the
G-module

M = L
(
(p− 1)(2ρ− ς) + w0λ

)
⊗ L
(
(p− 1)ς

)
.

We claim that this module satisfies the desired properties. Indeed we have

HomG(L(λ),M) = HomG

(
L(λ)⊗ L((p− 1)ς − λ), L((p− 1)ς)

)
∼= HomB

(
L(λ)⊗ L((p− 1)ς − λ),kB((p− 1)ς)

)
by Frobenius reciprocity, since L((p− 1)ς) = N((p− 1)ς) (see §2.10 in Chapter 1).
Now (p−1)ς is maximal among the T-weights of L(λ)⊗L((p−1)ς−λ); hence there
exists a nonzero morphism of B-modules L(λ)⊗L((p−1)ς−λ)→ kB((p−1)ς), from
which we obtain a nonzero (hence injective) morphism of G-modules L(λ) → M .
On the other hand, for any µ ∈ wt(M) and any dominant short root α we have

⟨µ, α∨⟩ ≤ ⟨2(p− 1)ρ+ w0λ, α
∨⟩ ≤ ⟨(2p− 1)ρ, α∨⟩

since λ is dominant, so thatM is p-bounded. Finally,M is injective as aG1-module
because so is L((p− 1)ς), see Proposition 2.11. □

Remark 2.17. In the proof above, the morphism of G-module M → R(λ) is
surjective, so that each weight of R(λ) is also a weight of M . Using the choice of
M considered in this proof, we deduce that

µ ∈ wt(R(λ)) ⇒ µ ⪯ 2(p− 1)ρ+ w0λ.

Once Theorem 2.14 is proven we obtain the following slightly more precise
claim.

Corollary 2.18. Assume that p ≥ 2h − 2. For any λ ∈ X+
res we have an

isomorphism of G1T-modules

R(λ)|G1T
∼= Q̂(λ).

Proof. Since R(λ) is injective as a G1-module by Theorem 2.14, it is also in-
jective as a G1T-module (see [J3, Lemma II.9.4]). Since there exists an embedding
of G-modules L(λ) ↪→ R(λ), in view of Theorem 2.6 there also exists an embedding

of G1T-modules L̂(λ) ↪→ R(λ)|G1T, so that R(λ)|G1T contains Q̂(λ) as a direct
summand. Finally, since

dim(R(λ)) = dim(Q(λ)) = dim(Q̂(λ))

(see (2.4)), we deduce the desired claim. □

2.6. Relation with tilting modules. We now explain the connection of
Theorem 2.14 with the main topic of this chapter, namely tilting modules.

For any λ ∈ X+
b , since the object R(λ) is injective in the highest weight category

Repb(G), it admits a costandard filtration, and satisfies the reciprocity formula

(R(λ) : N(µ)) = [M(µ) : L(λ)]

for any µ ∈ X+
b , see Theorem 2.1 in Appendix A.
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The subset X+
b ⊂ X+ is stable under the operation µ 7→ −w0µ. In view of (1.4)

in Chapter 1, the subcategory Repb(G) ⊂ Rep(G) is therefore stable under the
duality operation V 7→ V ∗.

Lemma 2.19. Assume that p ≥ 2h − 2. Let M ∈ Repb(G) and µ ∈ X+
res, and

assume that we have M|G1T
∼= Q̂(µ). Then M ∼= R(µ) (as G-modules).

Proof. Since M|G1T
∼= Q̂(µ), we have M|G1

∼= Q(µ) (see (2.4)), and in par-
ticular socG1

(M) is simple. By Lemma 2.15 (in its first variant) we deduce that

HomG(L(µ),M) = Hom0
G1

(L(µ),M), HomG(R(µ),M) = Hom0
G1

(R(µ),M).

Since M is injective as a G1-module, the embedding L(µ) ↪→ R(µ) induces a sur-
jection

HomG1
(R(µ),M) ↠ HomG1

(L(µ),M),

hence a surjection

Hom0
G1

(R(µ),M) ↠ Hom0
G1

(L(µ),M),

so that finally the induced morphism

HomG(R(µ),M)→ HomG(L(µ),M)

is surjective. Now since the socle of M as a G1T-module is L̂(µ) = L(µ)|G1T,
this G-module contains a unique simple sub-G-module, isomorphic to L(µ). The
surjectivity proved above implies that the embedding L(µ) ↪→M factors through a
morphism of G-modules R(µ)→M . Since this morphism is injective on the unique
simple submodule L(µ) of R(µ), it is injective; comparing the dimensions of R(µ)
and M we conclude that it is an isomorphism, which finishes the proof. □

Corollary 2.20. Assume that p ≥ 2h − 2. For λ ∈ X+
res we have R(λ)∗ ∼=

R(−w0λ).

Proof. Fix λ ∈ X+
res. Since, by Corollary 2.18, R(λ) is isomorphic to Q̂(λ) as a

G1T-module, R(λ)∗ is the projective cover of L̂(λ)∗ = L̂(−w0λ) (see Corollary 2.7)

as a G1T-module, hence is isomorphic (as a G1T-module) to Q̂(−w0λ), see §2.2.
By Lemma 2.19 we deduce that R(λ)∗ ∼= R(−w0λ), as desired. □

We finally obtain the desired relation between the modules considered above
and tilting modules.

Proposition 2.21. Assume that p ≥ 2h− 2. For any λ ∈ X+
res, the G-module

R(λ) is tilting, and isomorphic to T(2(p− 1)ρ+ w0λ).

Proof. Fix λ ∈ X+
res. As explained at the beginning of this subsection R(λ)

admits a costandard filtration. On the other hand, it follows from Corollary 2.20
that R(λ)∗ admits a costandard filtration; hence R(λ) admits a standard filtration,
and is therefore tilting. This G-module is indecomposable by assumption; hence to
conclude it only remains to determine its highest weight.

First, we have observed in Remark 2.17 that all the weights µ of R(λ) satisfy

µ ⪯ 2(p−1)ρ+w0λ. On the other hand, we have R(λ) ∼= Q̂(λ) as G1T-modules by

Corollary 2.18. By Lemma 2.9, the baby Verma module Ẑ(2(p− 1)ρ+w0λ) admits

L̂(−w0λ)
∗ as a composition factor. Now we have L̂(−w0λ)

∗ ∼= L̂(λ) by Corollary 2.7.

By reciprocity (see Proposition 2.10) we deduce that Ẑ(2(p − 1)ρ + w0λ) appears
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as a subquotient in a filtration of Q̂(λ), hence that 2(p − 1)ρ + w0λ is a T-weight

of Q̂(λ). Corollary 2.18 then implies that 2(p− 1)ρ+ w0λ occurs as a T-weight of
R(λ), hence is its highest weight, which finishes the proof. □

2.7. Donkin’s conjecture. Combining Proposition 2.21 and Theorem 2.14,
resp. Corollary 2.18, we obtain that for λ ∈ X+

res, if p ≥ 2h− 2 we have

(2.7) T(2(p− 1)ρ+ w0λ)|G1
∼= Q(λ),

resp.

(2.8) T(2(p− 1)ρ+ w0λ)|G1T
∼= Q̂(λ).

(In fact, since we know a priori that Q̂(λ) has highest weight 2(p− 1)ρ+ w0λ, see
the proof of Proposition 2.21, these two properties are equivalent.)

It has been conjectured by Donkin in [D1] that (2.7) holds for any λ ∈ X+
res,

for any value of p. This conjecture was believed to be true for a long time, until
a counterexample was been found by Bendel–Nakano–Pillen–Sobaje [BNPS1] for
the simple group of type G2 in characteristic 2. In fact it is always true, and easy to
see, that for any µ ∈ (p− 1)ς +X+ (hence, in particular, when µ = 2(p− 1)ρ+w0λ
for some λ ∈ X+

res) the restriction T(µ)|G1
is injective: this follows from the fact

that the tensor product

T
(
µ− (p− 1)ς

)
⊗ T

(
(p− 1)ς

)
is tilting by Theorem 1.5, and has µ as its highest weight, hence admits T(µ) as
a direct summand. Now this tensor product is injective as a G1-module because
so it T((p − 1)ς) ∼= L((p − 1)ς) (see §1.5) by Proposition 2.11, hence the same
holds for T(µ). The more delicate question is wether or not T(2(p− 1)ρ+ w0λ) is
indecomposable as a G1-module when λ ∈ X+

res; the precise condition on p which
guarantees that this property holds is unclear at this point.

Remark 2.22. (1) As explained above, it is expected that the isomor-
phisms (2.7)–(2.8) still holds for some prime numbers p < 2h−2. However
Theorem 2.14 no longer holds in this case, as noticed by Humphreys (and
explained in [J1, §4.6]).

(2) The question of the validity of the isomorphism (2.7)–(2.8) has been stud-
ied intensively in a series of paper by Bendel–Nakano–Pillen–Sobaje. In
addition to the counterexamples in small characteristic mentioned above,
these authors have improved in [BNPS2] the bound that guarantees its
validity to p ≥ 2h − 4, and in [BNPS2, Proposition 2.4.1] they show
that, assuming p ≥ h, this formula follows in general if one proves it when
λ ∈ (Waff ·p 0) ∩ X+

res.

3. Applications

In this section we continue to assume (for simplicity) that DG is simply con-
nected, and fix a weight ς ∈ X such that ⟨ς, α∨⟩ = 1 for any α ∈ Rs. Our goal is to
explain some applications of the results of Section 2.
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3.1. Donkin’s tensor product formula. The first application we will con-
sider is some sort of analogue of Steinberg’s tensor product formula (Theorem 2.9
in Chapter 1), due to Donkin. Here we continue with our conventions on represen-
tations of G(1) from §1.5.4 and §2.4 in this chapter, and §2.4 of Chapter 1.

Theorem 3.1. For any λ ∈ X+
res and any µ ∈ X∗(T(1)) dominant, the G-

module

T((p− 1)ς + λ)⊗ Fr∗G(T(1)(µ))

is tilting, of highest weight (p−1)ς+λ+Fr∗T(µ). If T((p−1)ς+λ) is indecomposable
as a G1-module, then we have

T((p− 1)ς + λ)⊗ Fr∗G(T(1)(µ)) ∼= T
(
(p− 1)ς + λ+ Fr∗T(µ)

)
.

Remark 3.2. (1) For µ ∈ X∗(T(1)) dominant, it is not true in general
that Fr∗G(T(1)(µ)) is tilting; it is only its tensor product with each T((p−
1)ς + λ) (λ ∈ X+

res) which has this property.
(2) As explained in §2.7, the assumption in the second sentence of Theorem 3.1

is known to be satisfied in all cases when p ≥ 2h− 4.

Proof. By Theorem 1.5 the module T((p−1)ς)⊗T(λ) is tilting, and its admits
(p−1)ς+λ as its highest weight; it must therefore admit T((p−1)ς+λ) as a direct
summand. Now we have

T((p− 1)ς)⊗ T(λ)⊗ Fr∗G(T(1)(µ)) ∼= T((p− 1)ς + Fr∗T(µ))⊗ T(λ)

by Proposition 1.11, and the right-hand side is tilting by Theorem 1.5. It follows
that T((p−1)ς+λ)⊗Fr∗G(T(1)(µ)) is tilting, as desired. It is clear that this module
has highest weight (p− 1)ς + λ+ Fr∗T(µ).

Now, let us assume that T((p − 1)ς + λ) is indecomposable as a G1-module.
Then we have algebra isomorphisms

EndG(T((p− 1)ς + λ)⊗ Fr∗G(T(1)(µ)))

=
(
EndG1(T((p− 1)ς + λ)⊗ Fr∗G(T(1)(µ)))

)G(1)

∼=
(
EndG1

(T((p− 1)ς + λ))⊗ Endk(T
(1)(µ))

)G(1)

because G1 acts trivially on Fr∗G(T(1)(µ)). Our assumption implies that the algebra
EndG1(T((p−1)ς+λ)) is local, hence that its Jacobson radical is a nilpotent G(1)-
stable ideal which satisfies EndG1

(T((p− 1)ς + λ)) = k · id⊕I. We deduce that(
EndG1(T((p− 1)ς + λ))⊗ Endk(T

(1)(µ))
)G(1)

= EndG(1)(T(1)(µ))⊕
(
I ⊗ Endk(T

(1)(µ))
)G(1)

,

where (I ⊗Endk(T
(1)(µ)))G

(1)

is a nilpotent ideal. Since EndG(1)(T(1)(µ)) is local,
this implies that EndG(T((p − 1)ς + λ) ⊗ Fr∗G(T(1)(µ))) is local, i.e. that T((p −
1)ς + λ)⊗ Fr∗G(T(1)(µ)) is indecomposable, as desired.

Finally, if p ≥ 2h− 2, the module T((p− 1)ς + λ) is indecomposable as a G1-
module by (2.7). (Note that {2(p − 1)ρ + w0µ : µ ∈ X+

res} = {(p − 1)ς + λ : λ ∈
X+

res} = {ν ∈ X | ∀α ∈ Rs, p− 1 ≤ ⟨ν, α∨⟩ ≤ 2(p− 1)}.) □
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As noted above, Theorem 3.1 can be considered as an analogue of Steinberg’s
tensor product formula. There is however one important difference: while Stein-
berg’s formula reduces the determination of characters of simple modules to the
case the highest weight is restricted, which only involves a finite number of clo-
sures of alcoves (see §2.4 of Chapter 1), the analogous comment does not apply to
tilting modules; in fact this formula reduces the question of describing characters
of indecomposable tilting modules to the case when the highest weight belongs to
X+ ∖ ((p − 1)ς + X+), which involves infinitely many closures of alcoves unless G
is of type A1.

3.2. The case when G = SL2(k). In this subsection we consider the case
G = SL2(k), and use the notation from Example 2.10 of Chapter 1. In particular,
we identify G(1) with G in the natural way. In this case h = 2, so that the condition
p ≥ 2h− 2 in Theorem 3.1 is always satisfied, and this result does allow to describe
all indecomposable tilting modules, as we will explain.

Recall that we have X+ = {rϖ1 : r ∈ Z≥1}. The considerations of §1.5.1 show
that for r ∈ {0, . . . , p− 1} we have

T(rϖ1) = N(rϖ1) = L(rϖ1),

so that this module is described in §1.4.1 of Chapter 1.
Next, the considerations of §1.5.2 show that we have an exact sequence

N(0) ↪→ T((2p− 2)ϖ1) ↠ N((2p− 2)ϖ1).

Using an appropriate translation functor, we deduce that for any j ∈ {0, . . . , p− 2}
the module T((p+ j)ϖ1) fits in a short exact sequence

(3.1) N((p− 2− j)ϖ1) ↪→ T((p+ j)ϖ1) ↠ N((p+ j)ϖ1).

Example 3.3. In case j = 0, one has an even more explicit description of
T(pϖ1): one can easily check that

T(pϖ1) = N(ϖ1)⊗ N((p− 1)ϖ1).

If now r ≥ 2p− 1, we can write r = (p− 1)+ s+ pt with s ∈ {0, . . . , p− 1} and
t ∈ Z≥0. Theorem 3.1 then says that

(3.2) T(rϖ1) ∼= T((p− 1 + s)ϖ1)⊗ T(tϖ1)
(1),

where T((p − 1 + s)ϖ1) is described above and T(tϖ1) can be considered known
since t < r. This provides an inductive description of tilting modules.

Remark 3.4. If r ∈ {0, . . . , p− 2}, then dimT(rϖ1) = r+1; in particular this
dimension is not divisible by p. On the other hand, we have dimT((p− 1)ϖ1) = p,
and if j ∈ {0, . . . , p− 2} the exact sequence (3.1) shows that

dimT((p+ j)ϖ1) = (p+ j + 1) + (p− 2− j + 1) = 2p;

in particular, this dimension is divisible by p. Once this is known, (3.2) implies
that p divides dimT(rϖ1) for any r ≥ p− 1. In conclusion, p divides dimT(rϖ1) if
and only if r ≥ p−1. This property is in fact a special case of a result of Georgiev–
Mathieu saying that for a general connected reductive group G, if p ≥ h then
dim(T(λ)) is divisible by p if and only if λ /∈ C; see [M2, Lemma 9.3] or [AHR,
Proposition 7.9].

To make this description more explicit, one proceeds as follows, following [EH].
Let us start with an elementary combinatorial lemma.
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Lemma 3.5. (1) Any n ∈ Z≥0 can be written uniquely as

n =

r∑
i=0

nip
i with p− 1 ≤ ni ≤ 2p− 2 for i ∈ {0, . . . , r − 1} and 0 ≤ nr ≤ p− 1.

(2) Write n =
∑r
i=0 nip

i with p− 1 ≤ ni ≤ 2p− 2 for i ∈ {0, . . . , r − 1} and
0 ≤ nr ≤ p− 1. Then the numbers of the form

m =

r−1∑
i=0

mip
i + nrp

r

with mi ∈ {ni, 2p−2−ni} for i ∈ {0, . . . , r−1} are all distinct for distinct
choices of the mi’s.

Proof. (1) Let us first prove existence by induction. If n ∈ {0, . . . , p−1} we set
r = 0 and n0 = n. Then if n > p− 1 one writes n = s+ pb with s ∈ {0, . . . , p− 1}
and b ∈ Z≥1. If s = p − 1 one sets n0 = p − 1 and uses the decomposition of
b. Otherwise we write n = (s + p) + p(b − 1), choose n0 = s + p, and use the
decomposition of b− 1.

For unicity, we again argue by induction. If n ∈ {0, . . . , p− 1}, it is clear that
the only possible choice is r = 0 and n0 = n. Then if r > 1, n0 is determined by
the remainder of n modulo p, and the claim follows.

(2) Again, we argue by induction on n. First, assume that p ̸= 2. If n ∈
{0, · · · , p− 1} there is only one such integer. If r > 1 and n0 = p− 1, then there is
only one choice form0, and we conclude using the claim for (n−n0)/p. If n0 ̸= p−1,
then there are two choices for m0. But n0 and 2p−2−n0 have different remainders
modulo p, so that the numbers produced out of these choices must be distinct, and
again we conclude by induction.

Finally, assume that p = 2. In this case, there is one choice for mi (namely,
mi = 1) if ni = 1, and two choices (namely, mi = 0 or mi = 2) if ni = 2. What we
have to observe is therefore that for any finite subset I ⊂ Z≥0, the numbers of the
form

∑
i∈I mi2

i with mi ∈ {0, 2} are all distinct, which is clear. □

Writing n =
∑r
i=0 nip

i with p − 1 ≤ ni ≤ 2p − 2 for i ∈ {0, . . . , r − 1} and
0 ≤ nr ≤ p− 1, the formula (3.2) implies that

T(nϖ1) ∼=
r⊗
i=0

T(ni ·ϖ1)
(i).

To deduce information about multiplicities, we will use the following lemma.

Lemma 3.6. Let n ∈ Z≥0.

(1) We have T((p− 1)ϖ1)⊗ N(nϖ1)
(1) ∼= N((p− 1 + pn)ϖ1).

(2) For any j ∈ {0, . . . , p−2} there exists a short exact sequence of G-modules

N((p− 2− j + pn)ϖ1) ↪→ T((p+ j)ϖ1)⊗ N(nϖ1)
(1) ↠ N((p+ j + pn)ϖ1).

Proof. The isomorphism (1) is a special case of Proposition 2.40 in Chapter 1,
since T((p− 1)ϖ1) = N((p− 1)ϖ1).

To deduce (2), one notes the following. The Waff -orbits in X are parametrized
by X∩C = {−ϖ1, 0, · · · , (p−1)ϖ1}. Let us denote by σ the permutation of this set
defined by σ(jϖ1) = (p−2− j)ϖ1. Then by Remark 2.15(4) we have the following:
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• if n is even and M belongs to Rep(G)Waff ·λ, then M ⊗N(nϖ1)
(1) belongs

to Rep(G)Waff ·λ;
• if n is odd and M belongs to Rep(G)Waff ·λ, then M ⊗ N(nϖ1)

(1) belongs
to Rep(G)Waff ·σ(λ).

This claim implies that for λ ∈ X ∩ C and M in Rep(G)(p−1)ϖ1
, in case n is even

we have

Tλ(p−1)ϖ1
(M ⊗ N(nϖ1)

(1)) ∼= Tλ(p−1)ϖ1
(M)⊗ N(nϖ1)

(1),

and in case n is odd we have

T
σ(λ)
−ϖ1

(M ⊗ N(nϖ1)
(1)) ∼= Tλ(p−1)ϖ1

(M)⊗ N(nϖ1)
(1).

Now we fix j ∈ {0, . . . , p − 2}. Using this observation and the fact that T((p +

j)ϖ1) = T
(p−2−j)ϖ1

(p−1)ϖ1
T((p− 1)ϖ1) by Proposition 1.7, we obtain that

T((p+ j)ϖ1)⊗ N(nϖ1)
(1) ∼=

{
T

(p−2−j)ϖ1

(p−1)ϖ1
(N((p− 1 + pn)ϖ1)) if n is even;

T jϖ1

−ϖ1
(N((p− 1 + pn)ϖ1)) if n is odd.

We conclude using Proposition 2.27(3) in Chapter 1. □

We can finally deduce the desired multiplicities, as follows.

Proposition 3.7. Let n ∈ Z≥0, and write n =
∑r
i=0 nip

i with p − 1 ≤ ni ≤
2p − 2 for i ∈ {0, . . . , r − 1} and 0 ≤ nr ≤ p − 1. Then for m ≥ 0 the multiplicity
(T(nϖ1) : N(mϖ1)) is 1 if

m =

r−1∑
i=0

mip
i + nrp

r

with mi ∈ {ni, 2p− 2− ni} for all i ∈ {0, . . . , r − 1}, and is 0 otherwise.

Proof. If n ∈ {0, . . . , p− 1}, then T(nϖ1) = N(nϖ1), so that the claim holds.

Otherwise we have r ≥ 1. We set n′ =
∑r−1
i=0 ni+1p

i, so that n = n0 + p′. By (3.2)
we have

T(nϖ1) ∼= T(n0ϖ1)⊗ T(n′ϖ1)
(1).

By induction, T(n′ϖ1) has a costandard filtration, with subquotients N(m′ϖ1) for

m′ =

r−2∑
i=0

mi+1p
i + nrp

r−1

with mi ∈ {ni, 2p − 2 − ni} for all i ∈ {1, · · · , r − 1}. We deduce a filtration
of T(nϖ1) with subquotients T(n0ϖ1) ⊗ N(m′ϖ1)

(1) with m′ as above. Now, by
Lemma 3.6, T(n0ϖ1) ⊗ N(m′ϖ1)

(1) has a costandard filtration with subquotients
N((m0 + pm′)ϖ1) with m0 ∈ {n0, 2p − 2 − n0}. Since the numbers m0 + pm′ are
distinct for distinct choices of (m0,m

′) as above by Lemma 3.5, we deduce the
desired claim. □

For a picture illustrating this proposition, see [JW, Figure 1]. For an appli-
cation of this description of tilting modules to the determination of dimensions of
some simple modules for symmetric groups, we refer to [Er].
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3.3. Tilting characters determine simple characters: first method.
We now explain (following Andersen) how the results of Section 2 can be used to
compute characters of simple G-modules, provided we know the characters of the
indecomposable tilting G-modules. In fact there are two different ways of making
this computation, which we explain in this and the next subsection.

We will assume that p ≥ 2h− 2. (Then p ≥ h since h ≥ 2 unless G is a torus.)
Let us consider the bijection

(−)▼ : (p− 1)ς + X+ ∼−→ X+

defined as follows. Let λ ∈ (p− 1)ς + X+, and write λ = (p− 1)ς + pγ + η, where
η ∈ X+

res and γ ∈ X+. (This is always possible, although not uniquely if G is not
semisimple.) Then the weight (p− 1)ς + pγ+w0η does not depend on the choice of
η and γ, and is chosen as the definition of λ▼. The inverse bijection will be denoted
µ 7→ µ▲. (It can be easily seen that these bijections do not depend on the choice
of ς.)

Example 3.8. Assume that µ ∈ X+
res. Then the weight w0(µ − (p − 1)ς) also

belongs to X+
res; it follows that

µ▲ = (p− 1)ς + w0(µ− (p− 1)ς) = 2(p− 1)ρ+ w0µ.

Let us consider the subset X+
bb ⊂ X+ consisting of weights λ which satisfy

⟨λ, α∨⟩ ≤ (p− 1)⟨ς, α∨⟩

for any dominant short root α. Then X+
bb is an ideal with respect to the order ⪯,

and we have

X+
res ⊂ X+

bb ⊂ X+
b ,

where X+
b is as in §2.3.

The main result of the present subsection is the following.

Proposition 3.9. For any λ, µ ∈ X+
bb we have

[M(λ) : L(µ)] = (T(µ▲) : N(λ)).

This proposition implies that if we know the characters (ch(T(µ▲)) : µ ∈ X+
bb),

or in other words the multiplicities ((T(µ▲) : N(λ)) : µ ∈ X+
bb : λ ∈ X+), then we

can in theory determine the characters of all simple G-modules. In fact, assume
more specifically that we know the multiplicities (T(µ▲) : N(λ)) for any λ, µ ∈ X+

bb;
then using Proposition 3.9 we obtain the multiplicities ([M(λ) : L(µ)] : λ, µ ∈
X+

bb). Note that X+
bb is an ideal with respect to the order ⪯. Hence, inverting

the appropriate matrix we can then express the characters of the modules (L(µ) :
µ ∈ X+

bb) in terms of those of the modules (M(λ) : λ ∈ X+
bb), which are given by

Weyl’s character formula (see §1.9 in Chapter 1). Since X+
bb contains X+

res, one can
then deduce characters of all simple G-modules using Steinberg’s tensor product
formula (Theorem 2.9 of Chapter 1).

Remark 3.10. (1) The bijection λ 7→ λ▲ sends regular weights to regular
weights. Hence, assuming we only have an explicit formula for the char-
acters of the tilting modules T(ν) with ν ∈ X regular of the form µ▲ with
µ ∈ X+

bb, the method above still provides a way to compute characters of
simple modules with a regular highest weight.
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(2) The proof of Proposition 3.9 given below shows that the characters of the
modules T(µ▲) with µ ∈ X+

bb can be computed provided we know them
in the special case when µ ∈ X+

res.
(3) The formula of Proposition 3.9 is stated in [A2] under the assumption

that µ ∈ X+
res and λ ∈ X+

b . Indeed it is true in this generality, and the
proof below simplifies drastically in this case. However, as was pointed
out to us by Jantzen, from the equalities in this case one cannot a priori
deduce characters of simple modules, because the subset X+

res ⊂ X+ is not
an ideal for the order ⪯.

We now explain how to deduce Proposition 3.9 from Proposition 2.21. As
explained above X+

bb is an ideal with respect to the order ⪯, so that the Serre

subcategory Repbb(G) generated by the simple modules L(λ) with λ ∈ X+
bb has

a natural structure of highest weight category, see Lemma 1.4(2) in Appendix A.
Moreover, by Proposition 3.2 in Appendix A, the natural functor

ı : DbRepbb(G)→ DbRep(G)

admits a right adjoint ıR. This functor sends the induced module N(λ) to itself
if λ ∈ X+

bb and to 0 otherwise; in particular it sends any object of Rep(G) which
admits a costandard filtration to an object of Repbb(G).

Proposition 3.9 will be deduced from the following claim.

Lemma 3.11. For any µ ∈ X+
bb, ı

R(T(µ▲)) is the injective hull of L(µ) in
Repbb(G).

Proof. Write µ = µ0+pµ1 with µ0 ∈ X+
res and µ1 ∈ X+. Then µ▲ = µ▲

0 +pµ1.
If α is a dominant short root, then we have

p⟨µ1 + ς, α∨⟩ ≤ ⟨µ, α∨⟩+ p⟨ς, α∨⟩ ≤ (2p− 1)⟨ς, α∨⟩,
hence

⟨µ1 + ς, α∨⟩ < 2⟨ς, α∨⟩ ≤ 2(h− 1) ≤ p.
If µ̃1 ∈ X∗(T(1)) is the only dominant weight such that Fr∗T(µ̃1) = pµ1, then µ̃1

belongs to the fundamental alcove of G(1), so that

M(1)(µ̃1) = N(1)(µ̃1) = L(1)(µ̃1) = T(1)(µ̃1),

see §1.5.1. Using Donkin’s formula (Theorem 3.1) we deduce that

T(µ▲) ∼= T(µ▲
0 )⊗ Fr∗G(L(1)(µ̃1)).

On the other hand we have µ▲
0 = 2(p− 1)ρ+ w0µ0, see Example 3.8, hence

T(µ▲
0 )
∼= R(µ0)

by Proposition 2.21. We deduce that

T(µ▲) ∼= R(µ0)⊗ Fr∗G(L(1)(µ̃1)).

We claim that T(µ▲) admits a unique simple submodule, isomorphic to L(µ).
Indeed, for λ ∈ X+, written as λ = λ0 + pλ1 with λ0 ∈ X+

res and λ1 ∈ X+, if we

denote by λ̃1 ∈ X∗(T(1)) the only dominant weight such that Fr∗T(λ̃1) = pλ1, using
Steinberg’s tensor product formula (Theorem 2.9 in Chapter 1) we see that

HomG(L(λ),T(µ▲)) ∼= HomG(L(λ0)⊗ Fr∗G(L(1)(λ̃1)),R(µ0)⊗ Fr∗G(L(1)(µ̃1)))

∼= HomG(1)(L(1)(λ̃1),HomG1(L(λ0),R(µ0))⊗ L(1)(µ̃1)).
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Here Theorem 2.14 implies that HomG1
(L(λ0),R(µ0)) = 0 unless λ0 and µ0 have

the same image in X/pX, i.e. unless there exists η ∈ X such that ⟨η, α∨⟩ = 0 for
any α ∈ R and µ0 = λ0+pη (see Remark 2.4). Let us assume that this condition is
satisfied. Then there exists a unique character η̃ of G(1) whose restriction to T(1)

has pullback pη, and

HomG1
(L(λ0),R(µ0)) = kG(1)(η̃).

We deduce that

HomG(L(λ),T(µ▲)) ∼= HomG(1)(L(1)(λ̃1), L
(1)(µ̃1 + η̃));

here the right-hand side vanishes unless λ̃1 = µ̃1 + η̃, and is equal to k in this case.
If this further condition is satisfied we have

λ = λ0 + pλ1 = (µ0 − pη) + pλ1 = µ0 + pµ1 = µ,

which finishes the proof of our claim. Using adjunction, this claim implies that
ıR(T(µ▲)) also has a unique simple submodule, which is isomorphic to L(µ).

To conclude the proof, it now suffices to show that ıR(T(µ▲)) is injective in
Repbb(G). However, if λ ∈ X+

bb we have

Ext1Repbb(G)(L(λ), ı
R(T(µ▲))) ∼= Ext1Rep(G)(L(λ),T(µ

▲))

∼= Ext1Rep(G)(L(λ),R(µ0)⊗ Fr∗G(L(1)(µ̃1)))

∼= Ext1Rep(G)(L(λ)⊗ Fr∗G(L(1)(−w0µ̃1)),R(µ0)).

Now L(λ)⊗Fr∗G(L(1)(−w0µ̃1)) has highest weight λ+ p(−w0µ1), and for any dom-
inant short root α we have

⟨λ+ p(−w0µ1), α
∨⟩ ≤ (p− 1)⟨ς, α∨⟩+ p⟨µ1, α

∨⟩ ≤ 2(p− 1)⟨ς, α∨⟩,
hence L(λ)⊗ Fr∗G(L(1)(−w0µ̃1)) belongs to Repb(G), so that

Ext1Rep(G)(L(λ)⊗ Fr∗G(L(1)(−w0µ̃1)),R(µ0)) = 0.

The proof is now complete. □

We can finally give give the proof of Proposition 3.9.

Proof of Proposition 3.9. Let λ, µ ∈ X+
bb. Since ı

R(T(µ▲)) is the injective
hull of L(µ) in Repbb(G), we have

[M(λ) : L(µ)] = dimk Hom(M(λ), ıR(T(µ▲))) = dimk Hom(M(λ),T(µ▲)).

Now the right-hand side is equal to (T(µ▲) : N(λ)) by (1.1), hence the desired
equality is proved. □

3.4. Tilting characters determine simple characters: second method.
We now explain another way of deducing a character formula for simple G-modules
out of a character formula for indecomposable tilting modules. In fact this second
method only uses the property (2.8), hence might work under an assumption weaker
than p ≥ 2h−2; see §2.7. Instead of working with G-modules, in this case we work
with G1T-modules.

In fact, assume that we know the characters ch(T(2(p − 1)ρ + w0λ)) for any
λ ∈ X+

res. Then using (2.8) we know the character of the injective G1T-module

Q̂(λ) for any λ ∈ X+
res, hence for any λ ∈ X using (2.5). The characters of baby

Verma modules are easy to compute (see Exercise 4.8), hence this knowledge is
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equivalent to that of the multiplicities of baby Verma modules as subquotients of
a filtration of an injective G1T-module as in Proposition 2.10, or in other words of
the multiplicities (

[Ẑ(λ) : L̂(µ)] : λ, µ ∈ X
)
.

Now we claim that if we know these multiplicities then we can compute the charac-

ters of all the modules L̂(λ), hence of all the simple G-modules by Remark 2.8(2).

Indeed, by the same remark one can assume that λ ∈ X+
res. In this case L̂(λ) is

the restriction of a G-module by Theorem 2.6, hence its character is W -invariant.

It follows that to determine the character of L̂(λ) it suffices to compute dim L̂(λ)µ
when µ ∈ X+. Now for any ν ∈ X, all the T-weights of Ẑ(ν) are ⪯ ν, so that the

multiplicity [Ẑ(ν) : L̂(η)] vanishes unless η ⪯ ν (and is equal to 1 in case ν = η).

Using this property, from the datum of the multiplicities ([Ẑ(ν) : L̂(η)] : ν, η ∈ X)
one can obtain an expression

ch(L̂(λ)) =
∑
ν∈Xλ

mν · ch(Ẑ(ν)) +
∑
ν∈Yλ

m′
ν · ch(L̂(ν))

for some finite subsets Xλ, Yλ ⊂ X and some integers mν ,m
′
ν ∈ Z, such that there

exists no dominant weight µ such that µ ⪯ ν for some ν ∈ Yλ. Then we have

dim(L̂(λ)µ) =
∑
ν∈Xλ

mν · dim(Ẑ(ν)µ)

for any µ ∈ X+.

Remark 3.12. In [So] the author presents an improvement of the method
above, that allows to compute characters of simple G1T-modules from the knowl-
edge of characters of indecomposable tilting modules, without any assumption on
p.

4. Andersen’s conjecture

4.1. Statement. Let us consider the constructions of §3.2 of Chapter 4 in the
case (W,S) = (Waff , Saff), with I = S (so that WI =W ). Recall that in this case,
the subset of minimal elements has already appeared in §2.8 of Chapter 1, and is
denoted fWaff ⊂ Waff . We will also write Naff for the corresponding antispherical
module,

(Nw : w ∈ fWaff)

for its standard basis,

(Nw : w ∈ fWaff)

for its Kazhdan–Lusztig basis, and

(ny,w : fWaff)

for the associated Kazhdan–Lusztig polynomials. If we consider Z as a Z[v, v−1]-
module with v acting as the identity, then we can consider the right module

N 0
aff := Z[v, v−1]⊗Z Naff .

over Z[v, v−1]⊗Z Haff
∼= Z[Waff ], see (4.4) in Chapter 1. Setting N0

w := 1⊗Nw, in
view of (3.1) in Chapter 3, the action of Z[Waff ] if determined by the following rule
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for w ∈ fWaff and s ∈ Saff :

(4.1) N0
w · (1 + s) =

{
N0
w +N0

ws if ws ∈ fWaff ;

0 otherwise.

Now assume that DG is simply connected, that p ≥ h, and fix λ ∈ C ∩ X.
Recall that the Grothendieck group [Rep(G)Waff ·pλ] has as basis ([N(µ)] : µ ∈
X+ ∩ (Waff ·p λ)), and that X+ ∩ (Waff ·p λ) is identified with fWaff via w 7→ w ·p λ,
see §2.8 in Chapter 1. In particular, we have a Z-module isomorphism

(4.2) N 0
aff
∼= [Rep(G)Waff ·pλ]

which identifies N0
w with [N(w ·p λ)] for any w ∈ fWaff .

Now, fix for any s ∈ Saff a weight µs ∈ X on the wall of C associated with s.
(Such a weight always exists, see Remark 2.28 in Chapter 1.) Then we can con-
sider the endomorphism [Tλµs

Tµs

λ ] of [Rep(G)Waff ·pλ] induced by the (exact) functor

Tλµs
Tµs

λ . The considerations of §2.8 in Chapter 1 show that for w ∈ fWaff , the

weight w ·p µs is dominant iff ws belongs to fWaff . With this in mind, the formulas
in Proposition 2.27 in Chapter 1 show that for w ∈ fWaff we have

[Tλµs
Tµs

λ (N(w ·p λ))] =

{
[N(w ·p λ)] + [N(ws ·p λ)] if ws ∈ fWaff ;

0 otherwise.

Comparing with (4.1), we deduce that via the identification (4.2) the endomorphism
[Tλµs

Tµs

λ ] identifies with the (right) action of 1 + s.
Inspired by Lusztig’s conjecture (see Conjecture 4.6 in Chapter 1) and work of

Soergel in the setting of quantum groups at a root of unity (see [S4]), Andersen has
proposed in [A2] the following conjecture, which compares the basis ([T(w ·p λ)] :
w ∈ fWaff) of [Rep(G)Waff ·pλ] with the basis of N 0

aff obtained as the image of the

Kazhdan–Lusztig basis (Nw : w ∈ fWaff) of Naff .

Conjecture 4.1 (Andersen’s conjecture). Assume that p ≥ h, and let λ ∈
C ∩ X. Then for any w ∈ fWaff such that

⟨w ·p λ, α∨⟩ < p2 for any α ∈ R+

and any y ∈ fWaff we have

(4.3) (T(w ·p λ) : N(y ·p λ)) = ny,w(1).

This conjecture is still open for all reductive groups not of type A1. In fact,
we will explain in §4.2 below that, if p ≥ 2h − 2 and DG is simply connected,
this conjecture implies Lusztig’s conjecture (Conjecture 4.6 in Chapter 1). As
explained in §4.4 in Chapter 1, it is now known that the latter conjecture cannot
be true under any assumption on p involving a polynomial in h, so the same is
true for Conjecture 4.1. But it is not known whether this conjecture holds in “large
characteristics” (in the same sense as for Lusztig’s conjecture). In §2.1 of Chapter 6
we will introduce a modification of this conjecture which does hold as soon as p ≥ h.

4.2. Andersen’s conjecture implies Lusztig’s conjecture. In this sub-
section we assume that DG is simply connected and that p ≥ 2h − 2. Our goal
is to explain that in this setting, if Conjecture 4.1 holds, then Lusztig’s conjecture
(Conjecture 4.6 in Chapter 1) holds.
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More specifically, consider the set

W bb
aff = {w ∈Waff | w ·p 0 ∈ X+

bb}.
Then W bb

aff is a finite subset of Waff , contained in fWaff , and independent of p. For
any w ∈ fWaff , we denote by w▲ ∈ Waff the unique element such that (w ·p 0)▲ =
w▲ ·p 0.

Proposition 4.2. Assume that for any w, y ∈W bb
aff we have

(T(w▲ ·p 0) : N(y ·p 0)) = ny,w▲(1).

Then for any w ∈W bb
aff we have

[L(w ·p 0)] =
∑

y∈fWaff

(−1)ℓ(w)+ℓ(y)hw0y,w0w(1) · [N(y ·p 0)].

To justify the claim at the beginning of the subsection, we observe that for w
as in the proposition the weight w▲ ·p 0 = (w ·p 0)▲ satisfies

⟨(w ·p 0)▲, α∨⟩ ≤ 2(p− 1)⟨ς, α∨⟩ ≤ 2(p− 1)(h− 1)

for any dominant short root α. Since p ≥ 2h− 2, the element w▲ therefore satisfies
the assumption of Conjecture 4.1. Assuming that the latter conjecture holds, we
therefore obtain the formula in Lusztig’s conjecture for any w ∈ W bb

aff . Since X+
bb

contains X+
res, results of Kato (see §4.4 in Chapter 1) then imply that the formula

applies to all w’s as in the conjecture.

Proof of Proposition 4.2. By Proposition 3.9, our assumption implies that
for any w, y ∈W bb

aff we have

[M(y ·p 0) : L(w ·p 0)] = ny,w▲(1).

To deduce an expression for [L(w ·p 0)] we need to invert the matrix ([M(y ·p 0) :
L(w ·p 0)] : y, w ∈ W bb

aff ). However, the result of this inversion is given by [S3,
Theorem 5.1], and precisely gives the formula in Lusztig’s conjecture.

More specifically, in [S3, Theorem 3.6] (see also [S3, Proposition 3.4]) Soergel
introduces some polynomials (my,w : y, w ∈ fWaff) which satisfy∑

z

(−1)ℓ(z)+ℓ(y)mx,zhw0y,w0z = δx,y

for x, y ∈ fWaff . In terms of these data, [S3, Theorem 5.1] implies that for y, w ∈
fWaff we have

my,w(1) = ny,w▲(1).

If we set for w ∈W bb
aff

Lw =
∑

y∈fWaff

(−1)ℓ(w)+ℓ(y)hw0y,w0w(1) · [N(y ·p 0)],

then we deduce that for any y ∈W bb
aff we have∑

w∈Wbb
aff

ny,w▲(1) · Lw =
∑

w∈Wbb
aff

my,w(1) · Lw

=
∑

w∈Wbb
aff

∑
z∈fWaff

(−1)ℓ(w)+ℓ(z)my,w(1)hw0z,w0w(1) · [N(z ·p λ)] = [N(y ·p 0)],

which show that Lw = [L(w ·p 0)] for all w ∈W bb
aff and finishes the proof. □
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4.3. Character formulas for G1T-modules. In §§3.3–3.4 we have explai-
ned that, given a character formula for (some) indecomposable tilting modules,
one can derive in a certain form a character formula for simple objects. These are
however general procedures, and there is still some work required to make the cor-
responding formula explicit. We have seen in §4.2 that, in the case of the procedure
of §3.3, this work is in fact settled by a formula for Kazhdan–Lusztig polynomials
attached to Waff found in [S3], and that in the end we recover Lusztig’s character
formula. One might wonder what formula one can get using the procedure in §3.4,
i.e. what kind of character formula in G1T-modules one can get corresponding
to Lusztig’s character formula in G-modules. It turns out that this formula was
already known, and is the subject of another conjecture of Lusztig, known to be
equivalent to Conjecture 4.6 in Chapter 1.

This formula is expressed in terms of the Kazhdan–Lusztig basis of another
module over the affine Hecke algebra Haff , namely the periodic module. To explain
this construction we assume that G has simply connected derived subgroup. Recall
from §2.7.2 in Chapter 1 the vector space V = X⊗ZR. We now consider the action
of Waff on V defined by

(tλw) · v = w(v) + λ

for λ ∈ ZR, w ∈ W and v ∈ V, where W acts in the obvious way. This action
does not coincide with the action ·p of §2.7.2 in Chapter 1. The two actions are
however easily related: they differ by conjugation by a certain affine invertible
transformation of V. We will denote by A the set of connected components of the
complement in V of the union of the affine hyperplanes

(4.4) {v ∈ V | ⟨v, α∨⟩ = n}

for α ∈ R and n ∈ Z. (Hence A is in a natural bijection with the set of alcoves in
the sense of §2.7.2 in Chapter 1.) Considering the subset

A0 = {v ∈ V | ∀α ∈ R+, 0 < ⟨v, α∨⟩ < 1},

we obtain a bijection

Waff
∼−→ A,

given by w 7→ w(A0). Transferring the obvious right action of Waff on itself (by
multiplication on the right) via this identification, we obtain a right action of Waff

on A, that will be denoted (A,w) 7→ Aw.
If F is a hyperplane as in (4.4), the complement of F in V has two connected

components; the one which intersects all translates of the “dominant Weyl chamber”

{v ∈ V | ∀α ∈ R+, ⟨v, α∨⟩ > 0}

will be denoted F+. Then for A ∈ A and s ∈ S, the subsets A and As are separated
by exactly one of these hyperplanes F ; we set As ≺ A if A ⊂ F+, and A ≺ As if
As ⊂ F+.

With this notation, it is explained in [S3, Lemma 4.1] that there exists a unique
Z[v, v−1]-linear right action of Haff on

P =
⊕
A∈A

Z[v, v−1]A
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(the free Z[v, v−1]-module with basis A) which satisfies

A ·Hs =

{
As+ vA if A ≺ As;
As+ v−1A if As ≺ A.

(The definition of this module is due to Lusztig in [L2], motivated by earlier work
of Jantzen.)

Next, for λ ∈ X we set

Eλ =
∑
x∈W

vℓ(x) · (λ+ w(A0)),

and we denote by P◦ ⊂ P the right Haff -submodule of P generated by the elements
Eλ. Then, as explained in [S3, Theorem 4.3], there exists a unique involution ιP

on P◦ which satisfies ιP(Eλ) = Eλ for any λ ∈ X, and

ιP(P ·H) = ιP(P ) · ι(H)

for any P ∈ P◦ and H ∈ Haff , where ι is as in §4.2 of Chapter 1. (Once again
this construction is initially due to Lusztig.) With this notation we can then state
an analogue of Theorem 4.3 of Chapter 1 and Theorem 3.1 in Chapter 3, due to
Lusztig [L2] (see also [S3, Theorem 4.3]).

Theorem 4.3. For any A ∈ A there exists a unique element PA ∈ P◦ such
that

ιP(PA) = PA, PA ∈ A+
∑
B∈A

vZ[v]B.

The elements (PA : A ∈ A) form a Z[v, v−1]-basis of P◦, called the Kazhdan–
Lusztig basis of P◦.

The periodic Kazhdan–Lusztig polynomials are the polynomials (pB,A : A,B ∈
A) defined by the equalities

PA =
∑
B∈A

pB,A ·B

for A ∈ A. The name “periodic” commes from the following property. Given
µ ∈ X, for any A ∈ A the subset A + µ is again an element of A. Consider the
automorphism (−) + µ of P defined by(∑

A∈A
xA ·A

)
+ µ =

∑
A∈A

xA · (A+ µ).

Then, as observed in [S3, Comments before Proposition 4.18], for any A ∈ A and
µ ∈ X we have

(4.5) PA + µ = PA+µ.

This formula reduces the determination of the elements (PA : A ∈ A) to the case
A is contained in

♢ = {v ∈ V | ∀α ∈ Rs, 0 < ⟨v, α∨⟩ < 1}.

Remark 4.4. (1) It is easily checked that if p ≥ h and if λ ∈ C ∩ X
(where we use the notation of §2.7 in Chapter 1), for w ∈ Waff we have
w(A0) ⊂ ♢ if and only if w ·p λ ∈ X+

res.
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(2) As explained in [S3, Proof of Proposition 4.16], there is at least one ele-
ment of the basis which is easy to compute: we have

PA0
=
∑
x∈W

vℓ(x) · x(A0).

(3) There is an intriguing formula relating the Kazhdan–Lusztig basis (PA :
A ∈ A) to the spherical Kazhdan–Lusztig basis attached to the Coxeter
system (Waff , Saff) and its parabolic subgroup W (in the sense of §3.2 in
Chapter 3). Namely, denote the latter module byMaff , and its Kazhdan–
Lusztig basis by (Mw : w ∈ fWaff). (I.e., we omit the superscripts to
lighten notation.) Then there exists a unique morphism of right Haff -
modules

η :Maff → P
which satisfies η(1 ⊗ H) = PA0

· H for any H ∈ Haff . Then with our
notation and conventions, [L2, Theorem 5.2] states that for any w ∈Waff

such that A0 · w ⊂ ♢ we have

(4.6) PA0·w = η(Mw).

We consider the operation on A defined as follows. Let A ∈ A, and consider
elements µ ∈ X andB ⊂ ♢ such thatA = w0(B)+µ. Then we setA▲ = B+µ. (Here
µ is not uniquely defined, but this operation is well defined. One can also check
that, with the notation of §4.2, for any w ∈ fWaff we have (w(A0))

▲ = w▲(A0).)
With this notation, Lusztig conjectured at the end of the introduction of [L2] that
if p ≥ h, for any w, y ∈Waff and λ ∈ C ∩ X we have

(4.7) (Q̂(w ·p λ) : Ẑ(y ·p λ)) = py(A0),(w(A0))▲(1).

(See the comments following Proposition 2.10 for the notation.)

Remark 4.5. (1) In view of (2.5) and (4.5), if p ≥ h is fixed, to prove
the formula (4.7) for all w, y ∈ Waff it is enough to prove it under the
assumption that w(A0) ⊂ ♢, or under the assumption that y(A0) ⊂ ♢.

(2) There are analogues of the translation functors of §2.7 in Chapter 1 for
G1T-modules, see [J3, §9.22]. Using these functors, one sees that, for any

given p ≥ h and any w, y ∈Waff , the multiplicity (Q̂(w ·p λ) : Ẑ(y ·p λ)) is
independent of the choice of λ ∈ C ∩ X. We might therefore as well take
λ = 0.

(3) As in §3.4 one sees that, for any p ≥ h, from the datum of the multiplicities

(Q̂(w ·p 0) : Ẑ(y ·p 0)) for all w, y ∈ Waff one can obtain the characters of
all simple G1T-modules, or equivalently of all G-modules.

It is proved in [F2] (assuming that G is quasi-simple and p > h) that, for
any given λ ∈ C ∩ X, the formula (4.7) holds for all w, y ∈ Waff if and only if the
formula (4.8) in Chapter 1 holds for all w ∈ Waff such that w(A0) ⊂ ♢. It can
also be deduced from the results of [RW2] that, assuming p ≥ max(h, 2h − 4), if
the formula (4.3) holds for all w ∈ Waff such that w(A0) ⊂ ς + ♢ (and any fixed
λ ∈ C ∩ X), then the formula (4.7) holds for all w, y ∈ Waff . (Here, as usual, ς
is a fixed choice of element in X which satisfies ⟨ς, α∨⟩ = 1 for all α ∈ Rs. The
restriction on p comes from the fact that this implication relies on Theorem 3.1.)





CHAPTER 5

Williamson’s counterexamples

In this chapter we explain the main construction of [W3], which provides ex-
amples of symmetric groups Sn and prime numbers p such that the p-canonical
basis (pHw : w ∈ Sn) associated with the Cartan matrix of type An−1 (see §2.14 of
Chapter 2) does not coincide with the Kazhdan–Lusztig basis (Hw : w ∈ Sn). Us-
ing the constructions of Soergel considered in Section 3 of Chapter 1 (see also §1.11
of Chapter 2), this provides counterexamples to the expended bound in Lusztig’s
conjecture (Conjecture 4.6 in Chapter 1).

Unless indicated otherwise, all the results in this chapter are taken from [HW]
or [W3].

1. Multiplicities and intersection forms

1.1. Intersection forms and multiplicities in Krull–Schmidt catego-
ries. In this subsection we briefly discuss a way to compute multiplicities of inde-
composable objects in a Krull–Schmidt1 category. For a more thorough discussion
of this subject, see [EMTW, Appendix 2 to Section 11].

We consider a field k. Recall that if V1, V2 are finite-dimensional vector spaces,
the datum of a bilinear form V1 × V2 → k is equivalent to the datum of a linear
map V1 → (V2)

∗, or to the datum of a linear map V2 → V ∗
1 . (If the bilinear form

is denoted b, the associated linear maps are respectively v1 7→ (v2 7→ b(v1, v2)) and
v2 7→ (v1 7→ b(v1, v2)).) The ranks of these two linear maps coincide and are by
definition the rank of the given bilinear form. More concretely, if (e1, . . . , es) is a
basis of V1 and (f1, · · · , ft) is a basis of V2, then the rank of a bilinear form b is the
rank of the matrix (

b(ei, fj)
)
1≤i≤s
1≤j≤t

.

We now consider a Krull–Schmidt k-linear category A such that, for anyX,Y ∈
A, the k-vector space HomA(X,Y ) is finite-dimensional. Consider an object X ∈ A
such that EndA(X) = k, and an arbitrary object Y ∈ A. (Note thatX is necessarily
indecomposable.) We associate to these data the bilinear form

bX,Y : HomA(X,Y )×HomA(Y,X)→ EndA(X) = k
defined by b(f, g) = g ◦ f .

Lemma 1.1. The rank of bX,Y is the multiplicity of X in Y .

Proof. Choosing a decomposition Y = Y1⊕ · · · ⊕Ys as a sum of indecompos-
able subobjects, we obtain decompositions

HomA(X,Y ) =

r⊕
i=1

HomA(X,Yi), HomA(Y,X) =

r⊕
i=1

HomA(Yi, X),

1See §1.1 of Appendix A for a brief reminder on this notion.
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with respect to which the bilinear form bX,Y is block-diagonal. This reduces the
proof to the case Y is indecomposable. In case Y ∼= X, it is clear that the vector
spaces involved are 1-dimensional, and that the form has rank 1. In case Y is
indecomposable and not isomorphic to X, then the bilinear form vanishes because
X is not a direct summand in Y , which finishes the proof. □

In general, the indecomposable objects in A might not have 1-dimensional
endomorphism rings, so that this proceduce cannot be applied directly. We will
however see in §1.2 below how this difficulty can be circumvented in the case of
categories of (diagrammatic) Soergel bimodules.

Remark 1.2. In [EMTW, Appendix 2 in Chap. 11], the authors call the bi-
linear forms bX,Y composition pairings. In the setting related to Soergel bimodules,
they are usually called intersection forms; this terminology is justified by the fact
that, in the cases where Soergel bimodules can be related to parity complexes (see
REF in Chapter 3), these forms can be described as intersection forms in Borel–
Moore homology; see [JMW2, §3] for details. This was in fact one of the original
motivations for studying these forms in this context, and was suggested by work of
de Cataldo–Migliorini around the proof of the Decomposition Theorem for perverse
sheaves; see [W3, Footnote 5] for some details.

1.2. Application to Soergel bimodules. We now explain how the con-
siderations in §1.1 can be used to attack the problem of computing multiplicities
of indecomposable objects in Bott–Samelson objects in the categories D(V,W) of
Section 2 of Chapter 2 (in the case of field coefficients). For more on this topic,
see in particular [EMTW, Appendix 2 in Chap. 11], [EMTW, §27.3], [JW, Sec-
tion 3], [W3, §4] or [HW, §§2.9–2.11].

We fix a Coxeter system (W,S), a field k, and a realization V of (W,S) over k
which satisfies the technical conditions required for the category D(V,W) to be well
behaved. This category is Krull–Schmidt, and the objects (Bw(n) : w ∈ W, n ∈ Z)
form a complete collection of (pairwise nonisomorphic) indecomposable objects.

We fix an element w ∈ W, and consider the problem of computing the multi-
plicity of Bw in objects of D(V,W). In order to reduce to the setting of §1.1 one
proceeds in a way similar to what we considered in §2.11 of Chapter 2. Given objects
X,Y in D(V,W), we denote by Hom ̸<w(X,Y ) the quotient of HomD(V,W)(X,Y ) by
the subspace spanned by morphisms which factor through objects all of whose in-
decomposable summands are of the form By(n) where y < x. It is clear that for
X,Y, Z in D(V,W), composition induces a morphism

Hom ̸<w(Y,Z)×Hom ̸<w(X,Y )→ Hom̸<w(X,Z),

and that this operation is associative in the obvious sense. One therefore has a
category D(V,W )̸<w whose objects are those of D(V,W), and the morphisms from
X to Y are given by Hom̸<w(X,Y ). One also has a natural functor D(V,W) →
D(V,W )̸<w, which kills all objects By(n) with y < x, and D(V,W )̸<w is Krull–
Schmidt with finite-dimensional morphism spaces.

For X,Y in D(V,W) we set

Hom•
̸<w(X,Y ) :=

⊕
n∈Z

Hom̸<w(X,Y (n)).
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It follows from the considerations in §2.11 of Chapter 2 that for any expression y,

the R-module Hom•
̸<w(By,Bw) is free and spanned by (a choice of) light leaves mor-

phisms LLy,e where e runs over the subexpressions of y expressing w; in particular

we have

(1.1) Hom•
̸<w(Bw,Bw) = R,

hence

Hom ̸<w(Bw,Bw) = k.
We are therefore in the setting of §1.1.

We claim that the images of the objects (By(n) : y ∈ W such that y ̸< w, n ∈
Z) form a complete collection of (pairwise nonisomorphic) indecomposable objects
in D(V,W )̸<w. In fact, it is clear from definition that any object in D(V,W) ̸<w is
a direct sum of such objects, that these objects remain nonzero in D(V,W )̸<w, and
since a quotient of a local ring is local they are also indecomposable. It therefore
only remains to see that they are pairwise nonisomorphic. However, if By(n) and
By′(n

′) become isomorphic in D(V,W) ̸<w, then there exist morphisms f : By(n)→
By′(n

′) and g : By′(n
′)→ By(n) such that the image of g◦f in Hom̸<w(By(n),By(n))

is the identity. Then g◦f is invertible, which implies that By(n) is a direct summand
of By′(n

′), and finally that (y, n) = (y′, n′).
This fact implies that, for any object X in D(V,W), the multiplicity of Bw in

X is equal to the multiplicity of the image of Bw in D(V,W )̸<w in the image of X
in D(V,W )̸<w. In view of Lemma 1.1, it follows that this multiplicity is the rank
of the bilinear form

b′w,X : Hom̸<w(Bw, X)×Hom̸<w(X,Bw)→ Hom ̸<w(Bw,Bw) = k.

In fact, one can reduce the size of the spaces involved a bit, as follows. The
equality (1.1) and degree considerations show that the bilinear from b′w,X van-

ishes on morphisms in the spaces Hom̸<w(Bw, X) or Hom ̸<w(X,Bw) of the form
f · φ where f ∈ R is homogeneous of positive degree. One can therefore con-
sider the quotients Hom ̸<w,k(Bw, X) and Hom ̸<w,k(X,Bw) of Hom̸<w(Bw, X) and
Hom ̸<w(X,Bw) by these spaces, and the induced form

bw,X : Hom̸<w,k(Bw, X)×Hom ̸<w,k(X,Bw)→ k.

The rank of this form coincides with that of b′w,X , hence equals the multiplicity of
Bw in X.

This form can also be obtained in a slightly different way, as follows. Consider
the R-bilinear map

b̃w,X : Hom•
̸<w(Bw, X)×Hom•

̸<w(X,Bw)→ Hom•
̸<w(Bw,Bw) = R

given by composition. (Here, both Hom-spaces are free over R; the proof of this
fact reduces to the case X = By for some expression y, which was explained above.)

Then bw,X is the form obtained from b̃w,X by applying k⊗R (−).
We will be mainly interested in the case X = By(n) where y is an expression

and n ∈ Z. In this case, as explained above the spaces on which bw,By(n) is defined

can be made explicit: Hom ̸<w,k(By(n),Bw) has a basis consisting of (images of)

morphisms LLy,e(−d(e)) where e runs over subexpressions of y expressing w such

that d(e) = −n, and Hom ̸<w,k(Bw,By(n)) has a basis constructed similarly using

images under ι of light leaves morphisms. (Here we use the notation of §2.10 in
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Chapter 2. See Lemma 2.20 in Chapter 2 for the definition of ι.) For examples of
computation of the bilinear form above in such bases, see [JW, Section 3], [EMTW,
§27.3] or [HW, §§2.9–2.11]. These considerations are the starting point for an
algorithmic procedure for computing multiplicities of indecomposable objects in
D(V,W), discussed in more details in [JW, GJW].

1.3. A criterion to determine when the p-canonical basis coincides
with the Kazhdan–Lusztig basis. In this subsection we specialize our setting
to that considered in §2.14 of Chapter 2. We therefore choose a generalized Cartan
matrix A, a prime number p, and a Kac–Moody root datum (X, (αi : i ∈ I), (α∨

i :
i ∈ I) associated with A. In case p = 2 and A has a column consisting only of
even numbers, we assume that the conditions considered in §2.14.1 are satisfied.
We take as our Coxeter system (W,S) the one associated with A.

We can then consider two different realizations of (W,S) associated with these
data: one with underlying vector space Fp ⊗Z X∨, such that the combinatorics of
the category D(Fp ⊗Z X∨,W) gives rise to the p-canonical basis (pHw : w ∈ W),
and one with underlying vector space Q⊗Z X

∨, such that the combinatorics of the
category D(Q ⊗Z X∨,W) gives rise to the Kazhdan–Lusztig basis (Hw : w ∈ W),
see Proposition 2.43 in Chapter 2.

Given an element y ∈ W and an expression y, we will write bpw,y,n for the bilinear

form bw,By(n) computed in D(Fp ⊗Z X∨,W), and b0w,y,n for the same bilinear form

computed in D(Q ⊗Z X∨,W). The following proposition shows that the ranks of
these forms “control” the possible coincidence of the bases (pHw : w ∈ W) and
(Hw : w ∈ W).

Proposition 1.3. The following conditions are equivalent:

(1) for any w ∈ W we have pHw = Hw;
(2) for any w ∈ W, any expression y and any n ∈ Z, the forms bpw,y,n and

b0w,y,n have the same rank;

(3) there exists a family F of expressions, which contains at least one reduced
expression for any element in W, and such that for any w ∈ W, any
y ∈ F , and any n ∈ Z, the forms bpw,y,n and b0w,y,n have the same rank;

(4) there exists a family F of expressions, which contains at least one reduced
expression for any element in W, and such that for any w ∈ W and any
y ∈ F , the forms bpw,y,0 and b0w,y,0 have the same rank.

Proof. The implications (2)⇒ (3)⇒ (4) are clear. Now, we assume that (1)
is satisfied, and prove (2). Given w ∈ W, an expression y and n ∈ Z, as explained
in §1.2 the rank of the form bpw,y,n is the multiplicity of the object Bw as a direct

summand of By(n) in D(Fp⊗ZX
∨,W). But by the categorification theorem (see §2.8

in Chapter 2) this multiplicity can also be computed as the coefficient of pHw in
the expansion of the element vn ·Hy in the Z-basis (vm · pHx : m ∈ Z, x ∈ W) of

H(W,S). Similar considerations apply to b0w,y,n, replacing the p-canonical basis by

the Kazhdan–Lusztig basis. By assumption these bases coincide, so that the forms
must have the same rank.

To finish the proof, we show the contrapositive of the implication (4) ⇒ (1).
So, we assume that the p-canonical and Kazhdan–Lusztig bases differ, and choose
w of minimal length such that pHw ̸= Hw. Choose also s ∈ S such that sw < w.



1. MULTIPLICITIES AND INTERSECTION FORMS 205

In D(Fp⊗ZX
∨,W), we know that Bw is a direct summand in BsBsw, whose class in

the Hecke algebra is Hs ·Hsw by our minimality assumption. Now by Exercise 5.3
the coefficients of the decomposition of Hs ·Hsw in the Kazhdan–Lusztig basis are
nonnegative integers. Hence we have

pHw = Hw +
∑
y<w

ay,wHy

for some nonnegative integers ay,w, which moreover are not all zero by assumption.
If w is a reduced expression for w in F and y < w is such that ay,w ̸= 0, the forms
bpy,w,0 and b0y,w,0 will then have different ranks, because the multiplicity of By in Bw
will be stricly smaller in D(Fp ⊗Z X∨,W) than in D(Q⊗Z X∨,W). □

Remark 1.4. We insist that we do not claim that, for a fixed w and an expres-
sion y, the fact that bpw,y,0 and b0w,y,0 have different rank implies that pHw ̸= Hw.

Knowing all the values of the ranks of the forms bpw,y,n for a family F as in the

statement would allow to determine the basis (pHw : w ∈ W), but these values
can be determined only in very small cases. The construction of [W3] explained
below allows only to determine, for some cases where W is a symmetric group,
one example of a pair (w, y) such that bpw,y,0 and b0w,y,0 have different ranks. By

the proposition, this will show that the p-canonical basis cannot coincide with the
Kazhdan–Lusztig basis in this case, but will not tell us much about which elements
in these bases differ.

1.4. Stabilization of the p-canonical basis. In this subsection we explain
how the considerations above allow to give a diagrammatic proof of Proposition 2.45
in Chapter 2. So we consider a generalized Cartan matrix A, a Kac–Moody root
datum (X, (αi : i ∈ I), (α∨

i : i ∈ I)), and the associated realization (see §2.2.2 in
Chapter 2) over Q or Fp where p is an odd prime number. Then we consider an
element w ∈ W, and a reduced expression w for w. There are only finitely many
elements in W which are smaller than w for the Bruhat order, hence there exists
only finitely many pairs (y, n) ∈ W × Z such that the spaces on which the bilinear
form by,Bw(n) is defined are nonzero. As explained in §1.2 these spaces admit bases

given by choices of light leaves morphisms; these morphisms are defined over Z[ 12 ],
hence we can consider “the same” choices of light leaves bases for all coefficients.
Then our bilinear forms are base changes of bilinear forms defined over some free
Z[ 12 ]-modules (of finite rank). If p≫ 0 the versions over Fp have the same rank as
the version over Q, which implies that the expansion of Hw in the p-canonical basis
for these prime numbers has the same coefficients as the expansion in the Kazhdan–
Lusztig basis. In view of the positivity claim in Corollary 2.44 in Chapter 2, this
implies that all the p-canonical basis elements that appear in this expansion coincide
with their counterparts in the Kazhdan–Lusztig basis. This is the case in particular
for pHw, which completes the proof.

1.5. The nil-Hecke algebra. Our goal in the rest of this section is state
and explain a formula due to He–Williamson [HW] that allows to determine some
values of the intersection forms. In this subsection we introduce the nil-Hecke
algebra, which is a ring in which this answer is formulated.

We consider a generalized Cartan matrix A, a Kac–Moody root datum (X, (αi :
i ∈ I), (α∨

i : i ∈ I)), and the associated realization (see §2.2.2 in Chapter 2) over
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some field k. We will assume that for any i ∈ I the maps

αi : V → k and α∨
i : V ∗ → k

are nonzero (i.e. surjective). We have the associated graded polynomial ring R and,
for any i ∈ I, the Demazure operator ∂si (see §2.4 in Chapter 2).

Example 1.5. Below we will mainly consider the case where the (generalized)
Cartan matrix A is the Cartan matrix of type Am−1, and the (Kac–Moody) root
datum under consideration is that of the group GLm (and its canonical maximal
torus and Borel subgroup). In this case the graded ring “R” is

Rm = k[x1, · · · , xm],

with the natural action of the group Sm (i.e. we have w(xi) = xw(i) for w ∈ Sm and
i ∈ {1, . . . ,m}). The Coxeter generators consist of the transpositions si := (i, i+1)
for i ∈ {1, . . . ,m − 1} (see Exercise 1.12), and we have αi = xi − xi+1. We will
denote by NHm the associated nil-Hecke algebra.

The nil Hecke algebra NH associated with these data is a graded k-algebra
defined as follows. Let Q be the localization of R at the elements w(αi) (for i ∈ I,
w ∈ W), which we endow with the natural grading and the natural action of W.
Consider the smash product Q∗W, i.e. the free Q-module with a basis (ew : w ∈ W)
and multiplication determined by

(fex)(gey) = fx(g)exy

for f, g ∈ Q and x, y ∈ W. This algebra has a natural grading, where each ex has
degree 0. The unit is the element eid (which will be denoted 1 below).

For i ∈ I we set

δsi =
1

αi
· (1− esi),

and define NH as the R-subalgebra in Q∗W generated by the elements δsi . In fact,
it is easily seen that these elements satisfy the following properties:

• for any i ∈ I we have δsi · δsi = 0;
• the δsi ’s satisfy the braid relations, namely, if i, j ∈ I are distinct and if
sisj has finite order mi,j , then we have

δsiδsj · · ·︸ ︷︷ ︸
mi,j terms

= δsjδsi · · ·︸ ︷︷ ︸
mi,j terms

;

• for any i ∈ I and any f ∈ Rm we have

δsi · f = si(f) · δsi + ∂si(f).

Hence Matsumoto’s lemma in the theory of Coxeter systems ensures that it makes
sense to define, for any w ∈ W, the element

δw = δsi1 · · · δsir
where w = si1 · · · sir is any reduced expression (i.e. the product on the right-hand
side does not depend on the choice of reduced expression), and moreover we have

NH =
⊕
w∈W

R · δw.

This subalgebra is graded, in such a way that the element δw has degree −ℓ(w).
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Remark 1.6. (1) If y, w ∈ W are such that ℓ(yw) < ℓ(y) + ℓ(w), then
δy · δw = 0. In particular, for any y, w the product δy · δw is either zero
or an element of the form δz. In fact this can be proved by induction on
ℓ(y) as follows. The situation cannot occur if ℓ(y) = 0, so we assume that
ℓ(y) > 0, and write y = sy′ for some simple reflection s and some y′ such
that y′ < y. Then δy = δsδy′ . If ℓ(y

′w) < ℓ(y′) + ℓ(w), then by induction
we have δy′δw = 0, hence δyδw = 0. Otherwise we must have sy′w < y′w.
We then have

δy′δw = δy′w = δsδsy′w,

so that
δyδw = δsδy′δw = δsδsδsy′w = 0,

which finishes the proof.
(2) The algebra Q ∗ W has an anti-involution which fixes all elements in R

and sends each ew to ew−1 . It restricts to an anti-involution on NH, which
fixes all elements in R and sends each δw to δw−1 .

The algebra Q ∗ W acts naturally on Q, and the action of the subalgebra NH
preserves R. This action is compatible with the gradings on NH and R in the
natural way. For w ∈ W, we will denote by ∂w the action of δw.

Remark 1.7. The nil Hecke ring associated with a Kac–Moody algebra was
defined by Kostant–Kumar in [KK], using the realization as in §1.2.3 of Chapter 2.
The ring considered above is a slight extension of this definition.

1.6. The He–Williamson formula. We continue with the setting of §1.5.
Fix an expression w = (si1 , · · · , sir ), and subexpressions e1 and e2 of w which
express the same element y ∈ W. To e1, resp. e2, is associated a sequence
(X1

1 , . . . , X
1
r ), resp. (X

1
2 , . . . , X

2
r ), of labels in {U0, U1, D0, D1}, see §2.10 in Chap-

ter 2.
We associate to these data an element f(w, e1, e2) in NH as follows: we set

f(w, e1, e2) = f1 · · · fr
where

fj =


αij if X1

j = X2
j = U0;

1 if exactly one of X1
j , X

2
j is U0;

δsij otherwise.

Then we denote by c(w, e1, e2) ∈ R the coefficients of δy in the R-basis (δx : x ∈ W)
of NH. The following statement is the main result of [HW].

Theorem 1.8. Consider data as above, and assume that no X1
j or X2

j is equal
to D1. Then we have

b̃y,Bw
(LLw,e1 ,LLw,e2) = c(w, e1, e2).

Remark 1.9. (1) As explained in §2.10 in Chapter 2, light leaves mor-
phisms usually depend on some choices. In case no D1 appears among
the labels associated to the subexpression, they are in fact canonically
defined, as explained in [HW, §5.2].

(2) In [HW], the authors in fact work with a realization which is either a
Cartan realization as above, or the geometric realization (see §2.2.3 in
Chapter 2). We will not consider the latter case here.
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Example 1.10. Consider the case where A is the Cartan matrix of type A7,
with the root datum of the group GL8 (and its canonical maximal torus and Borel
subgroup). Then W is the symmetric group S8, with the Coxeter generators con-
sisting of the simple reflections si = (i, i + 1) (i ∈ {1, . . . , 7}), see Example 1.5.
Consider the expression

w = (s3, s2, s1, s5, s4, s3, s2, s6, s5, s4, s3, s7, s6, s5)

and the subexpression

e = (1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0).

The element expressed by this subexpression is

y = s3s2s3s5s6s5

(i.e. the longest element in the parabolic subgroup of S8 generated by s2, s3, s5
and s6), the corresponding sequence of symbols is

(U1, U1, U0, U1, U0, U1, D0, U1, U1, U0, D0, U0, D0, D0),

and we have d(e) = 0. In fact, e is the unique subexpression of w expressing y of
defect 0. We have

f(w, e, e) = δs3δs2(x1 − x2)δs5(x4 − x5)δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5 .

To compute this element in NH8, one uses the relation δs2(x1 − x2) = (x1 −
x3)δs2 − 1 to see that

f(w, e, e) = δs3(x1 − x3)δs2δs5(x4 − x5)δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5
− δs3δs5(x4 − x5)δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5 .

Here in the first term, if we use the relation δs3(x1 − x3) = (x1 − x4)δs3 − 1, we
will obtain an element of the form (x1 − x4) · b, where b has degree −14, and is
an R-linear combination of elements δx where x belongs to the subgroup of S8

generated by s2, s3, s5, s6. For degree reasons, this element vanishes. Using also
the relation δs5(x4 − x5) = (x4 − x6)δs5 − 1, we find that

f(w, e, e) = −δs2δs5(x4 − x5)δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5
− δs3(x4 − x6)δs5δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5

+ δs3δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5 .

Here the third term vanishes, and using the relation δs3(x4−x6) = (x3−x6)δs3 −1
and the same considerations as above we obtain that

f(w, e, e) = −δs2δs5(x4 − x5)δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5
+ δs5δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5 .

Then, when using the relation δs5(x4− x5) = (x4− x6)δs5 − 1, once again the term
coming from (x4 − x6)δs5 will vanish, so that

f(w, e, e) = δs2δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5
+ δs5δs3δs2δs6δs5(x4 − x5)δs3(x7 − x8)δs6δs5 .
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We next use the relation (x4−x5)δs3 = δs3(x3−x5)−1. In the first term, the term
involving δs3(x3 − x5) will vanish because s2s3s2s6s5s3 < s2s3s2s6s5; we therefore
find that

f(w, e, e) = −δs2δs3δs2δs6δs5(x7 − x8)δs6δs5
+ δs5δs3δs2δs6δs5δs3(x3 − x5)(x7 − x8)δs6δs5

− δs5δs3δs2δs6δs5(x7 − x8)δs6δs5 .
One can easily see that the third term here vanishes.

For the first term, we use the relation (x7 − x8)δs6 = δs6(x6 − x8) − 1 to see
that

δs2δs3δs2δs6δs5(x7 − x8)δs6δs5 = δs2δs3δs2δs6δs5δs6(x6 − x8)δs5 ,
and then the relation (x6 − x8)δs5 = δs5(x5 − x8)− 1 to see that

δs2δs3δs2δs6δs5(x7 − x8)δs6δs5 = −δs2δs3δs2δs6δs5δs6 .
For the second term, we use that (x3 − x5)(x7 − x8)δs6 = δs6(x3 − x5)(x6 − x8)−
(x3 − x5) to obtain that

δs5δs3δs2δs6δs5δs3(x3 − x5)(x7 − x8)δs6δs5 = −δs5δs3δs2δs6δs5δs3(x3 − x5)δs5 ,
and then the relation (x3 − x5)δs5 = δs5(x3 − x6)− 1 to obtain that

δs5δs3δs2δs6δs5δs3(x3 − x5)(x7 − x8)δs6δs5 = δs5δs3δs2δs6δs5δs3 .

Finally we obtain that
f(w, e, e) = 2δy,

so that
b̃y,Bw

(LLw,e,LLw,e) = 2.

Applying Proposition 1.3 in this case, we deduce that the 2-canonical basis and
Kazhdan–Lusztig bases in the Hecke algebra of S8 differ. As explained in §2.15.3
this is the first example of this phenomenon in type A, and it was found (in a
geometric language) by Braden.

2. The construction

2.1. Some computations in the nil-Hecke algebra of type A. In this
section we fix m ∈ Z≥1, and consider the setting of Example 1.5.

For any subset I ⊂ {s1, · · · , sm−1}, we will denote by ⟨I⟩ the parabolic sub-
group in Sm generated by I, and by wI the longest element in ⟨I⟩. (Since we
work with symmetric groups, these elements can be described very explicitly using
Exercise 1.12.)

Lemma 2.1. Assume that m = a + n + b for some a, n, b ∈ Z≥0, and let
N = {sa+1, sa+2, . . . , sa+n−1}. Let w1, . . . , wr be elements of ⟨N⟩, and f1, . . . , fr
be homogeneous elements in R, such that

r∑
i=1

deg(fi) =

r∑
i=1

ℓ(wi).

Assume that there exists i ∈ {1, . . . , r} such that fi = gihi for gi, hi ∈ Rm homoge-
neous, where gi is ⟨N⟩-invariant and of positive degree. Then

δwr
fr · · · δw1

f1 · δwN
= 0

in NHm.
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Proof. Since gi is ⟨N⟩-invariant, it commutes with all δwj
’s, so that we have

δwr
fr · · · δw1

f1 · δwN
= gi · (δwr

fr · · · δwi
hi · · · δw1

f1 · δwN
).

Now the element δwr
fr · · · δwi

hi · · · δw1
f1 · δwN

belongs to
⊕

w∈⟨N⟩Rm · δw, and its

degree is strictly smaller that −2ℓ(wN ). It therefore vanishes, which implies our
claim. □

Below we will also require the following fact from the Coxeter combinatorics of
Sm.

Lemma 2.2. (1) Let q ∈ {2, . . . ,m− 1}. If j ∈ {q − 1, . . . ,m− 1} and x
is a reduced expression for an element in ⟨{sq, sq+1, . . . , sm−1}⟩, then the
expression

(sj , sj−1, . . . , sq−1)x

is reduced.
(2) Let q ∈ {1, . . . ,m− 2}. If j ∈ {1, . . . , q+1} and x is a reduced expression

for an element in ⟨{s1, . . . , sq}⟩, then the expression

(sj , sj+1, . . . , sq+1)x

is reduced.

Proof. The two cases are similar, so we only prove (1). In this case, it suffices
to treat the case j = m − 1. Recall that the length in the group Sm is given by
the number of inversions, see Exercise 1.12. Let x be the element which has x as
a reduced expression, and set y = sm−1sm−2 · · · sq−1x. Then if i ∈ {1, . . . ,m} we
have

y(i) =


i if i < q − 1;

m if i = q − 1;

x(i)− 1 if i ≥ q.
Hence the inversions for y are the inversions for x (which are pairs of the form
(i1, i2) where q ≤ i1 < i2 ≤ m), together with the pairs (q− 1, i) for i ∈ {q, . . . ,m}.
Hence ℓ(y) = ℓ(x) +m− q + 1, which proves the desired claim. □

2.2. Construction of some expressions. We now fix an integer n ≥ 1, and
collections a1, . . . , ar and b1, . . . , br of nonnegative integers such that, for any i, we
have either ai = 0 or bi = 0, but not both. We set

a = a1 + · · ·+ ar, b = b1 + · · ·+ br,

and work in the symmetric group Sa+n+b. We set

A = {s1, s2, . . . , sa−1},
N = {sa+1, sa+2, . . . , sa+n−1},
B = {sa+n+1, sa+n+2, . . . , sa+n+b−1}.

We have the associated parabolic subgroups ⟨A⟩, ⟨N⟩, ⟨B⟩ in Sa+n+b generated
by these subsets. (Concretely, ⟨A⟩ identifies with the subgroup Sa ⊂ Sa+n+b, ⟨N⟩
identifies with the subgroup of permutations of {a+1, . . . , a+n}, and ⟨B⟩ identifies
with the subgroup of permutations of {a + n + 1, . . . , a + n + b}.) We also fix a
collection w1, . . . , wr of reduced expressions in Sa+n+b chosen as follows:

• if bi = 0, then wi belongs to the following list:

(2.1) ∅, (sa+1), (sa+2, sa+1), · · · , (sa+n−1, sa+n−2, . . . , sa+2, sa+1);
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• if ai = 0, then wi belongs to the following list:

∅, (sa+n−1), (sa+n−2, sa+n−1), · · · , (sa+1, sa+2, . . . , sa+n−2, sa+n−1).

For i ∈ {1, . . . , r}, we will also denote by wi the element of Sa+n+b which has wi
as reduced expression. We will assume that

r∑
i=1

ℓ(wi) = a+ b.

Remark 2.3. Set N ′ = N ∖ {sa+1} and N ′′ = N ∖ {sa+n−1}. Using Ex-
ercise 1.12, one checks that wi is a minimal coset representative for ⟨N⟩/⟨N ′⟩ if
bi = 0, and a minimal coset representative for ⟨N⟩/⟨N ′′⟩ if ai = 0, and moreover
that any such element can occur in this way.

Example 2.4. To make things more concrete, we consider an important ex-
ample from [W3]. Here we have n = 4, r = 6 and

a1 = 2, a2 = 0, a3 = 1, a4 = 0, a5 = 1, a6 = 0,

b1 = 0, b2 = 2, b3 = 0, b4 = 2, b5 = 0, b6 = 2,

so that a = 4 and b = 6 (hence a+ n+ b = 14). We therefore have

A = {s1, s2, s3}, N = {s5, s6, s7}, B = {s9, s10, s11, s12, s13}.
We also choose

w1 = (s5), w2 = (s6, s7), w3 = (s5), w4 = (s6, s7), w5 = (s5), w6 = (s5, s6, s7).

For i ∈ {1, . . . , r} we set a≤i := a1+ · · ·+ai. We also set a≤0 := 0. We consider
the expressions u1, . . . , ur where

ui = (sa, . . . , sa−a≤i+1, sa, . . . , sa−a≤i+2, . . . , sa, . . . , sa−a≤i−1−1, sa, . . . , sa−a≤i−1
).

(In other words ui is the concatenation of ai lists; in the first one the indices decrease
from a to a− a≤i + 1, in the second one they decrease from a to a− a≤i + 2, etc.,
and in the ai-th list they decrease from a to a − a≤i−1. In case ai = 0, ui is the
empty expression.) In a symmetric way, for i ∈ {1, . . . , r} we set b≤i := b1+ · · ·+bi,
and b≤0 := 0. We then consider the expressions v1, . . . , vr where

vi = (sa+n, . . . , sa+n+b≤i−1, sa+n, . . . , sa+n+b≤i−2, . . . , sa+n,

. . . , sa+n+b≤i−1+1, sa+n, . . . , sa+n+b≤i−1
).

(In other words vi is the concatenation of bi lists; in the first one the indices increase
from a+n to a+n+b≤i−1, in the second one they increase from a to a+n+b≤i−2,
etc., and in the bi-th list they increase from a+ n to a+ n+ b≤i−1. In case bi = 0,
vi is the empty expression.)

Finally, let wN be a reduced expression for the longest element wN in ⟨N⟩, and
consider the expression

w = wrurvrwr−1ur−1vr−1 · · ·w2u2v2w1u1v1wN .

Lemma 2.5. The expression w is reduced.

Proof. The expression w is obtained from wN by successive left concatenation
with expression wiui (in case bi = 0) or wivi (in case ai = 0). These operations
are themselves repeated applications of the constructions considered in Lemma 2.2,
hence they preserve the property of being reduced, which proves the lemma. □
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Example 2.6. We continue with the setting of Example 2.4. In this case we
have

u1 = (s4, s3, s4), u2 = ∅, u3 = (s4, s3, s2), u4 = ∅, u5 = (s4, s3, s2, s1), u6 = ∅,
and

v1 = ∅, v2 = (s8, s9, s8), v3 = ∅, v4 = (s8, s9, s10, s11, s8, s9, s10),

v5 = ∅, v6 = (s8, s9, s10, s11, s12, s13, s8, s9, s10, s11, s12).

We therefore have

w = (s5, s6, s7︸ ︷︷ ︸
w6

, s8, s9, s10, s11, s12, s13, s8, s9, s10, s11, s12︸ ︷︷ ︸
v6

, s5︸︷︷︸
w5

, s4, s3, s2, s1︸ ︷︷ ︸
u5

,

s6, s7︸ ︷︷ ︸
w4

, s8, s9, s10, s11, s8, s9, s10︸ ︷︷ ︸
v4

, s5︸︷︷︸
w3

, s4, s3, s2︸ ︷︷ ︸
u3

, s6, s7︸ ︷︷ ︸
w2

, s8, s9, s8︸ ︷︷ ︸
v2

,

s5︸︷︷︸
w1

, s4, s3, s4︸ ︷︷ ︸
u1

, s7, s6, s7, s5, s6, s7︸ ︷︷ ︸
wN

).

2.3. Determination of a subexpression. We continue with the setting con-
sidered in §2.2.

We consider a slight modification of the notion of defect from §2.10 in Chap-
ter 2 as follows. Given an expression y = (si1 , . . . , siq ) and a subexpression
e = (e1, . . . , eq), we consider the sequence y0, . . . , yq where y0 = id and yj =
(siq+1−j

)eq+1−jyj−1 for 1 ≤ j ≤ q. Then we write

Yj =


U1 if eq+1−j = 1 and siq+1−jyj−1 > yj−1;

U0 if eq+1−j = 0 and siq+1−j
yj−1 > yj−1;

D1 if eq+1−j = 1 and siq+1−j
yj−1 < yj−1;

D0 if eq+1−j = 0 and siq+1−j
yj−1 < yj−1,

and set

d′(e) = #{j ∈ {1, . . . , q} | Yj = U0} −#{j ∈ {1, . . . , q} | Yj = D0}.
(In other words, compared to §2.10 in Chapter 2, we “read” the subword from right
to left rather than from left to right.)

Our goal in this subsection is to prove the following claim. Here we consider
the element wA∪N∪B = wAwNwB ∈ Sa+n+b, where we use the notation introduced
in §1.5.

Proposition 2.7. There exists a unique subexpression e of w which expresses
the element wA∪N∪B and satisfies d′(e) = 0.

Proof. Write w = (si1 , . . . , siq ). First, we claim that if e is a subexpression
of w which expresses wA∪N∪B , then we have ej = 0 if sij ∈ {sa, sa+n} and ej = 1
if sij ∈ A ∪ B. We will prove the part of this claim regarding A ∪ {sa} assuming
a > 1; the other parts are similar. In fact, the indices under consideration are
those corresponding to the subwords ui. Note that s1 occurs only once in w. Since
wA∪N∪B does not fix 1, the corresponding coefficients in e must be 1. To the
left of this index, the remaining simple reflections in A ∪ {sa} are sa, sa−1, . . . , s2
(appearing as the leftmost entries in the last nonempty ui). Since wA∪N∪B(1) = a,
the corresponding values of e must be (0, 1, . . . , 1). There is one other occurence
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of s2 in w, which is on the right of these indices, and it appears in a subword
sa, sa−1, . . . , s2. Considering the image of 2 we see that the corresponding entries
in e must be (0, 1, . . . , 1). Continuing in this way we see that the values of e
corresponding to each subword ui should be of this form, which finishes the proof
of the claim.

Now we prove the proposition. We consider a subexpression e satisfying the
conditions in the proposition. As explained above we have ej = 1 if sij ∈ A ∪ B,
and ej = 0 if sij ∈ {sa, sa+n}. In the latter cases, the corresponding values of “Y ”
are U0, and there are a+ b such indices; to conclude the proof it therefore suffices
to show that there is a unique subexpression f of

w′ = wr · · ·w1

expressing wN and such that d′(f) = −a− b. Now w′ has length ℓ(wN ) + a+ b; in
order for f to express wN , it must have at most a+ b zeros. If we furthermore want
d′(f) = −a− b the corresponding values of “Y ” should always be D0. Since wN is
a reduced expression, this forces the entries of f corresponding to wN to be 1, and
then all the entries corresponding to the wi’s to be 0, which finishes the proof. □

2.4. Computation of a bilinear form. We now work in the setting of §1.3,
with the Cartan matrix of type Aa+n+b−1 and the (Kac–Moody) root datum as-
sociated with the group GLa+n+b, see Example 1.5. Using our assumption that∑r
i=1 ℓ(wi) = a+ b and degree considerations, we see that the element

κ = ∂wr (x
ar
a+1x

br
a+n∂wr−1(x

ar−1

a+1 x
br−1

a+n · · · ∂w1(x
a1
a+1x

b1
a+n))) ∈ Ra+n+b

is a scalar. Let us note the following for later use.

Lemma 2.8. With the data as above, in NHa+n+b we have

δwr · x
ar
a+1x

br
a+n · δwr−1 · x

ar−1

a+1 x
br−1

a+n · · · δw1 · x
a1
a+1x

b1
a+n · δwN

= κ · δwN
.

Proof. In Ra+n+b we can write

δwr · x
ar
a+1x

br
a+n · δwr−1 · x

ar−1

a+1 x
br−1

a+n · · · δw1 · x
a1
a+1x

b1
a+n =

∑
w∈⟨N⟩

fwδw

for some homogeneous elements fw ∈ Ra+n+b. For degree reasons, we have fid ∈ k.
Letting this element act on 1 ∈ Ra+n+b we see that fid = κ. Multiplying on the
right by δwN

we deduce the desired formula, in view of Remark 1.6(1). □

We can now prove the main result of the section.

Proposition 2.9. For any field k, the bilinear form bwA∪N∪B ,Bw
has matrix

((−1)a · κ) in appropriate bases.

Proof. Considering the autoequivalence discussed in Remark 2.21 in Chap-
ter 2, we see that the bilinear form bwA∪N∪B ,Bw

agrees with bwA∪N∪B ,Bwr , where wr

is obtained from w by reversing the order of the factors. By Proposition 2.7 this
bilinear form is defined on a vector space of dimension 1, and the explicit descrip-
tion of the subexpression in the proof of that proposition shows that we are in the
setting of Theorem 1.8. This statement shows that the only entry in the bilinear
form under considerations (in the appropriate light leaves bases) is the coefficient
of δwA∪N∪B

in the expansion of the element

E′
NG

′
1F

′
1E

′
1G

′
2F

′
2E

′
2 · · ·G′

rF
′
rE

′
r
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where:

• we have E′
N = δwN

, and E′
j = δw−1

j
for j ∈ {1, . . . , r};

• for j ∈ {1, . . . , r} we have

F ′
j = (δsa−a≤j−1

· · · δsa−1
αa) · · · (δsa−a≤j+1

· · · δsa−1
αa)

• for j ∈ {1, . . . , r} we have

G′
j = (δsa+n+b≤j−1

· · · δsa+n+1αa+n) · · · (δsa+n+b≤j−1
· · · δsa+n+1αa+n).

Applying the anti-involution of Remark 1.6(2), what we have to compute is the
coefficients of δwA∪N∪B

in the expansion of the element

ErFrGr · · ·E1F1G1EN

where:

• we have EN = δwN
, and Ej = δwj for j ∈ {1, . . . , r};

• for j ∈ {1, . . . , r} we have

Fj = (αaδsa−1 · · · δsa−a≤j+1) · · · (αaδsa−1 · · · δsa−a≤j−1
)

• for j ∈ {1, . . . , r} we have

Gj = (αa+nδsa+n+1
· · · δsa+n+b≤j−1

) · · · (αa+nδsa+n+1
· · · δsa+n+b≤j−1

).

This elements belongs to
⊕

w∈⟨A∪N∪B⟩Ra+n+bδw, and its degree is

2(−ℓ(wN )−
∑
j

ℓ(wj) + a+ b− ℓ(wA)− ℓ(wB)) = −2ℓ(wA∪N∪B).

It therefore belongs to k · δwA∪N∪B
. To compute this element we use the rela-

tions fδsi = si(f)δsi + ∂si(f) with si ∈ A ∪ B in the Fj ’s and Gj ’s; in each case
the term involving ∂si(f) will not contribute since it will belong to the submod-
ule

⊕
w∈⟨A∪N∪B⟩∖{wA∪N∪B}Ra+n+bδw and have degree −2ℓ(wA∪N∪B), hence will

vanish. We deduce that our element equals

δwA
δwB

(δwr
γrγ

′
r) · · · (δw1

γ1γ
′
1)δwN

where each γj , resp. γ
′
j , is a product of aj roots of the form xk−xa+1 with k < a+1,

resp. of bj roots of the form xa+n − xk with k > a + n. Using Lemma 2.1 we can
simplify this element to

δwA
δwB

(δwr (−xa+1)
arxbra+n) · · · (δw1(−xa+1)

a1xb1a+n)δwN
.

Then the desired claim finally follows from Lemma 2.8. □

3. The counterexamples

3.1. Main result. Consider some integers n ∈ Z≥1 and r ∈ Z≥0, and col-
lections of nonnegative integers (a1, . . . , ar) and (b1, . . . , br). (We no longer put
vanishing conditions on these integers.) As in Section 2, set a = a1 + · · · + ar,
b = b1+· · ·+br, and consider the corresponding subsets A,N,B of Sa+n+b. Choose
also some arbitrary elements w1, . . . , wr in ⟨N⟩ which satisfy

r∑
j=1

ℓ(wj) = a+ b.
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Then, as in §2.4, the element

κ = ∂wr
(xara+1x

br
a+n∂wr−1

(x
ar−1

a+1 x
br−1

a+n · · · ∂w1
(xa1a+1x

b1
a+n))) ∈ Ra+n+b

is a scalar.

Theorem 3.1. Choose data as above, and assume that κ ̸= 0. Then for any
prime number p which divides κ, there exists w ∈ Sa+n+b such that pHw ̸= Hw in
the Hecke algebra of type Aa+n+b−1.

Proof. We explain how to reduce the above situation to that studied in Sec-
tion 2. First, using Remark 1.6(1) we can assume that there is no j such that

aj = bj = 0. Next, inserting some operators ∂id between x
aj
a+1 and x

bj
a+n if

needed, we can assume that in each case we have either ai = 0 or bi = 0. Fi-
nally, using the fact that the operator ∂w commutes with multiplication by xa+1 if
w ∈ ⟨sa+2, . . . , sa+n−1⟩, and with multiplication by xa+n if w ∈ ⟨sa+1, . . . , sa+n−2⟩,
we can assume that wj is minimal in wj⟨sa+1, . . . , sa+n−2⟩ if aj = 0, and that wj is
minimal in wj⟨sa+2, . . . , sa+n−1⟩ if bj = 0. In view of Remark 2.3, we can therefore
choose for any j a reduced expression wj for wj which satisfies the condition in
Section 2. Proposition 2.9 then gives us an example of an intersection form for
Sa+n+b which has different ranks in characteristic 0 and in characteristic p, so that
the claim follows from Proposition 1.3. □

Remark 3.2. (1) The element κ is defined in terms of the symmetric
group Sa+n+b and its action on Ra+n+b, but the only variables involved
are xa+1, . . . , xa+n. This computation therefore only really involves the
symmetric group Sn (identified with ⟨N⟩).

(2) In order to compute the element κ more efficiently one can use the follow-

ing remarks. Consider the setting of §1.5, and denote by ⟨(Rm)Sm
+ ⟩ ⊂ Rm

the ideal generated by homogeneous Sm-invariant elements of positive
degree. Since all the operators ∂w commute with multiplication by an
Sm-invariant polynomial, the action of NHm on Rm induces an action on
the associated coinvariant algebra

Cm = Rm/⟨(Rm)Sm
+ ⟩.

(This algebra has already occurred in §1.9 of Chapter 2.) Then the quo-
tient morphism Rm → Cm is NHm-invariant, and an isomorphism on
degree-0 components; the element κ can therefore be computed in the
finite-dimensional algebra Cm rather than in Rm.

It is a standard fact that the algebra Cm identifies with the coho-
mology of the flag variety of the group GLm; it therefore possesses a nice
basis (Xw : w ∈ Sm) consisting of Schubert classes. Concretely, if w0 is
the longest element in Sm, the element Xw0

is the class of the polynomial
(x1)

m−1(x2)
m−2 · · ·xm−1, and for any w ∈ Sm we have

Xw = δww0 ·Xw0 .

In view of Remark 1.6(1) these elements satisfy

δsi ·Xw =

{
Xsiw if siw < w;

0 otherwise.
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If f ∈ Rm is homogeneous of degree 2, we also have the Chevalley formula

f ·Xw =
∑
t∈Tm

ℓ(tw)=ℓ(w)+1

⟨f, α∨
t ⟩Xtw

where Tm ⊂ Sm is the subset of transpositions, and if t = (i, j) with
1 ≤ i < j ≤ m we set α∨

t = εi − εj where (ε1, . . . , εm) is the basis dual to
(x1, . . . , xm).

The study of these classes is part of the “Schubert calculus” that
occurs in the titles of [HW] and [W3].

(3) For any integer q ≥ a+n+b, Sa+n+b is a parabolic subgroup ofSq. Hence,
given data as in Theorem 3.1, the p-canonical basis and the Kazhdan–
Lusztig basis will differ in all types Aq with q ≥ a+ n+ b− 1.

3.2. Application to the counterexamples. Recall the setting considered
in §3 of Chapter 1, in the special case G = SLm. In this case we have h = m−1, so
we assume that p ≥ m. We will also assume that p ≥ 5. Under these assumptions,
as explained in §2.14.2 of Chapter 2, if the formula (4.11) in Chapter 1 holds,
then the p-canonical basis in the Hecke algebra of type Am−1 coincides with the
Kazhdan–Lusztig basis. Hence, if we manage to find data as in Theorem 3.1 for
this value of p and with m = a + n + b, we will conclude that this formula does
not hold in this setting. In particular, if p ≥ 2m − 2 this will contradict Lusztig’s
conjecture, see Remark 4.9 in Chapter 1.

The first example of this setting which allows to construct a value of κ which
is not −1, 0 or 1 occurs when n = 4. In this case, consider the degree-0 element

F = δs2s3 · x24 · δs1 · x1 ∈ NH4.

Then, for the action of NH4 on R4 we have

F · x1 = x1 − x4
and

F · (−x4) = −x2 − x3 − x4.
Hence, using the notation of Remark 3.2(2), and denoting by X and Y the images
of x1 and −x4 respectively in C4 we have

F ·X = X + Y, F · Y = X.

(Here, X is the Schubert class Xs1 , and Y is the Schubert class Xs3 .) Denoting by
(Fi)i≥0 the Fibonacci sequence (so that F1 = F2 = 1, and Fj+2 = Fj+1 + Fj for
j ≥ 1), one deduces by induction that for any j ≥ 1 we have

F j ·X = Fj+1X + FjY,

hence

δ1 · F j · x1 = Fi+1.

This shows that Fj+1 is an integer that can be produced by the method of §3.1,
with n = 4, a = j+1 and b = 2j. In particular, if p is a prime divisor of Fj+1 then
the p-canonical basis of type A3j+4 differs from the Kazhdan–Lusztig basis.

Example 3.3. The case considered in Example 2.6 is obtained from the setting
above with j = 3. The corresponding value of κ is therefore F4 = 3.
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For instance, we have F11 = 89, which is a prime number. Hence the 89-
canonical basis of type A34 differs from the Kazhdan–Lusztig basis. In this case
we have h = 35, hence 2h − 2 = 68, which contradicts Lusztig’s conjecture. More
generally, this construction gives the following.

Proposition 3.4. There does not exist any positive integers c, d such that the
formula (4.11) in Chapter 1 holds for the group SLm and every prime number
p ≥ cm+ d.

Proof. By Carmichael’s theorem, if n > 12, then Fn has at least one prime
divisor that does not divide any integer Fm with m < n. In particular, there
are at least n − 13 distinct prime numbers that divide one of F1, F2, . . . , Fn. By
Remark 3.2(3), for all these prime numbers, the p-canonical basis and Kazhdan–
Lusztig basis of type A3n+1 differ. By the prime number theorem, one of these
prime numbers at least is of the order of n ln(n), which implies the proposition. □

In the appendix to [W3], Kontorovich, McNamara and Williamson prove a
much stronger statement, using the same ideas but a different element in NH4.
Namely, for m ∈ Z≥1, denote by P (m) the smallest integer such that, for any
prime number p ≥ P (m), the p-canonical basis and the Kazhdan–Lusztig basis
coincide in type Am−1. (It follows from Proposition 2.45 in Chapter 2 that such
an integer indeed exists.) Then the results these authors prove imply in particular
that there exist positive real numbers c, d such that P (m) ≥ d · cm for any m.

In [W3, Section 5], Williamson gives other examples of pairs (p,m) such that
p is a prime number, m ∈ Z≥1, and the p-canonical and Kazhdan–Lusztig bases
differ in type Am−1, obtained using Theorem 3.1 and (computer) computations
using the action of NH5 on C5.





CHAPTER 6

Tilting modules and the p-canonical basis

In this chapter we explain a more recent approach to the question of computing
characters of indecomposable tilting modules for G (as studied in Chapter 4), first
suggested by G. Williamson and the author, and which leads to a character formula
involving the (antispherical) p-Kazhdan–Lusztig polynomials of §2.14 in Chapter 2.
This approach was initially motivated by some ideas related to the “categorifica-
tion” philosophy, which we explain in Section 1, but the character formula now
admits a proof which is independent of these considerations, as we explain in REF.

1. Hecke action on regular blocks

1.1. Regular and subregular blocks. We consider the setting of Chapter 4,
assuming in addition (for simplicity) that G has simply connected derived subgroup
and that p ≥ h (so that regular weights exist, see §2.7 of Chapter 1), and p ̸= 2.
We fix a weight λ ∈ C ∩ X, and set

Rep0(G) := Rep(G)Waff ·pλ.

As explained in §2.6 of Chapter 4, this category admits a canonical structure of
highest weight category, with weight poset

(
(Waff ·pλ)∩X+, ↑

)
. In fact, as explained

in §2.8 of Chapter 4, there exists a canonical bijection

fWaff
∼−→ (Waff ·p λ) ∩ X+

which identifies the order ↑ on the right-hand side with the (restriction of the)
Bruhat order on the left-hand side. To simplify notation, for w ∈ fWaff we will set

Nw := N(w ·p λ), Mw := M(w ·p λ), Tw := T(w ·p λ),
and consider Rep0(G) as a highest weight category with weight poset fWaff , stan-
dard objects (Mw : w ∈ fWaff), and costandard objects (Nw : w ∈ fWaff).

On the other hand, recall that the walls contained in C are in a canonical
bijection with Saff . For any s ∈ Saff , it is known that there exists a weight µs ∈ X
which belongs to the corresponding wall, see Remark 2.28 in Chapter 1. We fix
such a weight, and set

Reps(G) := Rep(G)Waff ·pµs
.

As explained in §2.6 of Chapter 4, this category admits a canonical structure of
highest weight category, with weight poset

(
(Waff ·pµs)∩X+, ↑

)
. In fact, as explained

in §2.8 of Chapter 4, setting fW s
aff := fW

(µs)
aff , there exists a canonical bijection

fW s
aff

∼−→ (Waff ·p µs) ∩ X+

which identifies the order ↑ on the right-hand side with the (restriction of the)
Bruhat order on the left-hand side. In more concrete terms, we have

fW s
aff = {w ∈ fWaff | ws < w};

219
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in particular, this set does not depend on the choice of µs. To simplify notation,
for w ∈ fW s

aff we will set

Nsw := N(w ·p µs), Ms
w := M(w ·p µs), Tsw := T(w ·p µs),

and consider Reps(G) as a highest weight category with weight poset fW s
aff , stan-

dard objects (Ms
w : w ∈ fW s

aff), and costandard objects (Nsw : w ∈ fW s
aff).

We then have translation functors

T s := Tµs

λ : Rep0(G)→ Reps(G), Ts := Tλµs
: Reps(G)→ Rep0(G).

We set

Θs := Ts ◦ T s : Rep0(G)→ Rep0(G).

Remark 1.1. As explained in Remark 2.19 in Chapter 1, translation functors
are defined only up to isomorphism. In this section we fix arbitrary choices for the
functors T s and Ts.

Recall from §4.1 in Chapter 4 that there exists an action of the Hecke algebra
Haff on the Grothendieck group [Rep0(G)] such that Hs acts via the morphism
induced by the functor Θs for any s ∈ Saff . (Of course, this action factors through
the algebra morphism Haff → Z[Waff ] sending v to 1.) The basic idea that underlies
the constructions of the present section is that this action “lifts” to the categorical
level (in other words, “categorifies”), and that this has strong implications for the
structure of the category Rep(G).

1.2. The Hecke category. We will now consider a particular Hecke category
(in the sense of Chapter 2) associated with the Coxeter system (Waff , Saff), over
the field k. To define the associated realization, we will use the fact that the
roots and coroots of (G(1),T(1)) are in a canonical bijection with those of (G,T).
Namely, there exists a unique isomorphism X = X∗(T(1)) which identifies the
pullback morphism X∗(T(1)) → X∗(T) with the morphism λ 7→ pλ. Under this
isomorphism, the roots and coroots of (G(1),T(1)) coincide with those of (G,T).

The Hecke category we will consider is that associated with the Cartan realiza-
tion of (Waff , Saff) (in the sense of §2.2.2 in Chapter 2) over k produced from the
Kac–Moody root datum defined as follows:

• the Z-module “X” is ZR∨;
• if s ∈ S ⊂ Saff , the “root” αs ∈ ZR∨ (resp. “coroot” α∨

s ∈ HomZ(ZR∨,Z))
attached to s is the image of the simple coroot (resp. root) of (G(1),T(1))
associated with s;

• if s ∈ Saff∖S, then the image of s under the natural projectionWaff →W
is a reflection sγ for some positive root γ for (G(1),T(1)); the “root”
αs ∈ ZR∨ (resp. “coroot” α∨

s ∈ HomZ(ZR∨,Z)) is defined as the image
of −γ∨ (resp. of −γ).

Since we have assumed that p ̸= 2, this realization satisfies Demazure surjectivity.
As explained in §2.2.2, it also satisfies all the technical conditions one needs to
define the associated Hecke category.

Note that the realization is “degenerate” in the sense that the action ofWaff on
k⊗Z HomZ(ZR∨,Z) is very far from faithful: in fact it factors through the natural
action of W (identified with the Weyl group of (G(1),T(1))) .
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The Hecke category associated with this realization (see §2.5 in Chapter 2) will
be denoted DBS

aff , and the Karoubian closure of its additive envelope will be denoted
Daff .

Remark 1.2. (1) In view of the “barbell” relation in the Hecke cate-
gory, the morphisms in DBS

aff are generated by the upper and lower dot
morphisms, the trivalent morphisms and the 2ms,t-valent morphisms. In
other words, one does not need to consider the “box” morphisms: they
can be expressed in terms of the other generating morphisms.

(2) The definition of the realization in terms of characters of T(1) rather than
T is mainly a matter of esthetics. Of course it is not necessary to make
sense of the definition above, but we believe that this is the most natural
way to think about it. (This feeling is somewhat justified by the discussion
of the Finkelberg–Mirković conjecture in §3.2 below.)

(3) There are other “natural” choices for the realization used in the construc-
tion of DBS

aff , which give rise to different Hecke categories but the same
canonical basis, and for which Conjecture 1.3 below seems reasonable. For
instance, one could take the realization associated with the Kac–Moody
root datum with X = X∗(T

(1)). Our choice is so that the Hecke category
is “as small as possible,” so that the requirement in Conjecture 1.3 is as
mild as possible. For instance, if one denotes by DBS′

aff the Hecke cate-

gory defined using the Kac–Moody root datum with X = X∗(T
(1)), then

there exists a canonical faithful monoidal functor DBS
aff → DBS′

aff (induced

by the natural morphism S(k ⊗Z ZR∨) → S(k ⊗Z X∗(T
(1))), see §2.12.4

in Chapter 2), so that any action of DBS′
aff gives rise to an action of DBS

aff .

Recall (see §4.3 in Chapter 1) that the Hecke algebra of (Waff , Saff) is denoted
Haff . Recall also (see §2.8 in Chapter 2) that there exists a canonical algebra
isomorphism

(1.1) Haff
∼−→ [Daff ]⊕

(where in the right-hand side we consider the split Grothendieck ring of the additive
monoidal category Daff) which sends, for any s ∈ Saff , the element Hs to the class
[Bs]. Recall also that there exists, for any w ∈ Waff , a canonical object Bw ∈ Daff

such the assignment (w, n) 7→ Bw(n) induces a bijection between Waff × Z and the
set of isomorphism classes of indecomposable objects in Daff . The classes

([Bw] : w ∈Waff)

then form a Z[v, v−1]-basis of [Daff ]⊕. By definition (see §2.14 in Chapter 2), the
p-canonical basis (pHw : w ∈Waff) is the inverse image of this basis under the iso-
morphism (1.1), and the p-Kazhdan–Lusztig polynomials (phy,w : y, w ∈ Waff) are
the coefficients that appear when expressing elements of this basis in the standard
basis of Haff .

1.3. The categorical conjecture. The following is a slight variant of a con-
jecture formulated and studied in [RW1].

Conjecture 1.3. Assume that p ≥ h and p ̸= 2, and let λ ∈ C. There exists
a right action1 of the monoidal category DBS

aff on the category Rep0(G) such that:

1By an action of a monoidal category A on a category C we mean a monoidal functor from
A to the category EndoFunC of endofunctors of C. By a right action of A on C we mean an action
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(1) the “shift” functor (1) acts by the identity.
(2) for any s ∈ Saff the object Bs acts via a functor isomorphic to Θs.

Remark 1.4. (1) In Conjecture 1.3 we required the existence of a right
action of DBS

aff . The reason for that is that it makes the comparison with
the combinatorics of tilting G-modules transparent, as we will see below.
However, the existence of a left action or of a right action is equivalent,
since DBS

aff admits an equivalence which switches the order in products and
fixes each of the generating objects (see Remark 2.21 in Chapter 2).

(2) The original formulation of this conjecture in [RW1, §5.1] included a re-
quirement that the images of the dot and trivalent morphisms are provided
by fixed choices of adjunctions (T s, Ts) and (Ts, T

s). Although it seems
very natural, this condition is in fact not needed for the main application
of this construction, as noted in [RW1, Remark 5.1.2(3)] (and as we will
see below). In practice, this extra condition is not always easy to check.

In Section 2, we explain how this conjecture (if true) solves the question of
computing characters of indecomposable tilting G-modules. In Section 3 we discuss
several proofs of this conjecture and of its main application.

2. Consequences on tilting characters

2.1. The tilting character formula. Recall the subset fWaff ⊂ Waff of el-
ements in Waff which are minimal in their right coset relative to the parabolic
subgroup W ⊂ Waff (see §2.8.1 in Chapter 1). Relative to this choice of parabolic
subgroup we consider the “antispherical” p-Kazhdan–Lusztig polynomials

(pny,w : y, w ∈ fWaff)

as introduced in §3.3 of Chapter 3, which are related to the p-Kazhdan–Lusztig
polynomials by the following formula:

pny,w =
∑
z∈W

(−v)ℓ(z) · phzy,w for y, w ∈ fWaff .

(Here, for simplicity we omit the superscript “S” that should appear if we follow
the conventions of §2.8.1 in Chapter 1.) Recall also the indecomposable tilting
modules (T(λ) : λ ∈ X+) introduced in Chapter 4.

Assume now that p ≥ h, and fix λ ∈ C∩X. We have explained in Chapter 4 the
importance of determining the multiplicities (T(w ·p λ) : N(y ·p λ)) for y, w ∈ Waff

such that w ·p λ and y ·p λ are dominant, i.e. (see Proposition 2.30 in Chapter 1) for
y, w ∈ fWaff . The following conjecture (first stated in [RW1]) proposes an answer
to this question.

Conjecture 2.1. Assume that p ≥ h, and let λ ∈ C. For any y, w ∈ fWaff we
have

(T(w ·p λ) : N(y ·p λ)) = pny,w(1).

As we will see below, Conjecture 2.1 is in fact a consequence of Conjecture 1.3.
However, due to its importance (in fact this consequence was the main motivation
behind the formulation of Conjecture 1.3), and since it can be attacked by other
methods, we state this formula as an independent conjecture.

of A◦ on C, where A◦ is the monoidal category with the same underlying category as A, and
monoidal product • defined by A •B = B ·A.
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Of course, the formula in Conjecture 2.1 looks quite similar to that in Ander-
sen’s conjecture (Conjecture 4.1 in Chapter 4). There are however two important
differences. The first one is that it involves the p-Kazhdan–Lusztig polynomials
rather than the “ordinary” Kazhdan–Lusztig polynomials. The second one is that
it does not require any bound on the elements y, w. This is related to the fact that
the p-Kazhdan–Lusztig basis “sees” all iterations of Donkin’s tensor product for-
mula (see §3.1 in Chapter 4), which is not the case of the ordinary Kazhdan–Lusztig
basis. (For elaborations on this idea, see [AR4].)

Remark 2.2. Recall that for fixed y, w ∈ fWaff , for p≫ 0 we have pny,w = ny,w
where the right-hand side is as in §4.1 in Chapter 4. Hence, for fixed y, w ∈ fWaff ,
the formula in Conjecture 2.1 implies the one in Andersen’s conjecture for large p.
However, it is not the case that Conjecture 2.1 implies Andersen’s conjecture for
large p. This is due to the fact that the number of elements w which satisfy the
bound in Andersen’s conjecture grows with p.

2.2. A singular variant. Since it involves a regular weight, the statement of
Conjecture 2.1 makes sense only under the assumption that p ≥ h. We now explain
how a modification of this conjecture makes sense for any value of p. Namely, let
us drop the assumption on p. As explained in §2.7.2 in Chapter 1, the set C ∩ X
is a set of representatives for the Waff -orbits in X. Fix µ ∈ C ∩ X; as explained
in §2.8.1 in Chapter 1, the set (Waff ·p µ)∩X+ is then in a canonical bijection with
fW

(µ)
aff . (This subset only depends on the facet containing µ.)
The following conjecture is a “singular” variant of Conjecture 2.1, which makes

sense for any p, and gives (if true) a general answer to the question of computing
characters of all indecomposable tilting G-modules. (This variant was also stated
in [RW1].)

Conjecture 2.3. Let µ ∈ C ∩ X. For any y, w ∈ fW
(µ)
aff we have

(T(w ·p µ) : N(y ·p µ)) = pny,w(1).

Remark 2.4. It is clear that Conjecture 2.1 is the special case of Conjecture 2.3
when µ ∈ C. In fact, it is not difficult to check that if p ≥ h, and if Conjecture 2.1
is known for one value of λ, then Conjecture 2.3 follows from any µ. (This is the
content of Exercise 6.1.)

Let us comment on the history of these conjectures. As explained above they
were formulated by Williamson and the author in [RW1], where it was also proved
that Conjecture 2.1 is a consequence of Conjecture 1.3, and that the latter conjec-
ture holds when G = GLn(k) and p > n. (The proof of the former fact is explained
in §2.9 below, and that of the latter fact is discussed in §3.1.) Later, in [AMRW],
the first proof of Conjecture 2.1 for a general reductive group was given by Achar,
Makisumi, Williamson and the author, under the assumption p > h. That proof
is discussed in §3.3; it does not involve Conjecture 1.3. Later, Conjecture 1.3 was
proved (again, under the assumption that p > h) independently in [BR1] (by
Bezrukavnikov and the author) and in [Ci] (by Ciappara). These proofs are briefly
discussed in §3.5. Finally, a proof of Conjecture 2.3 was given by Williamson and
the author (without any assumption on p) in [RW3]. This proof is briefly discussed
in §3.4.
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2.3. Application to G1T-modules. Recall the setting of §4.3 in Chapter 4.
(In particular, as in this subsection we assume that G has simply connected derived
subgroup.) As in this subsection, one might wonder what kind of character (or
multiplicity) formula for G1T-modules one can deduce from Conjecture 2.1. This
question was tackled in [RW2], where Williamson and the author give an answer
valid under the assumption that p ≥ max(h, 2h− 4).

This answer involves a p-canonical version of the Kazhdan–Lusztig basis of the
periodic module P, whose definition is based on a modification of Formula (4.6)
in Chapter 4. (Once again the construction of this p-canonical basis might seem
arbitrary at first sight, but the fact that one obtains character formulas using this
basis seems to be a good indication that this is the correct definition.) Namely,
consider the spherical moduleMaff as in Remark 4.4(3). In §3.3 of Chapter 3 we
have explained how to define a p-canonical basis (pMw : w ∈ fWaff) of this module.
For any w ∈Waff such that A0 · w ⊂ ♢ we set

pPA0·w = η(pMw).

Then for any A ∈ A there exist µ ∈ X and B ∈ A such that B ⊂ ♢ such that
A = B+µ, and we set pPA = pPB+µ. The periodic p-Kazhdan–Lusztig polynomials
are then defined by the equality

pPA =
∑
B∈A

ppB,A(v) ·B.

With this notation, it is proved in [RW2] using the formula in Conjecture 2.1
(which, as explained above, is known) that, if p ≥ max(h, 2h−4), for any λ ∈ C∩X
and any w, y ∈Waff we have

(Q̂(w ·p λ) : Ẑ(y ·p λ)) = ppy(A0),(w(A0))▲(1).

Remark 2.5. The assumption that p ≥ 2h − 4 is needed because the proof
uses Theorem 3.1 in Chapter 4. In [RW2] it is assumed that p ≥ 2h− 1, which is
equivalent to the properties that p ≥ 2h− 2 and p > h, because at the time when
it was written the formula in Conjecture 2.1 was known only when p > h, and the
property discussed in §2.7 of Chapter 4 was known only when p ≥ 2h− 2.

2.4. Translation functors and ∇-sections.
2.4.1. Setting. The rest of this section is devoted to the proof that Conjec-

ture 1.3 implies Conjecture 2.1, following [RW1, Part I]. The statements in the
next three subsections are independent of any conjecture. They could have been
stated (and proved) in Chapter 4; however, since their only application so far is
to the question considered in the present chapter, we have chosen to explain them
here. They are suggested by the construction of the light leaves basis in §2.10 in
Chapter 2, although we will not establish any precise connection between these two
procedures.

We assume that p ≥ h, and consider the highest weight categories introduced
in §1.1. We start with some generalities regarding the ∇-sections (defined in §5.4 of
Appendix A) for these categories. We will also consider the categories Rep0(G)≥w

involved in this definition (for any w ∈ fWaff).
First we fix some data, for any s ∈ Saff . By Proposition 2.20 in Chapter 1,

there exist adjunctions (Ts, T
s) and (T s, Ts). For simplicity, we fix a choice for such
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adjunctions; this gives rise to adjunction morphisms

(2.1) id
adj−−→ T sTs, id

adj−−→ TsT
s.

For any w ∈ fW s
aff , by Proposition 1.8 in Chapter 4 we have

(2.2) TsT
s
w
∼= Tw.

We fix a choice of such an isomorphism. Similarly, by Remark 1.9 in Chapter 4,
Tsw is a direct summand in T sTws. In fact the considerations in this remark show
that Tsw is a direct summand with multiplicity 1, and that all other indecomposable
direct summands have a label y which satisfies y < w. We fix a split embedding
and a split surjection

(2.3) Tsw ↪→ T sTws, T sTws ↠ Tsw.

2.4.2. Translation to a wall. We now fix an object M ∈ Rep0(G) which admits
a costandard filtration, a ∇-section (Π, e, (φπ : π ∈ Π)) of M , and s ∈ Saff . We set

Π′ := {π ∈ Π | e(π)s ∈ fWaff}.
We also define a map

e′ : Π′ → fW s
aff

by defining e′(π) as the maximal element in {e(π), e(π)s}. (Here, by definition of
Π′ both elements belong to fWaff , so that the maximal element among them indeed
belongs to fW s

aff .) Next we explain how to define, for any π ∈ Π′, a morphism

ψπ : Te′(π) → T sM.

• First, let us assume that e(π)s < e(π). Then e′(π) = e(π), and we have an
isomorphism TsT

s
e′(π)

∼= Te(π), see (2.2). We define ψπ as the composition

Tse′(π)
adj−−→ T sTsT

s
e′(π)

∼= T sTe(π)
T sφπ−−−→ T sM,

where the first morphism is as in (2.1). In other words, ψπ is the image
of φπ under the series of isomorphisms

Hom(Te(π),M) ∼= Hom(TsT
s
e′(π),M) ∼= Hom(Tse′(π), T

sM).

• Next, assume that e(π) < e(π)s. Then e′(π) = e(π)s, and we have a split
embedding Tse′(π) ↪→ T sTe(π), see (2.3). In this case, we define ψπ as the

composition

Tse′(π) ↪→ T sTe(π)
T sφπ−−−→ T sM.

Proposition 2.6. The triple (Π′, e′, (ψπ : π ∈ Π′)) is a ∇-section of T sM .

Proof. We will prove the proposition in 3 steps: first if M = Nw for some
w ∈ fWaff , then if M is a direct sum of copies of an object Nw for some w ∈
fWaff , and finally in general. (The general case will be reduced to the special case
treated before using the “truncation” functors considered in Exercise 7.8 and some
compatibility property of our construction with respect to these functors.)

First, we assume that M = Nw. In this case a ∇-flag of M consists of one
nonzero (hence surjective) morphism f : Tw → Nw. If {w,ws} ∩ fW s

aff = ∅, then
T sM = 0 by Proposition 2.37 in Chapter 1, and the datum constructed above is
empty, so that the claim is clear. Next we assume that {w,ws} ∩ fW s

aff ̸= ∅, and
denote by y the largest element among w and ws. Then T sM = Nsy (again by
Proposition 2.37 in Chapter 1), and the datum constructed above consists of one
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morphism Tsy → T sM . What we have to prove is that this morphism is nonzero.
If y = w then this is clear since our morphism is the image of f under some
isomorphism. If y = ws, we use the fact that T sf is surjective (hence nonzero)
by exactness of T s. Since its restriction to any indecomposable direct summand of
T sTw distinct from Tsws vanishes (because the multiplicity of Ms

ws in such a module
is 0), its restriction to Tsws is nonzero, as desired.

Next, we assume that M is a direct sum of copies of Nw. In this case, e(π) = w
for any π ∈ Π. Fixing a surjection p : Tw → Nw, each φπ factors through p, this
collection determines an isomorphism

M ∼= (Nw)
Π,

and our ∇-section consists of a union of ∇-sections of each factor. This reduces
this case to the one treated above.

Finally we consider the general case. What we have to prove is that for any
w ∈ fW s

aff , the image of the collection (ψπ′ : π′ ∈ (e′)−1(w)) forms a basis of
HomReps(G)≥w(Tsw, T

sM). Here we have

(e′)−1(w) = e−1(w) ⊔ e−1(ws).

Fix such a w, and choose an ideal Ω ⊂ fWaff such that

• Ω ∩ {w,ws} = {ws};
• Ω′ := Ω∖ {ws} is an ideal;
• Ω′′ := Ω ∪ {w} is an ideal.

(For instance, one can take Ω = {y ∈ fWaff | y < w}.) Then we have embeddings

(2.4) ΓΩ′(M) ↪→ ΓΩ(M) ↪→ ΓΩ′′(M) ↪→M

where we use the notation of Exercise 7.8. Let us denote by eΩ and eΩ′′ the
restrictions of e to e−1(Ω) and e−1(Ω′′) respectively. By Exercise 7.9, if π ∈ e−1(Ω),
resp. π ∈ e−1(Ω′′), then φπ factors through a morphism

φΩ
π : Te(π) → ΓΩ(M), resp. φΩ′′

π : Te(π) → ΓΩ′′(M),

and the collection (e−1(Ω), eΩ, (φ
Ω
π : π ∈ e−1(Ω))), resp. (e−1(Ω′′), eΩ′′ , (φΩ′′

π : π ∈
e−1(Ω′′))) is a ∇-section of ΓΩ(M), resp. ΓΩ′′(M).

By exactness, applying T s to (2.4) we obtain embeddings

T s(ΓΩ′(M)) ↪→ T s(ΓΩ(M)) ↪→ T s(ΓΩ′′(M)) ↪→ T s(M).

By construction, if π ∈ e−1(Ω), resp. π ∈ e−1(Ω′′), then the morphism ψπ factors
through a morphism

ψΩ
π : Tse′(π) → T s(ΓΩM), resp. ψΩ′′

π : Tse′(π) → T s(ΓΩ′′M).

Moreover, these morphisms coincide with those obtained by the procedure above
applied to the ∇-section (e−1(Ω), eΩ, (φ

Ω
π : π ∈ e−1(Ω))) of ΓΩ(M), resp. to the

∇-section (e−1(Ω′′), eΩ′′ , (φΩ′′

π : π ∈ e−1(Ω′′))) of ΓΩ′′(M).
Note that

(T s(M/ΓΩ′′(M)) : Nsw) = 0,

so that the natural morphism

HomReps(G)≥w(Tsw, T
s(ΓΩ′′(M)))→ HomReps(G)≥w(Tsw, T

s(M))
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is an isomorphism. As a consequence, to finish the proof it suffices to check that
the image of the family (ψΩ′′

π : π ∈ e−1(w)⊔ e−1(ws)) is a basis of the vector space
HomReps(G)≥w(Tsw, T

s(M)).

Next, if π ∈ e−1(ws), resp. π ∈ e−1(w), we consider the composition

φΩ,Ω′

π : Tws
φΩ

π−−→ ΓΩ(M) ↠ ΓΩ(M)/ΓΩ′(M),

resp.

φΩ′′,Ω
π : Tw

φΩ′′
π−−−→ ΓΩ′′(M) ↠ ΓΩ′′(M)/ΓΩ(M).

Again by Exercise 7.9, if we denote by ews : e
−1(ws)→ {ws}, resp. ew : e−1(w)→

{w} the unique map, then the collection (e−1(ws), ews, (φ
Ω,Ω′

π : π ∈ e−1(ws))),

resp. (e−1(w), ew, (φ
Ω′′,Ω
π : π ∈ e−1(w))), is a ∇-section of ΓΩ(M)/ΓΩ′(M), resp. of

ΓΩ′′(M)/ΓΩ(M). Moreover, the morphisms obtained by the procedure above ap-
plied to these ∇-sections are the compositions

ψΩ,Ω′

π : Tse′(π)
ψΩ

π−−→ T s(ΓΩM) ↠ T s(ΓΩ(M)/ΓΩ′(M)),

resp.

ψΩ′′,Ω
π : Tse′(π)

ψΩ′′
π−−−→ T s(ΓΩ′′M) ↠ T s(ΓΩ′′(M)/ΓΩ(M)).

Note that ΓΩ(M)/ΓΩ′(M), resp. ΓΩ′′(M)/ΓΩ(M), is isomorphic to a direct sum
of copies of Nws, resp. Nw. By the special case treated above, we deduce that the
images of the families (ψΩ,Ω′

π : π ∈ e−1(ws)) and (ψΩ′′,Ω
π : π ∈ e−1(w)) are bases of

the vector spaces

HomReps(G)≥w(Tsw, T
s(ΓΩ(M)/ΓΩ′(M)))

and

HomReps(G)≥w(Tsw, T
s(ΓΩ′′(M)/ΓΩ(M)))

respectively.
Finally, if π ∈ e−1(ws), resp. π ∈ e−1(w), we consider the composition

φΩ′′,Ω′

π : Tws
φΩ,Ω′

π−−−−→ ΓΩ(M)/ΓΩ′(M) ↪→ ΓΩ′′(M)/ΓΩ′(M),

resp.

φΩ′′,Ω′

π : Tw
φΩ′′

π−−−→ ΓΩ′′(M) ↠ ΓΩ′′(M)/ΓΩ′(M).

Once again these morphisms constitute a ∇-section of ΓΩ′′(M)/ΓΩ′(M), and the
procedure above provides morphisms

ψΩ′′,Ω′

π : Tsw → T s(ΓΩ′′(M)/ΓΩ′(M))

for π ∈ e−1(ws) ⊔ e−1(w). If e(π) = ws then ψΩ′′,Ω′

π is the composition of ψΩ,Ω′

π

with the embedding

T s(ΓΩ(M)/ΓΩ′(M)) ↪→ T s(ΓΩ′′(M)/ΓΩ′(M)),

and if e(π) = w then the composition of ψΩ′′,Ω′

π with the surjection

T s(ΓΩ′′(M)/ΓΩ′(M)) ↠ T s(ΓΩ′′(M)/ΓΩ(M))

is ψΩ′′,Ω
π .
Consider the exact sequence

ΓΩ(M)/ΓΩ′(M) ↪→ ΓΩ′′(M)/ΓΩ′(M) ↠ ΓΩ′′(M)/ΓΩ(M)
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and the exact sequence

HomReps(G)≥w(Tsw, T
s(ΓΩ(M)/ΓΩ′(M)))

↪→ HomReps(G)≥w(Tsw, T
s(ΓΩ′′(M)/ΓΩ′(M)))

↠ HomReps(G)≥w(Tsw, T
s(ΓΩ′′(M)/ΓΩ(M)))

obtained by applying the functor HomReps(G)≥w(Tsw, T
s(−)). (This sequence is ex-

act because the image of Tsw, resp. T
s(ΓΩ(M)/ΓΩ′(M)), admits a standard, resp. co-

standard, filtration in the highest weight category Reps(G)≥w.) Here we have the

family (ψΩ′′,Ω′

π : π ∈ e−1(ws) ⊔ e−1(w)) in the middle term. By the comments
above, the part of this family parametrized by e−1(ws) is the image of a basis of
the first term, and the part parametrized by e−1(w) maps to a basis of the third
term. This family is therefore a basis.

To conclude, we remark that we have

(T s(ΓΩ′(M)) : Nsw) = 0,

hence the natural morphism

HomReps(G)≥w(Tsw, T
s(ΓΩ′′(M)))→ HomReps(G)≥w(Tsw, T

s(ΓΩ′′(M)/ΓΩ′(M)))

is an isomorphism. This isomorphism sends the image of the family (ψΩ′′

π : π ∈
e−1(w) ⊔ e−1(ws)) to the image of the family (ψΩ′′,Ω′

π : π ∈ e−1(ws) ⊔ e−1(w)),
which implies that the former image is a basis and concludes the proof. □

2.4.3. Translation from a wall. We now fix s ∈ Saff , an object M ∈ Reps(G)
which admits a costandard filtration, and a ∇-section (Π, e, (φπ)π∈Π) ofM . We set

Π′ := Π× {0, 1},
and define a map e′ : Π′ → fWaff by setting e′(π, ε) = e(π)s1−ε for ε ∈ {0, 1}.
Finally, for π ∈ Π we define the morphisms ψ(π,0) and ψ(π,1) as follows.

• Since e′(π, 1) ∈ fW s
aff , we have a fixed isomorphism TsT

s
e′(π,1)

∼= Te(π),

see (2.2). We define ψ(π,1) as the composition

Te′(π,1) ∼= TsT
s
e(π)

Tsφπ−−−→ TsM.

• In (2.3) we have fixed a split surjection T sTe′(π,0) ↠ Te(π). We define
ψ(π,0) as the composition

Te′(π,0)
adj−−→ TsT

sTe′(π,0) ↠ TsTe(π)
Tsφπ−−−→ TsM,

where the first morphism is as in (2.1). In other words, ψ(π,0) is the image
of the composition

T sTe′(π,0) ↠ Te(π)
φπ−−→M

under the isomorphism

HomReps(G)(T
sTe′(π,0),M) ∼= HomRep0(G)(Te′(π,0), TsM)

provided by adjunction.

Proposition 2.7. The triple (Π′, e′, (ψπ′)π′∈Π′) is a ∇-section of TsM .

The proof of Proposition 2.7 is very similar to that of Proposition 2.6. It will
use the following easy lemma.
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Lemma 2.8. For any M in Reps(G) which admits a costandard filtration and
any y ∈ fWaff , if (TsM : Nw) ̸= 0 then {w,ws} ∩ fW s

aff ̸= ∅.

Proof. This property follows from the exactness of the functor Ts and Proposi-
tion 2.37(2) in Chapter 1. □

Proof of Proposition 2.7. We first consider the case when M = Nsw for
some w ∈ fW s

aff . Then the ∇-section consists of a single nonzero (hence surjective)
morphism f : Tsw → Nsw. By Proposition 2.37 in Chapter 1, there exists an exact
sequence

Nws ↪→ TsM ↠ Nw,

and it is easily seen that the natural morphisms

HomRep0(G)(Tws,Nws)→ HomRep0(G)≥ws(Tws,Nws)→ HomRep0(G)≥ws(Tws, TsM)

are isomorphisms, as well as the natural morphisms

HomRep0(G)≥w(Tw, TsM)→ HomRep0(G)≥w(Tw,Nw)

and

HomRep0(G)(Tw,Nw)→ HomRep0(G)≥w(Tw,Nw),

and that all of these spaces are 1-dimensional. Our construction provides morphisms

g : Tws → TsM and h : Tw → TsM.

Since Hom(Tws,Nw) = 0 (because (Tws : Mw) = 0), g must factor through a
morphism g′ : Tws → Nws, and we denote by h′ the composition of h with the
surjection TsM → Nw. With this notation, to conclude it suffices to prove that g′

and h′ are nonzero. By construction h′ is surjective, hence nonzero. On the other
hand g is nonzero, as the image of a surjective (hence nonzero) morphism under an
isomorphism, which implies that g′ is nonzero as well.

Once this case is known, we deduce the case when M is isomorphic to a direct
sum of copies of some module Nsw as in the proof of Proposition 2.6.

Finally we treat the general case. We need to show that for any w ∈ fWaff , the
image of the family (ψπ : π ∈ (e′)−1(w)) forms a basis of HomRep0(G)≥w(Tw, TsM).

If {w,ws} ∩ fW s
aff = ∅ then we have

dimk HomRep0(G)≥w(Tw, TsM) = (TsM : Nw) = 0

by Lemma 2.8, and (e′)−1(w) = ∅, so that there is nothing to prove in this case.
We will now show that for any w ∈ fW s

aff the claim holds both for w and for ws.
Here, by construction we have canonical bijections

e−1(w)
∼−→ (e′)−1(w) and e−1(w)

∼−→ (e′)−1(ws)

given by π 7→ (π, 1) and π 7→ (π, 0) respectively.
Let Ω ⊂ fW s

aff be an ideal containing w and in which w is maximal. Then
Ω′ := Ω∖ {w} is also an ideal in fW s

aff . We have embeddings

ΓΩ′(M) ↪→ ΓΩ(M) ↪→M,

and ΓΩ(M)/ΓΩ′(M) is a direct sum of copies of Nsw. By Exercise 7.9, for any
π ∈ e−1(w) the morphism φπ factors through a morphism

φΩ
π : Tsw → ΓΩ(M),
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and moreover the compositions

φΩ,Ω′

π : Tsw
φΩ

π−−→ ΓΩ(M)→ ΓΩ(M)/ΓΩ′(M)

for π ∈ e−1(w) constitute a ∇-section of ΓΩ(M)/ΓΩ′(M). By the case treated
above, applying the construction above we obtain morphisms

ψΩ,Ω′

(π,1) : Tw → Ts(ΓΩ(M)/ΓΩ′(M))

whose images constitute a basis of HomRep0(G)≥w(Tw, Ts(ΓΩ(M)/ΓΩ′(M))), and
morphisms

ψΩ,Ω′

(π,0) : Tws → Ts(ΓΩ(M)/ΓΩ′(M))

whose images constitute a basis of HomRep0(G)≥ws(Tws, Ts(ΓΩ(M)/ΓΩ′(M))).
Now we have

(Ts(ΓΩ′(M)) : Nw) = (Ts(M/ΓΩ(M)) : Nw) = 0,

so that the natural morphisms

HomRep0(G)≥w(Tw, Ts(ΓΩ(M)))→ HomRep0(G)≥w(Tw, TsM)

and

HomRep0(G)≥w(Tw, Ts(ΓΩ(M)))→ HomRep0(G)≥w(Tw, Ts(ΓΩ(M)/ΓΩ′(M)))

are isomorphisms. From the construction we see that under the identification

HomRep0(G)≥w(Tw, TsM) ∼= HomRep0(G)≥w(Tw, Ts(ΓΩ(M)/ΓΩ′(M)))

the image of the family (ψ(π,1) : π ∈ e−1(w)) corresponds to the image of the

family (ψΩ,Ω′

(π,1) : π ∈ e
−1(w)), so that the former family constitutes a basis. Similar

arguments prove the desired claim for ws, which concludes the proof. □

2.5. Bott–Samelson type tilting modules and morphisms between
them. If w = (s1, . . . , sr) is a word in Saff (i.e. an expression in the terminol-
ogy of Chapter 2), we set

Tw := Θsr ◦ · · · ◦Θs1(T(λ)).

(Notice the inversion of the order!) This object is a tilting module by Proposition 1.6
in Chapter 4. Recall that the Grothendieck group [Rep0(G)] identifies with N 0

aff ,
and that through this identification the morphism induced by Θs corresponds to
right multiplication by Hs, see §4.1 in Chapter 4. For a tilting module M ∈
Rep0(G), under this identification we have

(2.5) [M ] =
∑

y∈fWaff

(M : Ny) ·N0
y .

We deduce that the multiplicity of Ny in [Tw] is equal to the coefficient of N0
y in

the expansion of the element

N0
e ·Hs1 · (· · · ) ·Hsr

in the basis (N0
x : x ∈ fWaff). In particular, if w is a reduced expression for

some element w ∈ fWaff , the indecomposable tilting module Tw appears as a direct
summand of Tw with multiplicity 1, and all the other direct summands are of the

form Ty with y ∈ fWaff which satisfies y < w.
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Proposition 2.9. Let x and y be words in Saff , and assume that x is a reduced

expression for some element x ∈ fWaff . Let also s ∈ Saff .

(1) Assume that x < xs, and that xs ∈ fWaff . Let (fi : i ∈ I) be a fam-
ily of morphisms in Hom(Tx,Ty) whose images span the vector space

HomRep0(G)≥x(Tx,Ty), and let (gj : j ∈ J) be a family of morphisms

in Hom(Txs,Ty) whose images span HomRep0(G)≥xs(Txs,Ty). There exist

morphisms f ′i : Tx → Txs (for i ∈ I) and g′j : Tx → Txss (for j ∈ J) such
that the images of the compositions

Tx
f ′
i−→ Txs = ΘsTx

Θs(fi)−−−−→ ΘsTy = Tys

and the compositions

Tx
g′j−→ Txss = ΘsTxs

Θs(gj)−−−−→ ΘsTy = Tys

span HomRep0(G)≥x(Tx,Tys).

(2) Assume that x = zs for some word z, and let z ∈ Waff be the element
expressed by z. (This element necessarily belongs to fWaff by Lemma 2.31
in Chapter 1.) Let (fi : i ∈ I) be a family of morphisms in Hom(Tx,Ty)

whose images span the vector space HomRep0(G)≥x(Tx,Ty), and let (gj :

j ∈ J) be a family of morphisms in Hom(Tz,Ty) whose images span the

vector space HomRep0(G)≥z (Tz,Ty). There exist morphisms f ′i : Tx → Txs
(for i ∈ I) and g′j : Tx → Tx (for j ∈ J) such that the images of the
compositions

Tx
f ′
i−→ Txs = ΘsTx

Θs(fi)−−−−→ ΘsTy = Tys

and the compositions

Tx
g′j−→ Tx = ΘsTz

Θs(gj)−−−−→ ΘsTy = Tys

span HomRep0(G)≥x(Tx,Tys).

Proof. (1) Here we have xs ∈ fW s
aff . Omitting some of the morphisms we

can assume that the image of (fi : i ∈ I) is a basis of HomRep0(G)≥x(Tx,Ty) and

that the image of (gj : j ∈ J) is a basis of HomRep0(G)≥xs(Txs,Ty). As explained

above, Tx is a direct summand of Tx; we can therefore choose a split embedding
Tx → Tx. Similarly, we can choose a split embedding Txs → Txs. Then, since these

embeddings are isomorphisms in Rep0(G)≥x and Rep0(G)≥xs respectively, we can
complete the compositions

Tx ↪→ Tx
fi−→ Ty and Txs ↪→ Txs

gj−→ Ty

to a ∇-section of Ty. Starting with this ∇-section, Proposition 2.6 provides a ∇-
section of T sTy whose morphisms Tsxs → T sTy are parametrized by I ⊔ J in such

a way that the morphism corresponding to i ∈ I factors through the morphism
T s(fi) : T

sTx → T sTy and the morphism corresponding to j ∈ J factors through

the morphism T s(gj) : T sTxs → T sTy. Next we apply Proposition 2.7, which

provides a∇-section of TsT
sTy = Tys whose morphisms Tx → Tys are parametrized

by I ⊔ J in such a way that the morphism corresponding to i ∈ I factors through
the morphism Θs(fi) : Txs → Tys and the morphism corresponding to j ∈ J factors
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through the morphism Θs(gj) : Txss → Tys. Composing these morphisms with a

split surjection Tx → Tx and forgetting the rest of the ∇-section, we obtain the
desired data.

(2) The proof is similar. In this case we have x = zs ∈ fW s
aff . Omit-

ting some morphisms we can assume that the images of our families are bases of
HomRep0(G)≥x(Tx,Ty) and HomRep0(G)≥z (Tz,Ty) respectively. Then we compose

these morphisms with some split embeddings

Tx ↪→ Tx and Tz ↪→ Tz,

and complete these data to a ∇-section of Ty. Applying Proposition 2.6 and then

Proposition 2.7 we obtain a ∇-section of Tys whose morphisms Tx → Tys are

parametrized by I ⊔ J in such a way that the morphism corresponding to i ∈ I
factors through Θs(fi) and the morphism corresponding to j ∈ J factors through
Θs(gj). Finally, forgetting the rest of the data and composing our morphisms with
a split surjection Tx → Tx we obtain the desired claim. □

2.6. More preliminaries. This subsection and the next one gather a number
of technical statements that will be required below. We start with a few statements
that are independent of Conjecture 1.3.

Lemma 2.10. Let w ∈ fW s
aff . If y ∈ fWaff satisfies y < ws, then the image of

Θs(Ly) in Rep0(G)≥ws vanishes.

Proof. We have a surjection Ny ↠ Ly; it follows that to prove the claim it
suffices to prove that the image of Θs(Ny) in Rep0(G)≥ws vanishes. However, by
Proposition 2.37 in Chapter 1, if Θs(Ny) is nonzero then y and ys both belong
to fWaff , and this object admits a filtration with subquotients Ny and Nys. None
of these objects admits a composition factor of the form Lz with z ≥ ws; they
therefore vanish in Rep0(G)≥ws, which implies our claim. □

Lemma 2.11. Let w ∈ fW s
aff . The morphism

HomRep0(G)(Mws,Θs(Mws))→ HomRep0(G)≥ws(Mws,Θs(Mws))

induced by the quotient functor is an isomorphism, and both spaces are 1-dimen-
sional.

Proof. By adjunction and Proposition 2.37 in Chapter 1, we have

HomRep0(G)(Mws,Θs(Mws)) ∼= HomRep0(G)(M
s
w,M

s
w).

The right-hand side is 1-dimensional, hence so is the left-hand side. On the other
hand, since Mws has head Lws, the image of any nonzero morphism with domain
Mws admits Lws as a composition factor. We deduce that for any object M the
morphism

HomRep0(G)(Mws,M)→ HomRep0(G)≥ws(Mws,M)

induced by the quotient functor is injective. To conclude, it therefore suffices to
prove that

(2.6) dimk HomRep0(G)≥ws(Mws,Θs(Mws)) = 1.

Let us fix some nonzero morphisms

Mws ↠ Lws ↪→ Nws.
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Lemma 2.10 implies that the images in Rep0(G)≥ws of the induced morphisms

Θs(Mws) ↠ Θs(Lws) ↪→ Θs(Nws)

are isomorphisms. They therefore induce isomorphisms

HomRep0(G)≥ws(Mws,Θs(Mws))
∼−→ HomRep0(G)≥ws(Mws,Θs(Lws))

∼−→ HomRep0(G)≥ws(Mws,Θs(Nws)).

Now, by Proposition 2.37 in Chapter 1, Θs(Nws) admits a costandard filtration
with subquotients Nw and Nws. Using Lemma 3.1 in Appendix A we deduce a
similar claim in the highest weight category Rep0(G)≥ws, which implies (2.6) and
finishes the proof. □

2.7. Even more preliminaries. From now on, and until the end of this
section, we assume that Conjecture 1.3 holds. We therefore have an action of the
monoidal category DBS

aff on the category Rep0(G), given by a bifunctor

Rep0(G)× DBS
aff → Rep0(G)

which we will denote by (M,B) 7→M ·B, and we can consider the functor

Ψ : DBS
aff → Rep0(G)

defined by

Ψ(B) = T(λ) ·B.
By construction, this functors satisfies

Ψ(Bw) = Tw

for any word w in Saff .
Since the category Rep0(G) is additive and Karoubian (as an abelian category),

the functor Ψ can be “extended” to an additive functor

Daff → Rep0(G),

which will still be denoted Ψ. Since any direct sum or direct summand of tilting
modules is tilting (see Exercise 7.4), this functor takes values in the full subcategory
whose objects are the tilting modules.

Consider the morphism

(2.7) [Daff ]⊕ → [Rep0(G)]

induced by Ψ on Grothendieck groups. Here the left-hand side has been identified
with Haff , see (1.1), and the right-hand side has been identified with N 0

aff , see §2.5.
The morphism (2.7) therefore defines a morphism

(2.8) Haff → N 0
aff .

Here both sides have natural structures of right Haff -modules. The functor Ψ
satisfies

Ψ(B · Bs) ∼= Θs(Ψ(B))

for any B in Daff and any s ∈ Saff by assumption. It follows that (2.8) commutes
with the actions of each element Hs ∈ Haff . It also commutes with the action of v
(because Ψ◦ (1) ∼= Ψ), hence is a morphism of right Haff -modules. In view of (2.5),
we deduce the following property.
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Lemma 2.12. For any B ∈ Daff and any y ∈ fWaff , the multiplicity (Ψ(B) :
Ny) is the coefficient of N0

y in the expansion of the element N0
e · [B] in the basis

(N0
x : x ∈ fWaff), where [B] is the class of B in [Daff ]⊕ = Haff .

The following statement involves the notion of rex move from §2.9 in Chapter 2.

Lemma 2.13. Let w ∈ fWaff , and consider a rex move in Γw from w to w′.
Then the image of the associated morphism Bw → Bw′ under the composition of Ψ

with the quotient functor Rep0(G) → Rep0(G)≥w is an isomorphism, with inverse
the image of the morphism induced by the reversed rex move.

Proof. Consider the reversed rex move, and the associated morphism Bw′ →
Bw. By Proposition 2.29 in Chapter 2, there exist words x1, . . . , xr of length at
most ℓ(w)− 2 and morphism f1, . . . , fr : Bw → Bw where each fi factors through a
shift of Bxi

such that the composition

Bw → Bw′ → Bw

equals id+
∑r
i=1 fi. For any i, by Lemma 2.12 the costandard objects occuring in a

costandard filtration of Ψ(Bxj
) have labels of length at most ℓ(w)−2; it follows that

the image of Ψ(Bxj
) in Rep0(G)≥w vanishes. Hence the image of our morphism

Bw → Bw in Rep0(G)≥w is the identity. Similar comments apply to the composition
of our morphisms in the other order, which proves our claim. □

Lemma 2.14. Let M ∈ Rep0(G) be an object such that Θs(M) ̸= 0. Then the
morphism

M → Θs(M)

induced by the lower dot morphism

•
s

: B∅ → Bs(1)

is nonzero.

Proof. Recall from Exercise 2.12 that we have an adjunction(
(−) · Bs, (−) · Bs

)
,

which is defined by morphisms B∅ → Bss and Bss → B∅ constructed using the dot
and trivalent morphisms. Using our action on Rep0(G) we deduce morphisms

id→ ΘsΘs, ΘsΘs → id

which define an adjunction (Θs,Θs). Since Θs(M) ̸= 0, the first of these morphisms
induces a nonzero morphism

M → ΘsΘs(M).

This morphism factors through the morphism considered in the statement; the
latter morphism is therefore nonzero. □
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2.8. A surjectivity claim. The crucial observation we will need is the fol-
lowing.

Proposition 2.15. For any words x, y in Saff , the morphism

Hom•
DBS

aff
(Bx,By)→ HomRep0(G)(Tx,Ty)

induced by the functor Ψ is surjective.

The proof of this proposition will rely on the following more technical statement.

Lemma 2.16. Let x, y be words in Saff , and assume that x is a reduced expres-

sion for some element x ∈ fWaff . Then the morphism

Hom•
DBS

aff
(Bx,By)→ HomRep0(G)≥x(Tx,Ty)

induced by the composition of Ψ with the quotient functor Rep0(G) → Rep0(G)≥x

is surjective.

Note that in the setting of Lemma 2.16, by the comments at the beginning
of §2.5, the image of Tx in Rep0(G)≥x coincides with the image of Tx. As a
consequence, and in view of the comments in §5.4 of Appendix A, we have

(2.9) dimk HomRep0(G)≥x(Tx,Ty) = (Ty : Nx).

We start by proving some particular cases.

Lemma 2.17. Let w ∈ fW s
aff , and let z be a reduced expression for ws. Then

Lemma 2.16 holds when

(x, y) ∈ {(z, zs), (z, zss), (zs, zs), (zs, zss)}.

Proof. By Lemma 2.22 in Chapter 2 there exists an isomorphism

Bzss ∼= Bzs(1)⊕ Bzs(−1).
This isomorphism reduces the proof to the cases of the pairs (z, zs) and (zs, zs).
The case of (zs, zs) is obvious, since the codomain of our morphism is spanned by
the identity morphism (see (2.9)).

We now consider the case of the pair (z, zs). In this case we will show more
explicitly that HomRep0(G)≥ws(Tz,Tzs) is 1-dimensional, and spanned by the image
of the morphism

idBz
· •

s

: Bz → Bzs(1).

Fix a nonzero (and necessarily injective) morphism f : Mws → Tz. We then have
morphisms

HomRep0(G)≥ws(Tz,Tzs) (−)◦f
--
HomRep0(G)≥ws(Mws,Tzs),

HomRep0(G)≥ws(Mws,Θs(Mws))
Θs(f)◦(−)

11

and the images of the morphisms induced by the lower dot morphism in the spaces
in the left column coincide. The images of f and Θs(f) in Rep0(G)≥ws are isomor-
phisms: for f this is clear, and for Θs(f) this follows from Lemma 2.10. It follows
that both morphisms in our diagram are invertible.
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These comments show that our desired claim is equivalent to the claim that
HomRep0(G)≥ws(Mws,Θs(Mws)) is 1-dimensional, and spanned by the morphism
induced by the lower dot morphism. These facts follow from Lemma 2.11 and
Lemma 2.14. □

Proof of Lemma 2.16. To simplify notation, if x, y are as in the statement
we will denote by

γx,y : Hom•
DBS

aff
(Bx,By)→ HomRep0(G)(Tx,Ty)

the morphism induced by Ψ. We will prove by induction on the length of y that
the statement holds for all reduced expressions x.

First, if y is the empty word, then Ty = T(λ) = L(λ), and the image of this

object in Rep0(G)≥x vanishes (so that the claim is obvious) unless x = e. On the
other hand, if x = e then x is the empty word, and the claim is clear in this case
too.

Now, we assume that y has positive length, and write y = zs for some word z
and some s ∈ Saff . We also assume that the claim is known for the word z. Let x
and x be as in the statement. We distinguish three cases.

Case 1: {x, xs} ∩ fW s
aff = ∅. In this case, by (2.9) and Lemma 2.8 the right-

hand space vanishes, so that there is nothing to prove.
Case 2: xs ∈ fW s

aff . By induction there exists a family (fi : i ∈ I) of elements
of HomRep0(G)(Tx,Tz) which belong to the image of γx,z and whose images span
HomRep0(G)≥x(Tx,Tz), and a family (gj : j ∈ J) of elements in HomRep0(G)(Txs,Tz)
which belong to the image of γxs,z and whose images span HomRep0(G)≥xs(Tx,Tz).
Then by Proposition 2.9(1) there exist morphisms f ′i : Tx → Txs (for i ∈ I) and
g′j : Tx → Txss (for j ∈ J) such that the images of the compositions

Tx
f ′
i−→ Txs = ΘsTx

Θs(fi)−−−−→ ΘsTz = Ty

and the compositions

Tx
g′j−→ Txss = ΘsTxs

Θs(gj)−−−−→ ΘsTz = Ty

span HomRep0(G)≥x(Tx,Ty). By Lemma 2.17, for any i ∈ I there exists a morphism

f ′′i : Tx → Txs in the image of γx,xs whose image in HomRep0(G)≥x(Tx,Txs) coin-

cides with that of f ′i , and for any j ∈ J there exists a morphism g′′j : Tx → Txss in
the image of γx,xss whose image in HomRep0(G)≥x(Tx,Txss) coincides with that of

g′j . Then the family

{Θs(fi) ◦ f ′′i : i ∈ I} ∪ {Θs(gj) ◦ g′′j : j ∈ J}

consists of morphisms in the image of γx,y, and its image spans the vector space

HomRep0(G)≥x(Tx,Ty). We deduce the desired surjectivity.

Case 3: x ∈ fW s
aff . Since xs < x, x admits a reduced expression x′ which

finishes with s. Since the rex graph of x is connected (see §2.9 in Chapter 2), there
exists a rex move from x and x′. Choosing such a rex move we obtain morphisms
Bx → Bx′ and Bx′ → Bx, whose images in Rep0(G)≥x are inverse isomorphisms by
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Lemma 2.13. We deduce a commutative diagram

Hom•
DBS

aff
(Bx,By)

//

��

Hom•
DBS

aff
(Bx′ ,By)

��

oo

HomRep0(G)≥x(Tx,Ty)
// HomRep0(G)≥x(Tx′ ,Ty)oo

where the vertical arrows are the morphisms of the lemma for the pairs (x, y) and
(x′, y) and the lower horizontal arrows are inverse to each other. It therefore suffices
to prove the statement for the pair (x′, y).

The rest of the proof is similar to Case 2. Write x′ = vs; then v is a reduced
expression for an element in fWaff by Lemma 2.31. By induction there exists a
family (fi : i ∈ I) of elements of HomRep0(G)(Tx′ ,Tz) which belong to the image of
γx′,z and whose images span HomRep0(G)≥x(Tx′ ,Tz), and a family (gj : j ∈ J) of

elements in HomRep0(G)(Tv,Tz) which belong to the image of γv,z and whose images
span HomRep0(G)≥xs(Tv,Tz). Then by Proposition 2.9(2) there exist morphisms

f ′i : Tx′ → Tx′s (for i ∈ I) and g′j : Tx′ → Tx′ (for j ∈ J) such that the images of
the compositions

Tx′
f ′
i−→ Tx′s = ΘsTx′

Θs(fi)−−−−→ ΘsTz = Ty

and the compositions

Tx′
g′j−→ Tx′ = ΘsTv

Θs(gj)−−−−→ ΘsTz = Ty

span HomRep0(G)≥x(Tx′ ,Ty). By Lemma 2.17, for any i ∈ I there exists a morphism

f ′′i : Tx′ → Tx′s in the image of γx′,x′s whose image in HomRep0(G)≥x(Tx′ ,Tx′s)

coincides with that of f ′i , and for any j ∈ J there exists a morphism g′′j : Tx′ → Tx′

in the image of γx′,x′ whose image in HomRep0(G)≥x(Tx′ ,Tx′) coincides with that

of g′j . Then the family

{Θs(fi) ◦ f ′′i : i ∈ I} ∪ {Θs(gj) ◦ g′′j : j ∈ J}

consists of morphisms in the image of γx′,y, and its image spans the vector space

HomRep0(G)≥x(Tx′ ,Ty). We deduce the desired surjectivity. □

We can finally prove Proposition 2.15.

Proof of Proposition 2.15. We proceed by induction on the length of the
word x. If this length is 0, then x is the empty word, and our claim is a particular
case of Lemma 2.16.

Now, assume that x has positive length, and write x = zs for some word z and
some s ∈ Saff . Assume that the claim is known for the word z (and any word y).
Consider the morphisms

• : B∅ → B(s,s) and
•

: B(s,s) → B∅.

As explained in the proof of Lemma 2.14, these morphisms define an adjunction(
(−) · Bs, (−) · Bs

)
, and their images define morphisms of functors

id→ ΘsΘs and ΘsΘs → id
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which satisfy the zigzag relations, hence define an adjunction (Θs,Θs). Using these
adjunctions we obtain the horizontal isomorphisms in the following diagram:

Hom•
DBS

aff
(Bx,By)

∼ //

��

Hom•
DBS

aff
(Bz,Bys)

��
HomRep0(G)(Tx,Ty)

∼ // HomRep0(G)(Tz,Tys).

Here the vertical morphisms are induced by the functor Ψ. This diagram commutes,
and its right vertical arrow is surjective by assumption. We deduce that its left
vertical arrow is surjective as well, which finishes the proof. □

2.9. Completion of the proof. We finally prove Conjecture 2.1, under the
assumption that Conjecture 1.3 holds. Recall the indecomposable objects (Bw :
w ∈ Waff) in Daff , which are such that the class [Bw] in [Daff ]⊕ = Haff is pHw;
see §1.2. On the other hand, by definition of the module Naff , for any y ∈ fWaff

and x ∈W we have

Ne ·Hxy = (−v)ℓ(x)Ny.
It follows that for any w ∈ fWaff we have

Ne · pHw =
∑

y∈fWaff

pny,w ·Ny,

hence finally that

N0
e · pHw =

∑
y∈fWaff

pny,w(1) ·N0
y .

This formula and Lemma 2.12 show that the formula in Conjecture 2.1 will follow
from the following statement.

Proposition 2.18. Let w ∈Waff . We have

Ψ(Bw) ∼=

{
Tw if w ∈ fWaff ;

0 otherwise.

Proof. First we treat the case w /∈ fWaff . In this case w admits a reduced
expression w whose first letter s belongs to S. The object Bw is a direct summand
of Bw, and Ψ(Bw) = 0 since Θs(T(λ)) = 0. It follows that Ψ(Bw) = 0, as desired.

We will prove the case w ∈ fWaff by induction on ℓ(w). The case ℓ(w) = 0 is
obvious since Ψ(Be) = Ψ(B∅) = T(λ) = Te.

Now, consider some w ∈ fWaff with ℓ(w) > 0 and assume that the claim is
known for shorter elements. Choose a reduced expression w for w. Then Bw is a
direct summand of Bw, and all the other direct summands of this object are of the
form By(n) with ℓ(y) < ℓ(w). By induction, Ψ(Bw) is therefore the direct sum of

Ψ(Bw) and some objects Ty with y ∈ fWaff which satisfies ℓ(y) < ℓ(w). On the
other hand, it follows from Lemma 2.12 that

(Ψ(Bw) : Nw) = 1.

Since (Ty,Nw) = 0 for any y ∈ fWaff such that ℓ(y) < ℓ(w), we deduce that
(Ψ(Bw) : Nw) = 1; in particular, Ψ(Bw) ̸= 0. Similarly, for any z ∈ fWaff we have

(Ψ(Bw) : Nz) ̸= 0 ⇒ z ≤ w.
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We deduce that

(Ψ(Bw) : Nz) ̸= 0 ⇒ z ≤ w.
These properties show that if Ψ(Bw) is indecomposable, then it is isomorphic to Tw.
To conclude the proof, it therefore suffices to prove that Ψ(Bw) is indecomposable.

It follows from Proposition 2.15 that the morphism

Hom•
Daff

(Bw,Bw)→ HomRep0(G)(Ψ(Bw),Ψ(Bw))

is surjective. Since Θs(T(λ)) = 0 for any s ∈ S, in view of Remark 1.2(1) this
morphism factors through the quotient morphism

Hom•
Daff

(Bw,Bw) ↠ Hom•
Daff

(Bw,Bw)⊗S(k⊗ZZR∨) k

where in the right-hand side k is the trivial S(k⊗Z ZR∨)-module. The right-hand
side is a finite-dimensional graded k-algebra whose degree-0 component is local
(since it is a quotient of the local algebra HomDaff

(Bw,Bw)). By [GG, Theorem 3.1]
this algebra is therefore local (as a non-graded algebra). We deduce that the algebra
HomRep0(G)(Ψ(Bw),Ψ(Bw)) is local, hence that Ψ(Bw) is indecomposable, which
finishes the proof. □

Remark 2.19. One can make Proposition 2.15 more precise, by showing that
the kernel of the morphism involved in this statement is the subspace spanned by
morphisms which factor through an object of the form Bz(n) where z is a word
in Saff starting with an element of S and n ∈ Z. In fact, since Θs(T(λ)) = 0 for
s ∈ S, these morphisms belong to the kernel of this morphism. What remains to be
proved is that the dimension of the quotient of Hom•

DBS
aff
(Bx,By) by this subspace

is at most dimHomRep0(G)(Tx,Ty). (Here the latter dimension can be expressed in

terms of the combinatorics of the Hecke algebra using Exercise 6.5.) This is checked
in [RW1, §4.5] using diagrammatical considerations.

3. Proofs of the tilting character formula

3.1. The case of GL(n). First we consider the case G = GLn(k), assuming
that p > n ≥ 3. In this case, Conjecture 1.3 was proved in [RW1, Part II] using the
theory of categorical actions of Lie algebras due to Rouquier [Ro2] and Khovanov–
Lauda [KhL1, KhL2]. (The two definitions given—almost simultaneously—by
these authors are similar but a priori different. The fact that they give rise to the
same category was later proved by Brundan [Br2].) In this subsection we outline
this proof.

3.1.1. The Lie algebra ĝlN and its natural module. We start by giving a (slightly

non-standard) definition of the Lie algebra ĝlN . Let N ≥ 3. First we set

ŝlN := slN
(
C[t, t−1]

)
⊕ CK ⊕ Cd

which we endow with the Lie bracket defined by

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−nTr(xy)K,

[d, x⊗ tm] = mx⊗ tm,

[K, ŝlN ] = 0.
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Then we set ĝlN = ŝlN⊕C, with (0, 1) identified with the identity matrix in glN (C).
Denote by hf ⊂ glN (C) the Cartan subalgebra of diagonal matrices, and set

h := hf ⊕ CK ⊕ Cd.
Let us denote by ε1, · · · , εN the obvious basis of h∗f . Any element λ ∈ h∗f can be
“extended” to a linear form on h by setting ⟨λ,K⟩ = ⟨λ, d⟩ = 0. If we denote by
K∗, resp. δ, the linear forms on h that vanish on hf and satisfy

K∗(K) = δ(d) = 1, K∗(d) = δ(K) = 0,

then we have
h∗ = h∗f ⊕ CK∗ ⊕ Cδ.

Remark 3.1. The Lie algebra ĝlN is the Kac-Moody algebra associated with
the Dynkin diagram

0◦

◦
1

◦
2

◦
3

. . . ◦
N−2

◦
N−1

and the realization with underlying vector space h, with simple roots

α0 = δ − (εN − ε1), αi = εi+1 − εi (i ∈ {1, . . . , N − 1})
and simple coroots

h0 = K + e1,1 − eN,N , hi = ei+1,i+1 − ei,i (i ∈ {1, . . . , N − 1}).
(Here, ei,j is the matrix unit with coefficient 1 in position (i, j).)

We define “Chevalley elements” in ĝlN by setting, for i ∈ {0, . . . , N − 1},

ei =

{
ei+1,i if i ≥ 1;

te1,N if i = 0,
fi =

{
ei,i+1 if i ≥ 1;

t−1eN,1 if i = 0.

We now define the “natural” representation natN of ĝlN . Let

A = CN = ⊕1≤i≤NCai
be the natural representation of glN (C). We set

natN = A⊗C C[t, t−1]

with ŝlN acting via

(x⊗ tm) · (a⊗ tn) = x(a)⊗ tm+n for x ∈ slN (C), a ∈ A, m,n ∈ Z;
d · (a⊗ tn) = na⊗ tn for a ∈ A, n ∈ Z;
K · (a⊗ tn) = 0 for a ∈ A, n ∈ Z.

If λ ∈ Z, write λ = µN + ν with µ ∈ Z and 1 ≤ ν ≤ N , and set

mλ := aν ⊗ tµ.
Then

natN = ⊕λ∈ZCmλ,

where mλ is a weight vector with weight εν + µδ, with the convention above.
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3.1.2. Representations of GLn(k). We now fix n ≥ 3, and assume that p > n.
We set G = GLn(k), and choose as T, resp. B, the maximal torus of diagonal
matrices, resp. the Borel subgroup of lower triangular matrices. We have a canonical
identification

X = Zn,

where (λ1, . . . , λn) corresponds to the character sending a diagonal matrix with

coefficients x1, . . . , xn to
∏
i x

λi
i . With this identification we have

X+ = {(λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn}.

We set V = kn (the natural representation of G) and define

E := V ⊗k (−) : Rep(G)→ Rep(G),

F := V ∗ ⊗k (−) : Rep(G)→ Rep(G).

These functors are naturally adjoint to each other. We define an endomorphism
X ∈ End(E) as follows: for M ∈ Rep(G), the G-action induces a morphism

V ∗ ⊗ V ⊗M = gln(k)⊗M →M ;

by adjunction we deduce a morphism

XM : EM = V ⊗M → V ⊗M = EM.

Then we have a decomposition of E into generalized eigenspaces for the action of
X:

E = ⊕a∈kEa.

Since F is right adjoint to E, the endomorphism X of E also determines an endo-
morphism of F . With respect to this endomorphism, we similarly obtain a decom-
position into generalized eigenspaces:

F = ⊕a∈kFa,

and the adjunction (E,F ) induces adjunctions (Ea, Fa) for any a ∈ k.
The following proposition is due to Chuang–Rouquier, see [CR, §7.5]. (See

also [RW1, Proposition 6.3.4] for a review of the proof.)

Proposition 3.2. (1) We have Ea = 0 and Fa = 0 unless a belongs to
the prime subfield Fp ⊂ k.

(2) The isomorphism of C-vector spaces

C⊗Z [Rep(G)]
∼−→
∧
n natp

sending [M(λ)] to

mλ1 ∧mλ2−1 ∧ · · · ∧mλn−n−1

identifies the action of [Ea], resp. [Fa], on the left-hand side with the action
of ea, resp. fa, on the right-hand side, for any a ∈ {0, . . . , p− 1} = Fp.

(3) Under the isomorphism above, the decomposition of C⊗Z [Rep(G)] induced
by the linkage principle (see Corollary 2.14 in Chapter 1) corresponds to
the weight space decomposition of

∧n
natp.
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3.1.3. Categorification. It turns out that the picture presented in §3.1.2 “lifts”

to the categorical level, as follows. We view the Dynkin diagram of ĝlN as a quiver
with the following orientation:

0◦ hh

uu◦
1

// ◦
2

// ◦
3

. . . ◦
N−2

// ◦
N−1

.

Then we set

tij =

{
−1 if i→ j,

1 otherwise

and

P = {λ ∈ h∗ : ⟨hi, λ⟩ ∈ Z, ∀i ∈ {0, 1, . . . , N − 1}} .
As mentioned above, Rouquier and Khovanov–Lauda have defined a “categori-

cal incarnation” of each Kac–Moody algebra. Here we will follow the notations and
conventions of Brundan [Br2].2 In the particular case under consideration, and
with the appropriate choice of structure constants, we obtain the strict additive
k-linear 2-category

U(ĝlN )

defined by generators and relations as follows. Its objects consist of P , its 1-
morphisms are generated by Ei1λ : λ→ λ+αi (which we will depict as an upward
arrow decorated by λ in the right region) and Fi1λ : λ → λ − αi (which we will
depict as a downward arrow decorated by λ in the right region), and its generating
2-morphisms are

λ

i

•
,

λ

i j

, λ

i

,
λ

i

.

(As in Chapter 2 these diagrams are to be read from bottom to top. Hence these
morphisms are morphisms from Ei1λ to itself, from EiEj1λ := (Ei1λ+αj

) ◦ (Ej1λ)
to EjEi1λ, from idλ to FiEi1λ, and from EiFi1λ to idλ respectively.)

These 2-morphisms are required to satisfy the following 4 sets of relations. Here
we write i— j if i→ j or j → i, and i /— j if neither i→ j nor j → i.

i j

λ

• −
i j

λ
•

=
i j

λ
•

−
i j

λ

• =

 i j

λ if i = j;

0 otherwise,

i j

λ
=



0 if i = j;

i j

λ if i ̸= j and i /— j;

tij
i j

λ• + tji
i j

λ• if i— j,

2In fact, we have even followed this reference in copying its source file for most of the drawings
below...
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i j k

λ −
i j k

λ =

tij i j k

λ if i = k and k— j;

0 otherwise.

i

λ =

i

λ ,
i

λ =
i

λ

Finally, one has to impose that certain 2-morphisms are invertible. These 2-
morphisms involve the new diagram

j

i

λ :=

i

j

λ : EjFi1λ → FiEj1λ.

With this notation the following 2-morphisms are required to be isomorphisms:

j

i

λ : EjFi1λ
∼→ FiEj1λ if i ̸= j,

i

i

λ ⊕
⟨hi,λ⟩−1⊕
n=0

i

λ
n• : EiFi1λ

∼→ FiEi1λ ⊕ 1
⊕⟨hi,λ⟩
λ if ⟨hi, λ⟩ ≥ 0,

i

i

λ ⊕
−⟨hi,λ⟩−1⊕

n=0

i

λ
n• : EiFi1λ ⊕ 1

⊕−⟨hi,λ⟩
λ

∼→ FiEi1λ if ⟨hi, λ⟩ ≤ 0.

(Here, a dot with a nonnegative integer n means n successive dots. By “are required
to be isomorphisms” we mean that we take an additional generating morphism in
the opposite direction, and add the relation that the appropriate compositions are
equal to the identity morphisms.)

Remark 3.3. It is important to note that the 2-morphisms in U(ĝlN ) are not
invariant by isotopy of diagrams.

The following theorem is essentially due to Chuang–Rouquier. For the details
of its proof, we refer to [RW1, Theorem 6.4.6].

Theorem 3.4. There exists an action of the 2-category U(ĝlp) on the category
Rep(G) such that λ is sent to the “block” of Rep(G) corresponding to the λ-weight
space in

∧n
natp (see Proposition 3.2), each Ei1λ acts via the functor Ei, each Fi1λ

acts via the functor Fi, and the morphisms

λ

i

,
λ

i

are sent to the unit and counit morphisms of the natural adjunction (Ei, Fi).

Remark 3.5. The image of the other generating morphisms can also be de-
scribed explicitly; see [RW1, §6.4.7] for details.
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3.1.4. Application to the proof of Conjecture 1.3. Now that the required data
have been introduced, we can outline the proof of Conjecture 1.3 in this case. It
will consist in 2 steps.

Let

ω = ε1 + · · ·+ εn ∈ P.
Under the action of Theorem 3.4, the weight ω is mapped to the block corresponding
to the (Waff , ·p)-orbit of

λ0 = (n, . . . , n) ∈ X,
a regular block. With this choice of weight “λ,” the category Rep0(G) is therefore

a “weight space” for the action of U(ĝlp).

Step 1: Restriction of the action to ĝlp to ĝln. In addition to the Lie algebra ĝlp
(and its associated 2-category) considered in Theorem 3.4, let us now also consider

the Lie algebra ĝln (and its associated 2-category). To distinguish the 2-cases, for

ĝln the “affine” vertex of the Dynkin diagram will be denoted ∞. We set

Pn :=

{
n∑
i=1

niεi +mδ : ni ∈ Z≥0 s.t.

n∑
i=1

ni = n, m ∈ Z

}
.

These weights are weights for both ĝlp and ĝln. We also denote by Rep[n](G) the
sum of the “blocks” in Rep(G) corresponding to weights in Pn.

In [RW1, Theorem 7.4.1] it is shown that one can “restrict” the action of ĝlp
on Rep(G) to an action of ĝln on Rep[n](G) by sending:

• λ to the “block” as before if λ ∈ Pn, and to 0 otherwise;
• Ei to {

Ei if 1 ≤ i ≤ n− 1,

E0Ep−1 · · ·En if i =∞;

• Fi to {
Fi if 1 ≤ i ≤ n− 1

En · · ·Fp−1F0 if i =∞;

• each 2-morphism not involving∞ to the 2-morphism corresponding to the

same diagram in ĝlp;
• the 2-morphism corresponding to

i ∞

γ
, resp.

i∞

γ
, resp.

∞ ∞

γ

to

i

. . .

. . .

n0

γ
, resp.

i

. . .

. . .

0 n

γ
, resp. (−1)p−n

. . .

. . .

. . .

. . .

n0n0

γ
;

• the 2-morphism

•

∞

γ
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to

0

•

p − 1 n + 1 n

. . . γ
;

• the 2-morphism

γ
∞

, resp.
γ

∞

to

. . . . . .

n00n

γ , resp.
. . . . . .

0nn0

γ
.

Remark 3.6. This step of the proof is a special case of a result of Maksimau
on restriction of certain actions of 2-Kac–Moody algebras; see [Ma].

Step 2: Relating U(ĝln) to the Hecke category. Let us now denote by U[n](ĝln)

the quotient of U(ĝln) by the span of 2-morphisms which contain a weight not in

Pn. Clearly, the action of U(ĝln) on Rep[n](G) considered in Step 1 factors through

an action of U[n](ĝln).
In [RW1, Theorem 8.1.1] it is shown that there exists a strict monoidal functor

DBS
aff → EndU[n](ĝln)

(ω).

Explicitly, this morphism is constructed as follows. It sends the object B(i1,...,ir)⟨k⟩
to the functor

. . .

i1 i1 ir ir

ω
.

(Here we identify Saff with {1, . . . , n− 1} ∪ {∞} in the obvious way.) It sends the
morphism

•

i

resp.
•

i

to

ω

i

, resp. ω

i

,

and the morphism
i

, resp.

i

to

ω

i

i

i

, resp.
ω

ii

i

.
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For i, j ∈ {1, . . . , n− 1,∞} with i /— j, the functor sends

i j

to

i

i

j

j

ω

Finally, for i, j ∈ {1, . . . , n− 1,∞} with j → i, the functor sends

i j

, resp.

j i

to

ω

i j i

ij j

, resp. ω

iji

i jj

.

Remark 3.7. This step of the proof is closely related to (and inspired by) the
earlier works [MSV, MT1, MT2].

For both steps, the proof consists of manipulations with the diagrams in U(ĝlp)
or U(ĝln). Combining these two steps one obtains an action of DBS

aff on the category
Rep0(G), and one can easily check that each object Bi acts via a wall crossing
functor associated with the wall corresponding to i; see [RW1, §6.4.8] for details.
This provides the desired proof of Conjecture 1.3 in this special case.

3.2. The Finkelberg–Mirković conjecture. Before discussing the other
proofs of the conjectures above we explain an important conjecture due to Finkel-
berg–Mirković [FM] which predates this story and was highly influential.

3.2.1. Statement. Consider a connected reductive algebraic group G over an
algebraically closed field F of characteristic ℓ, with a choice of Borel subgroup
B ⊂ G and maximal torus T ⊂ B. Consider the groups LG, L+G and I and the
affine Grassmannian Gr as in Sections 4–5 of Chapter 3. As in Chapter 3 we work
either in the “topological case” where F = C (and then consider sheaves for the
analytic topology) or in the “étale case” (and consider étale sheaves). Next, let k
be an algebraic closure of a finite field of characteristic p ̸= ℓ. (In the “topological”
setting, k can in fact be an arbitrary algebraically closed field.) Then we can
consider the category PervL+G(Gr,k) of L+G-equivariant k-perverse sheaves of Gr,
which admits a natural structure of monoidal category with monoidal product ⋆L+G.
As explained in §5.1 of Chapter 3, the geometric Satake equivalence provides an
equivalence of monoidal categories

Sat : (PervL+G(Gr,k), ⋆L+G)
∼−→ (Rep(G∨

k ),⊗)
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where G∨
k is a split connected reductive algebraic group over k, with a maximal

torus T∨
k whose lattice of characters is the lattice X∗(T ) of cocharacters of T , and

such that the root datum of (G∨
k , T

∨
k ) is dual to that of (G,T ). (In other words,

G∨
k is Langlands dual to G.) We will also denote by B∨

k ⊂ G∨
k the Borel subgroup

whose roots are the negative coroots of (G,T ) (with respect to our choice of B,
considered as a negative Borel subgroup in G).

We will assume that the data as in Chapter 1 are chosen so that

G(1) = G∨
k , B(1) = B∨

k , T(1) = T∨
k .

We will identify the character lattice X = X∗(T) with X∗(T(1)) = X∗(T ) in such
a way that the pullback under the Frobenius morphism T → T(1) corresponds to
the morphism λ 7→ pλ on X. In this way the root system R of (G,T ) identifies
with R∨, the coroot system R∨ identifies with R, and the subset X+ ⊂ X of dom-
inant weights identifies with the subset X∗(T )

+ ⊂ X∗(T ) of dominant coweights.
Similarly, the Weyl group of (G,T ) identifies naturally with W , the affine Weyl
group Waff identifies with W ⋉ZR∨, and the extended Weyl group Wext identifies
with W ⋉X∗(T ), so that the notation of Chapter 1 matches that of Sections 4–5
of Chapter 3.

It will also be convenient to consider the quotient

Gr′ := L+G\LG,
with its action of L+G induced by multiplication on the right in LG. Of course we
have a canonical isomorphism

Gr′
∼−→ Gr

induced by the assignment g 7→ g−1, which commutes with the actions of L+G on
both sides.

Let Iu be the prounipotent radical of I, i.e. the preimage of the unipotent radical
of B under the canonical morphism L+G → G; then the Iu-orbits on Gr′ coincide
with the I-orbits, and are in a canonical bijection with the subset fWext ⊂Wext of
elements w which have minimal length in the coset Ww. (Here we use the notation
and constructions discussed in Remark 4.5 and Remark 4.7(2) in Chapter 1.) Recall
also that multiplication in Wext induces a bijection

fWaff × Ω
∼−→ fWext.

Let us assume now that p ≥ h, and fix a weight λ ∈ C. For technical reasons, we
will assume that the stabilizer of λ inWext (for the action ·p) intersects Ω trivially.3

Then we consider the extended principal block

Rep[0](G)

in the category Rep(G), namely the Serre subcategory generated by the simple G-
modules of the form L(w ·p λ) with w ∈ fWext. In terms of the “blocks” considered
in §2.5 of Chapter 1, we have

Rep[0](G) =
⊕
ω∈Ω

Rep(G)Waff ·p(ω·pλ).

(Here we have {ω ·p λ : ω ∈ Ω} = C ∩ (Wext ·p λ), and this set is in bijection with
Ω by assumption.)

3By Exercise 1.15, this condition is satisfied e.g. if X∗(T )/ZR∨ has no p-torsion, which is
automatic if p > h. But it fails e.g. for G = PGLp in characteristic p.
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On the other side we consider the category PervIu(Gr
′,k) of Iu-equivariant k-

perverse sheaves on Gr′. By Example 1.3 in Appendix A (suitably extended to ind-
varieties), this category admits a canonical structure of highest weight category,
with weight poset fWext endowed with the Bruhat order. We will denote by ∆w,
resp. ∇w, the standard, resp. costandard, object attached to w ∈ fWext, and by
ICw the corresponding simple object (i.e. the intersection cohomology complex
associated with the constant local system on the Iu-orbit labelled by w). We have
a natural convolution product

Db
L+G(Gr,k)×D

b
Iu(Gr

′,k)→ Db
Iu(Gr

′,k)

which defines an action of the monoidal triangulated category (Db
L+G(Gr,k), ⋆L+G)

on Db
Iu
(Gr′,k). As in the case of the geometric Satake equivalence, it turns out

that this bifunctor is t-exact on both sides, hence defines an action of the monoidal
abelian category (PervL+G(Gr,k), ⋆L+G) on PervIu(Gr

′,k). (One way to prove this,
due to Gaitsgory, is to interpret the convolution bifunctor in terms of nearby cy-
cles, and use general properties of nearby cycles functors. For details, see [AR7,
Corollary 3.3.3].)

Conjecture 3.8 (Finkelberg–Mirković conjecture). Assume that p ≥ h and
that Stab(Ω,·p)(λ) = {e}. There exists an equivalence of categories

FM : PervIu(Gr
′,k) ∼−→ Rep[0](G)

which satisfies the following properties:

• for any w ∈ fWext we have

FM(ICw) ∼= L(w ·p λ), FM(∆w) ∼= M(w ·p λ), FM(∇w) ∼= N(w ·p λ);

• for F in PervIu(Gr
′,k) and G in PervL+G(Gr,k) there exists a bifunctorial

isomorphism

FM(G ⋆L+G F) ∼= FM(F)⊗ Fr∗
(
Sat(G)

)
.

Remark 3.9. (1) The Finkelberg–Mirković conjecture is sometimes sta-
ted in terms of Iu-equivariant perverse sheaves on Gr rather than Gr′. The
formulation involving Gr′ allows to avoid the “swapping” equivalence sw
from [AR5, Conjecture 1].

(2) Using translation functors one sees that the choice of λ in the conjecture
does not matter: a proof of this conjecture for any choice of λ implies it
for any other choice. The most natural choice is λ = 0.

(3) In [BR3], Bezrukavnikov and the author give a proof of Conjecture 3.8
under the assumption that p > h and that, moreover, p ̸= 19 if G admits
a component of type E7 and p ̸= 31 if G admits a component of type E8.

A particularly nice aspect of Conjecture 3.8 is that it makes the formula in
Lusztig’s character formula (see Conjecture 4.6 in Chapter 1) completely trans-
parent. Namely, assume that the conjecture is known, and consider the induced
isomorphism

[PervIu(Gr
′,k)] ∼−→ [Rep[0](G)]

on Grothendieck groups. It is a standard fact that the classes ([∆w] : w ∈ fWext)
form a basis of the left-hand side, and moreover that for any perverse sheaf F we
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have

[F ] =
∑

y∈fWext

(−1)ℓ(y)χy(F) · [∆y],

where χy(F) is the Euler characteristic of the stalk of F at any point of the orbit
corresponding to y. In particular, for any w ∈ fWext we deduce that

[L(w ·p λ)] =
∑

y∈fWext

(−1)ℓ(y)χy(ICw) · [M(y ·p λ)].

As explained in Chapter 3, for any fixed w, if p ≫ 0 the dimensions of the stalks
of the complex ICw on the orbit corresponding to y are given by the coefficients of
the Kazhdan–Lusztig polynomial hw0y,w0w, which implies that

χy(ICw) = (−1)ℓ(w)hw0y,w0w(1).

Hence we recover exactly the formula in Conjecture 4.6.
More specifically, since only finitely elements have to be considered in order to

prove Conjecture 4.6 (see §4.4 in Chapter 1), this shows that Conjecture 3.8 implies
Lusztig’s conjecture in large characteristic (with no explicit bound), and that, for
any characteristic p, it reduces the proof of this conjecture to proving that, for any
w ∈ fWext such that w ·p λ is restricted, we have χy(ICw) = (−1)ℓ(w)hw0y,w0w(1).

Remark 3.10. It follows from Proposition 3.5 in Chapter 3, using the fact that
smooth pullback sends intersection cohomology complexes to (cohomological shifts
of) intersection cohomology complexes, that, for any given w ∈ fWext, if

pHw = Hw

then we have χy(ICw) = (−1)ℓ(w)hw0y,w0w(1) for any y ∈ fWext.

3.2.2. A “singular” version. The formulation of Conjecture 3.8 requires the
assumption that p ≥ h. One can however state a “singular” variant which makes
sense in larger generality. Namely, recall that X∗(T ) identifies with X. We consider
some µ ∈ C ∩ X, and assume that Stab(Ω,·p)(µ) = {e}. Let also A ⊂ Saff be
the subset consisting of the elements fixing µ, which is a finitary subset of Saff .
Consider the subgroup IAu as in §4.3 of Chapter 3, and the local system XA. Then
we can consider the (IAu ,XA)-equivariant derived category Db

(IAu ,XA)(Gr
′,k), and its

subcategory Perv(IAu ,XA)(Gr
′,k) of perverse sheaves. The IAu -orbits on Gr′ are in a

natural bijection with fWext, and those which admit a nonzero (IAu ,XA)-equivariant
local system are the ones whose label belongs to the subset

fW
(µ)
ext :=

⊔
ω∈Ω

fW
(ω·pµ)
aff · ω.

For w ∈ fW
(µ)
ext , we will denote by ∆A

w, resp. ∇Aw, the !-extension, resp. ∗-extension,
of the shift by ℓ(w) of the rank-1 (IAu ,XA)-equivariant local system on the orbit
corresponding to w. These objects are perverse sheaves, and the simple objects

in Perv(IAu ,XA)(Gr
′,k) are in a natural bijection with fW

(µ)
ext , via the map sending

w to the image ICAw of the unique nonzero morphism ∆A
w → ∇Aw. A variant of

Example 1.3 in Appendix A shows that Perv(IAu ,XA)(Gr
′,k) has a canonical structure

of highest weight category, with weight poset fW
(µ)
ext (for the Bruhat order), and

standard, resp. costandard, objects given by (∆A
w : w ∈ fW

(µ)
ext ), resp. (∇Aw : w ∈

fW
(µ)
ext ). Here again, convolution defines an action of the monoidal abelian category

(PervL+G(Gr,k), ⋆L+G) on Perv(IAu ,XA)(Gr
′,k).
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One the other hand, denote by Rep[µ](G) the Serre subcategory in Rep(G)

generated by the simple G-modules of the form L(w ·p µ) with w ∈ fW
(µ)
ext . In terms

of the “blocks” considered in §2.5 of Chapter 1, we have

Rep[µ](G) =
⊕
ω∈Ω

Rep(G)Waff ·p(ω·pµ).

Conjecture 3.11 (Singular Finkelberg–Mirković conjecture). Let µ ∈ X ∩C,
and assume that Stab(Ω,·p)(µ) = {e}. There exists an equivalence of categories

FMµ : Perv(IAu ,XA)(Gr
′,k) ∼−→ Rep[µ](G)

which satisfies the following properties:

• for any w ∈ fW
(µ)
ext we have

FM(ICAw) ∼= L(w ·p µ), FM(∆A
w)
∼= M(w ·p µ), FM(∇Aw) ∼= N(w ·p µ);

• for F in Perv(IAu ,XA)(Gr
′,k) and G in PervL+G(Gr,k) there exists a bifunc-

torial isomorphism

FMµ(G ⋆L+G F) ∼= FMµ(F)⊗ Fr∗
(
Sat(G)

)
.

Of course, in case p ≥ h and λ ∈ C, Conjecture 3.11 boils down to Conjec-
ture 3.8. As far as we know, the only cases of this conjecture is when λ ∈ C
(see Remark 3.9(3)) and in the “most singular case” (when A = S), as we explain
in §3.2.3.

3.2.3. The Iwahori–Whittaker model of the Satake category. In this subsection
we assume that there exists ς ∈ X such that

⟨ς, α∨⟩ = 1

for any α ∈ R∨ (see Remark 2.36(2) in Chapter 1 for comments on this assumption),
and we consider the case µ = −ς. We have A = S, and the facet of −ς has
the smallest possible dimension. The assumption that Stab(Ω,·p)(−ς) = {e} is
automatic, since W acts trivially on −ς and the projection W → X is injective on
Ω.

The category Rep[−ς](G) has been studied in §2.10 of Chapter 1. (It was

denoted RepStein(G) there.) As explained in Corollary 2.42 of Chapter 1, the functor
V 7→ L((p− 1)ς)⊗ Fr∗G(V ) induces an equivalence of highest weight categories

Rep(G∨
k )

∼−→ RepStein(G).

On the other hand, as in (2.13) in Chapter 1 we have

fW
(−ς)
ext = {tλw0 : λ ∈ ς + X+}.

Since Rep(G∨
k ) identifies with PervL+G(Gr,k) by the geometric Satake equiva-

lence (Theorem 5.2 in Chapter 3), the singular Finkelberg–Mirković conjecture in
this special case predicts an equivalence of highest weight categories

PervL+G(Gr,k)
∼−→ Perv(ISu ,XS)(Gr

′,k);

in fact, the compatibility of this equivalence with the geometric Satake equivalence
forces this functor to be given by

F 7→ F ⋆L+G ICStςw0
.
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The fact that this functor is an equivalence is the main result of [BGMRR]. (Here

the element tςw0 is minimal in fW
(−ς)
ext , so that that we have ∆S

tςw0
= ICStςw0

=

∇Stςw0
.)

3.3. Proof of the tilting character formula via Koszul duality. The
first proof of Conjecture 2.1 for a general reductive group was obtained (under the
assumption that p > h) in [AMRW], building on the earlier works [AR3, ARi2,
MR2]. This proof is very indirect, and inspired by work of Bezrukavnikov and
several collaborators on representations of Lusztig’s quantum groups at a root of
unity (see in particular [ABG, BY]). More specifically we will assume that G is
semisimple and simply-connected4 (which is sufficient to imply the general case).
In this case, the idea is to rephrase the question by building functors as follows:

(3.1) DbRep[0](G)
F←− DbCohG

∨
k ×Gm(Ñ )

∼−→ Dmix
Iu (Gr′,k) ∼−→ Dmix

(ISu ,XS)(Fl,k).

In the next few paragraphs we explain the meaning of each of these categories and
functors, and why they allow to solve our problem.

3.3.1. The functor F . The variety Ñ is the Springer resolution of G∨
k = G(1),

i.e. the cotangent bundle to its flag variety G∨
k /B

∨
k . This variety admits a natu-

ral action of G∨
k induced by the obvious action on G∨

k /B
∨
k , and an action of the

multiplicative group Gm by dilation along the cotangent direction of the cotangent
bundle. (More precisely, z ∈ k× acts by multiplication by z−2 on each cotangent
fiber.) The category

CohG
∨
k ×Gm(Ñ )

is the abelian category of (G∨
k×Gm)-equivariant coherent sheaves on Ñ , i.e. coherent

sheaves endowed with isomorphisms between their pullbacks under the two natural
morphisms

(G∨
k ×Gm)× Ñ → Ñ

(namely, the action and projection morphisms, respectively) which satisfy a natural
cocycle condition. (We refer to [MR1, Appendix] for details and references on
equivariant coherent sheaves.) We have a natural “shift” autoequivalence

⟨1⟩ : DbCohG
∨
k ×Gm(Ñ )

∼−→ DbCohG
∨
k ×Gm(Ñ )

given by tensoring with the tautological Gm-module. For any n ∈ Z, we will denote
by ⟨n⟩ the n-th power of ⟨1⟩.

The functor F in (3.1) is a triangulated functor which is not an equivalence
of categories, but it is “as close as possible to an equivalence given the structural
difference between the categories involved.” Namely, it is a “degrading functor”
with respect to the autoequivalence ⟨1⟩[1], which means that there exists a canonical
isomorphism F ◦ ⟨1⟩[1] ∼= F such that

• for any F ,G in DbCohG
∨
k ×Gm(Ñ ), the functor F induces an isomorphism⊕

n∈Z
Hom(F ,G⟨n⟩[n]) ∼−→ Hom(F (F), F (G));

• the essential image of F generates the category DbRep[0](G) as a trian-
gulated category.

4In fact, the results described in §3.3.1–3.3.2 are proved in [AR3] for reductive groups with
simply-connected derived subgroups.



252 CHAPTER 6. TILTING MODULES AND THE p-CANONICAL BASIS

This functor is also compatible with the natural actions of Rep(G∨
k ), in the sense

that for any F ∈ DbCohG
∨
k ×Gm(Ñ ) and V ∈ Rep(G∨

k ) there exists a bifunctorial
isomorphism

F (F ⊗ V ) ∼= F (F)⊗ Fr∗G(V ).

The construction of this functor proceeds in 2 steps, called the “induction the-
orem” and the “formality theorem,” and follows a pattern similar to that in [ABG]
(although some of the proofs require different arguments). We refer to the intro-
duction of [AR3] for an overview.

The Weyl and induced modules in Rep[0](G) are images under F of the standard
and costandard objects involved in the construction of the “exotic t-structure” on

DbCohG
∨
k ×Gm(Ñ ). (The definition of this t-structure is due to Bezrukavnikov.

See [MR1] for a review of its main properties.) The heart of this t-structure has
a canonical structure of highest weight category, so in particular there is a notion
of indecomposable tilting objects in this category, but these are not sent to tilting
modules under the functor F . In fact, the indecomposable tilting modules are
images of the objects characterized by some parity vanishing conditions similar to
those involved in the definition of parity complexes in Chapter 3. (This fact was
not explicitly stated in [AR3]; it was made explicit later in [AHR].) The functor
F therefore “sends parity objects to tilting objects,” which is a property one should
expect from a “Koszul duality functor” in a context of representations in positive
characteristic; see [AR4] for more on this point of view.

3.3.2. The middle arrow. Let us now consider the middle arrow in (3.1). Here
the category Dmix

Iu
(Gr′,k) is the “mixed derived category of Iu-equivariant sheaves

on Gr′,” defined more formally as the homotopy category of the category of Iu-
equivariant parity complexes on Gr′. We want to think of this category as a “mixed
version” of the derived category Db

Iu
(Gr′,k). In fact there exists no formal rela-

tion between these two categories (in particular, from the definition we do not
have any “natural” forgetful functor Dmix

Iu
(Gr′,k) → Db

Iu
(Gr′,k)), but the cate-

gory Dmix
Iu

(Gr′,k) has the same kind of structure as Db
Iu
(Gr′,k) (in particular, a

“perverse” t-structure, whose heart Pervmix
Iu (Gr′,k) is a graded highest weight cat-

egory5), plus a “Tate twist” autoequivalence ⟨1⟩. Such categories were introduced
and studied (in a larger generality) in [AR2].

The second arrow in (3.1) is an equivalence of triangulated category

Φ : DbCohG
∨
k ×Gm(Ñ )

∼−→ Dmix
Iu (Gr′,k)

endowed with an isomorphism of functors Φ ◦ ⟨1⟩ ∼= ⟨1⟩[−1] ◦ Φ, and which sends
the standard, resp. costandard, objects involved in the construction of the exotic
t-structure to the standard, resp. costandard, objects involved in the construction
of the perverse t-structure on Dmix

Iu
(Gr′,k). Again it can be thought of as some

example of “modular Koszul duality” in that it sends the (normalized) indecom-

posable parity complexes in DbCohG
∨
k ×Gm(Ñ ) to the (normalized) indecomposable

tilting objects in Dmix
Iu

(Gr′,k). This construction has two variants: on constructed
in [MR2], and the other one in [ARi2]. The latter construction provides a func-
tors which is compatible with the Satake equivalence in the sense that for a natural

5We will not give the definition of a graded highest weight category; informally, this a highest
weight category endowed with a compatible “grading shift” autoequivalence.
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action ⋆L+G of the category PervL+G(Gr,k) on Dmix
Iu

(Gr′,k) we have a bifunctorial
isomorphism

Φ(F ⊗ Sat(G)) ∼= Φ(F) ⋆L+G G
for F ∈ DbCohG

∨
k ×Gm(Ñ ) and G ∈ PervL+G(Gr,k). (The former construction

has other advantages; in particular, it is involved in the proof of Theorem 5.4 in
Chapter 3 under the optimal assumptions.)

Combining the two steps reviewed so far, we obtain a triangulated functor

Dmix
Iu (Gr′,k)→ DbRep[0](G)

which is degrading with respect to ⟨1⟩, and sends standard objects to Weyl modules
and costandard objects to induced modules. It is easy to see that such a functor is
necessarily t-exact, hence restricts to an exact degrading functor

(3.2) Pervmix
Iu (Gr′,k)→ Rep[0](G).

This functor is compatible with the Satake equivalence in an appropriate way; this
construction therefore produces a “mixed analogue” of Conjecture 3.8.

3.3.3. Koszul duality and proof of the tilting character formula. The functor
considered in (3.2) sends tilting modules to tilting modules. Being a degrading
functor, it also sends indecomposable objects to indecomposable objects by [GG,
Theorem 3.1]. The question of computing multiplicities of standard objects in
indecomposable tilting modules in Rep[0](G) is therefore reduced to the similar

problem in the category Pervmix
Iu (Gr′,k).

This question is solved in [AMRW], by constructing a “Koszul duality” equiv-
alence

(3.3) Dmix
Iu (Gr′,k) ∼−→ Dmix

(ISu ,XS)(Fl,k),

where the right-hand side is defined as for the left-hand side, in terms of the bounded
homotopy category of the category of parity complexes. It has the same structure
as Dmix

Iu
(Gr′,k); in particular we have a perverse t-structure, and standard and co-

standard objects. This equivalence exchanges standard, resp. costandard, objects
in both categories, intertwines the equivalence ⟨1⟩ on the left-hand side with the
equivalence ⟨−1⟩[1] on the right-hand side, and sends normalized indecomposable
tilting perverse sheaves to images of normalized indecomposable parity complexes
in Dmix

(ISu ,XS)(Fl,k). This implies that multiplicities of standard objects in indecom-

posable tilting objects in Dmix
Iu

(Gr′,k) can be expressed as dimensions of stalks of

parity complexes in Db
(ISu ,XS)(Fl,k), which are known to be given by antispherical

p-Kazhdan–Lusztig polynomials, as explained in §4.3 of Chapter 3. This therefore
solves the question considered in Conjecture 2.1.

The equivalence (3.3) is a “parabolic-singular” analogue of a similar Koszul
duality equivalence

Dmix
Iu (Fl′,k) ∼−→ Dmix

Iu (Fl,k)
where Fl′ = Iu\LG, which has similar properties. This construction has variants for
flag varieties of Kac–Moody groups (also treated in [AMRW]). At the combinato-
rial level, it shows that multiplicities of standard objects in indecomposable tilting
objects in mixed derived categories of sheaves on flag varieties are also computed
by p-Kazhdan–Lusztig polynomials. The ideas behind this construction go back
to [BGS], which treated the case of characteristic-0 coefficients for flag varieties of
reductive groups. This construction was later generalized to arbitrary Kac–Moody
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groups in [BY], and to the modular setting (but still for flag varieties of reductive
groups) in [AR2].

Remark 3.12. As explained above, there is a priori no formal relation between
the categories Dmix

Iu
(Fl,k) and Db

Iu
(Fl,k), and similarly for flag varieties of Kac–

Moody groups. Therefore, the computation of multiplicities of standard objects
in indecomposable tilting objects in these two contexts are distinct problems. We
however expect the two questions to give the same answer. In the case of affine
flag varieties, this can be deduced from the results in [BR2] under appropriate
assumptions on the coefficients.

3.4. Proof of the tilting character formula via Smith–Treumann the-
ory. A second proof of Conjecture 2.1, which in fact establishes Conjecture 2.3
for any group in any characteristic, was later found in [RW3]. This proof is in a
sense more direct. It relies on the geometric Satake equivalence (Theorem 5.2 in
Chapter 3), or more specifically on the composition of this equivalence with that
presented in §3.2.3. Namely, composing these equivalences we obtain an equivalence
of highest weight categories

Rep(G∨
k )
∼= Perv(IAu ,XS)(Gr

′,k).
One next applies “Smith–Tremann theory” in the right-hand side, which produces
some kind of “localization functor” relating sheaves on Gr′ to sheaves on the fixed
points under the group of p-th roots of unity in F (acting via loop rotation). One
then observes that these fixed points identify with a disjoint union of partial flag
varieties for the “p-dilated” loop group ofG, and that the localization functor is fully
faithful on tilting modules. This allows to compute dimensions of morphism spaces
between indecomposable tilting modules, and hence to compute multiplicities using
the ideas of Exercise 7.10. In practice this involves many ingredients not covered
in this book, so that we will not explain it more, and will instead refer to [R2] for
an overview.

3.5. Constructions of the categorical action. Conjecture 1.3 also has 2
independent proofs for simply-connected semisimple groups, both assuming that
p > h.

3.5.1. Hecke category action via completed Harish-Chandra bimodules. One of
these proofs was found in [BR1]. The idea there is to consider a larger category,
involving equivariant modules over the universal enveloping algebra Ug of the Lie
algebra g of G. Before explaining this, we need to recall a few facts about the struc-
ture of the center of Ug (valid for semisimple groups in very good characteristic).
First, as in the characteristic-0 setting, the subalgebra

ZHC := (Ug)G

is central in Ug, and identifies canonically with the algebra

O(t∗/(W, •)) = O(t∗)(W,•)

of functions on the quotient t∗/(W, •), where t is the Lie algebra of T and the
action • of W on t∗ is defined by w • ξ = w(ξ+ ρ)− ρ where we still write ρ for the
diffierential of this character of T. (This subalgebra is called the “Harish-Chandra
center”). On the other hand, we have the “Frobenius center”

ZFr ⊂ Ug,
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which is generated by elements of the form xp − x[p] with x ∈ g. (Here, (·)[p] is the
restricted p-th power map, which is available on the Lie algebra of any algebraic
group defined over a field of characteristic p.) This subalgebra can also be described
geometrically: it identifies with

O(g∗(1)).

(Here, (·)(1) is the Frobenius twist of k-schemes, as defined in §2.4 of Chapter 1.)
This subalgebra has the property that if M is a G-module, then for the Ug-action
obtained by differentiation the subalgebra ZFr acts via the “trivial character”

O(g∗(1))→ k
corresponding to the 0-vector in g∗(1). Another important property (which follows
from the Poincaré–Birkhoff–Witt theorem) is that Ug is finite as a module over
ZFr.

Denote by ModGfg(Ug) the category of finitely generated G-equivariant Ug-
modules, i.e. finitely generatedG-equivariant Ug-modulesM endowed with a struc-
ture of (rational) G-module such that

g · (x ·m) = (g · x) · (g ·m)

for g ∈ G, x ∈ Ug and m ∈M . There exists a natural fully faithful functor

Rep(G)→ ModGfg(Ug),
which sends a G-module to itself, with the Ug-action obtained by differentiat-
ing the G-action. (In fact, the essential image of this functor exactly consists
of G-equivariant Ug-modules which have the property that the Ug-action is the
differential of the G-action.)

We will also set
U := (Ug)⊗ZFr

(Ug)op,
endowed with the diagonal action of G, and consider the category ModGfg(U) of
finitely generated G-equivariant U-modules. We will call Harish-Chandra bimodule
an object of ModGfg(U) such that the differential of the G-action is given by the
restriction of the U-action along the “diagonal embedding”

Ug→ U

induced by the assignment x 7→ (x⊗ 1)− (1⊗x) for x ∈ g. The full subcategory of

ModGfg(U) consisting of Harish-Chandra bimodules will be denoted HC. The tensor
product functor

(−)⊗Ug (−) : ModGfg(U)×ModGfg(U)→ ModGfg(U)

defines a monoidal structure on the category ModGfg(U), with unit object the natural
module Ug, and the subcategory HC is monoidal. Moreover, the tensor product

(−)⊗Ug (−) : ModGfg(U)×ModGfg(Ug)→ ModGfg(Ug)

defines an action of ModGfg(U) on ModGfg(Ug), and the action of the subcategory

HC ⊂ ModGfg(U) stabilizes the subcategory Rep(G) ⊂ ModGfg(Ug).
To proceed further one needs to consider characters of the Harish-Chandra

center. Namely, if λ ∈ X, by differentiation we deduce a linear form on t, hence a
character of O(t∗), and finally of ZHC. The kernel of this character will be denoted

mλ. We now assume that λ ∈ C, and denote by ModGfg,λ(Ug) the full subcategory

of ModGfg(Ug) consisting of modules on which mλ acts nilpotently. It is easy to see
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that the image of the principal block Rep0(G) (defined with respect to the character

λ) in ModGfg(Ug) lies in the subcategory ModGfg,λ(Ug).
The algebra U is an algebra over ZHC ⊗ZHC∩ZFr

ZHC. Let us denote by

Uλ̂,λ̂

the tensor product of U with the completion of ZHC ⊗ZHC∩ZFr
ZHC with respect to

the ideal
mλ · (ZHC ⊗ZHC∩ZFr ZHC) + (ZHC ⊗ZHC∩ZFr ZHC) ·mλ.

Then Uλ̂,λ̂ is a noetherian algebra, endowed with a structure of rational G-module.
We can therefore consider the category

ModGfg(U
λ̂,λ̂)

of G-equivariant finitely generated modules over this algebra, and the full subcat-
egory

HCλ̂,λ̂

of Harish-Chandra bimodules. These categories can be endowed with structures of
monoidal categories, and with actions on the category ModGfg,λ(Ug).

It turns out that for any s ∈ Saff the action of the functor Θs on Rep0(G) is

the restriction of the action on ModGfg,λ(Ug) of a certain Harish-Chandra bimodule
Ps. To prove Conjecture 1.3 it therefore suffices to construct a monoidal functor

DBS
aff → HCλ̂,λ̂

which intertwines the shift functor (1) with the identity functor, and sends for any
s ∈ Saff the object Bs to the bimodule Ps. The construction of such a functor is
the main result of [BR1].

The proof uses in a crucial way Abe’s bimodule incarnation of the Hecke cat-
egory (see Section 3 of Chapter 2). Namely, using a variant of the “localization

theory” of [BMR] one relates the category HCλ̂,λ̂ with a certain category of repre-
sentations of a group scheme defined in terms of the “universal centralizer” for g.
One then observes that the “extra data” attached to bimodules in Abe’s category
exactly encode an action of this group scheme, which provides the desired functor.
One next has to check that the image of each Bs is the corresponding bimodule
Ps. This is checked relatively explicitly in case s ∈ S (using “singular” variants of
the same theory), and the general case is reduced to this one using in particular
Exercise 1.14.

3.5.2. Hecke category action via Smith–Treumann theory. A completely differ-
ent proof of Conjecture 1.3 was found (more or less simultaneously) by J. Ciappara,
see [Ci]. This proof is based on the construction presented in §3.4. Namely, these
constructions provide an action of DBS

aff on the principal block, but it is not clear at
first that the object Bs acts via the wall crossing functor Θs. Checking this fact is
the main result of [Ci].



APPENDIX A

Highest weight categories

The theory of highest weight categories was initially developed by Cline–Par-
shall–Scott in connection with the theory of quasi-hereditary algebras, see [CPS].
However, in this book we prefer to use a different, more “categorical,” point of
view introduced in [BGS, §3.2]. In this appendix we gather references or proofs
for some standard results on these categories using this point of view. (These
results are sometimes available in the literature only in the Cline–Parshall–Scott
setting, which seems to justify a complete treatment from the Bĕılinson–Ginzburg–
Soergel perspective.) For a detailed treatment of these questions from the original
“algebraic” point of view, see e.g. [D2, Appendix A]. For a more general theory of
“highest weight categories,” see [BS].

1. Definitions

1.1. Krull–Schmidt categories. Recall that an additive category C is called
Krull–Schmidt if any object X has a decomposition X = X1 ⊕ · · · ⊕Xn, such that
each Xi is indecomposable with local endomorphism ring. We refer to [CYZ,
Appendix A] or [EMTW, Appendix 1 to Section 11] for a review of this notion.
In particular, note that by [CYZ, Theorem A.1]:

• an additive category C is Krull–Schmidt if and only if any idempotent in
C splits, and EndC(X) is semiperfect for any X ∈ C;

• if C is Krull–Schmidt, any object has a unique (up to order and isomor-
phism) decomposition as a direct sum of indecomposable objects.

In particular, given an indecomposable objectX ∈ C and an arbitrary object Y ∈ C,
we can then define the multiplicity of X in Y as the number of factors isomorphic
to X in any decomposition of Y as a direct sum of indecomposable subobjects.
(This number will not depend on the choice of decomposition.) Moreover, the split
Grothendieck group [C]⊕ has a basis consisting of the classes of indecomposable ob-
jects, the coefficients of a class [M ] withM ∈ C in this basis is given by multiplicities
of indecomposable objects in M .

1.2. Highest weight categories. From now on we let k will be a field, and
A be a finite-length1 k-linear abelian category such that HomA(M,N) is finite-
dimensional for any M , N in A. Note that such a category is Krull–Schmidt,
see [CYZ, Remark A.2].

Let S be the set of isomorphism classes of irreducible objects of A. Assume
that S is equipped with a partial order ≤, and that for each s ∈ S we have a fixed
representative simple object Ls. Assume also we are given, for any s ∈ S , objects

1By a finite-length abelian category we mean an abelian category in which every object has
finite length.

257
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∆s and ∇s, and morphisms ∆s → Ls and Ls → ∇s. For T ⊂ S , we denote by
AT the Serre subcategory2 of A generated by the objects Lt for t ∈ T , i.e. the full
subcategory whose objects are those all of whose composition factors are labelled
by elements of T . We write A≤s for A{t∈S |t≤s}, and similarly for A<s. Finally,
recall that an ideal of S is a subset T ⊂ S such that if t ∈ T and s ∈ S are
such that s ≤ t, then s ∈ T .

Definition 1.1. The category A (together with the above data) is said to be
a highest weight category if the following conditions hold:

(1) for any s ∈ S , the set {t ∈ S | t ≤ s} is finite;
(2) for each s ∈ S , we have HomA(Ls, Ls) = k;
(3) for any s ∈ S and any ideal T ⊂ S such that s ∈ T is maximal,

∆s → Ls is a projective cover in AT and Ls → ∇s is an injective envelope
in AT ;

(4) the kernel of ∆s → Ls and the cokernel of Ls → ∇s belong to A<s;
(5) we have Ext2A(∆s,∇t) = 0 for all s, t ∈ S .

In this case, the poset (S ,≤) is called the weight poset of A.

If A satisfies Definition 1.1, the objects ∆s are called standard objects, and
the objects ∇s are called costandard objects. We say that an object M admits a
∆-filtration, resp. admits a ∇-filtration, if there exists a finite filtration ofM whose
subquotients are isomorphic to standard objects, resp. costandard objects. We will
sometimes use the terms “standard filtration” and “costandard filtration” in place
of “∆-filtration” and “∇-filtartion” respectively.

From the axiom (4) we deduce in particular that

(1.1) ∆s and ∇s belong to A≤s and satisfy [∆s : Ls] = [∇s : Ls] = 1.

Remark 1.2. (1) The axioms in Definition 1.1 are exactly those in [BGS,
§3.2], except that we replace the condition that S is finite by the weaker
condition (1).

(2) In [AR2] we used the term quasihereditary category instead of highest
weight category. We now believe that the latter term is more appropriate
than the former, and we changed our terminology in [MR1, AR3].

(3) The axioms in Definition 1.1 can be easily modified to define a graded
highest weight category, where we consider in addition a “shift” autoequiv-
alence ⟨1⟩ of A; see [AR2, Appendix A] for details. All the statements
below have analogues in this context, but for simplicity we will not state
them explicitly.

Example 1.3. As explained in Chapter 1, categories of representations of con-
nected reductive algebraic groups over algebraically closed fields admit a natural
structure of highest weight category. Another family of examples that is encoun-
tered in this book is the following. Let F be an algebraically closed field, and let X
be an algebraic variety over F endowed with a finite stratification

X = ⊔s∈SXs

where each Xs is a locally closed algebraic subvariety which is isomorphic to the
affine space Ans

F for some ns ∈ Z≥0. For any s ∈ S we denote by js : Xs → X

2A Serre subcategory of an abelian category is a nonempty full subcategory stable under
subquotients and extensions.
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the embedding. Let k be a field of coefficients, and consider the bounded derived
category Db

S (X,k) of complexes of sheaves F such that, for any s ∈ S and any
n ∈ Z, the sheaf Hn((js)∗F) is constant. (If F = C we work with sheaves with
respect to the analytic topology, and k can be any field. Otherwise we work with
étale sheaves, and k is either a finite field of characteristic p, a finite extension of
Qp, or an algebraic closure of such a field. Here p is a prime number invertible in
F.) We will assume that for any s, t ∈ S and any n ∈ Z the sheaf

Hn((jt)∗(js)∗kXs
)

is constant. (For instance, this assumption is automatic if the stratification is given
by orbits of the action an algebraic group on X). Then Db

S (X,k) is endowed with
the perverse t-structure, whose heart will be denoted PervS (X,k), and since each
js is an affine morphism, for any s ∈ S the complexes

∆s := (js)!kXs
[ns] and ∇s := (js)∗kXs

[ns]

are perverse sheaves by Artin’s vanishing theorem, see [Ac, Corollary 3.5.9]. The
general theory of perverse sheaves ensures that the simple objects in PervS (X,k)
are in a canonical bijection with S , via the map sending s to the image of the
unique (up to scalar) nonzero morphism ∆s → ∇s. It is explained in [BGS, §§3.3]
that these data define a highest weight structure on PervS (X,k), for the order on
S defined by s ≤ t if and only if Xs ⊂ Xt.

1.3. First properties. In this subsection we let A be a highest weight cat-
egory, with weight poset (S ,≤), standard objects (∆s : s ∈ S ) and costandard
objects (∇s : s ∈ S ).

Lemma 1.4. (1) The category Aop is a highest weight category, with wei-
ght poset (S ,≤), standard objects (∇s : s ∈ S ), and costandard objects
(∆s : s ∈ S ).

(2) If T ⊂ S is an ideal, then AT is a highest weight category with weight
poset (T ,≤), standard objects (∆t : t ∈ T ) and costandard objects (∇t :
t ∈ T ).

Proof. Part (1) is clear. In part (2), the only axiom which might not be
clear is (5). However, this axiom for AT follows from the similar axiom for A
using [BGS, Lemma 3.2.3]. □

Lemma 1.5. For any s, t ∈ S , we have

HomA(∆s,∇t) ∼=

{
k if s = t;

0 otherwise

and

Ext1A(∆s,∇t) = 0.

Proof. If s ̸< t, then s is maximal in the ideal T = {u ∈ S | u ≤ s or u ≤ t},
and both ∆s and ∇t belong to AT by (1.1). Then we have HomA(∆s,∇t) =
HomAT (∆s,∇t) and Ext1A(∆s,∇t) = Ext1AT

(∆s,∇t), and the claim follows from
axiom (3) and (1.1).

If s < t, then t is maximal in the ideal T = {u ∈ S | u ≤ t}, and both
∆s and ∇t belong to AT by (1.1); then the claim follows again from axiom (3)
and (1.1). □
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From Lemma 1.5 we see that ifM is an object of A which admits a ∆-filtration,
then for any s ∈ S the number of times ∆s appears as a subquotient in such a
filtration is equal to dimk(HomA(M,∇s)). In particular this number does not
depend on the filtration, and will be denoted (M : ∆s). Similarly, if M admits a
∇-filtration, then for any s ∈ S the number of times ∇s appears as a subquotient
in such a filtration is well defined, and will be denoted (M : ∇s).

2. Existence of projectives and some consequences

The following result is proved in [BGS, Theorem 3.2.1 & Remarks following
the theorem]. (This proof is proposed as Exercise 7.3.)

Theorem 2.1. Let A be a highest weight category with weight poset (S ,≤) and
assume that S is finite. Then A has enough projective objects, and any projective
object admits a ∆-fitration. Moreover, if Ps is the projective cover of Ls, we have

(2.1) (Ps : ∆t) = [∇t : Ls].

Remark 2.2. The formula (2.1) shows that in the setting of Theorem 2.1, for
s, t ∈ S we have

(Ps : ∆t) ̸= 0 ⇒ s ≤ t.
This observation shows that one can “detect” some indecomposable direct sum-
mands of a projective object from its standard multiplicities. More explicitly, if P
is projective and if s is minimal among the elements t ∈ S such that (P : ∆t) ̸= 0,
then Ps is a direct summand of P , with multiplicity (P : ∆s).

Applying Theorem 2.1 to the category Aop (see Lemma 1.4(1)), we see that
if S is finite, then A also has enough injective objects, and any injective object
admits a ∇-filtration.

Corollary 2.3. Let A be a highest weight category with weight poset (S ,≤).
Then for any s, t ∈ S we have

ExtiA(∆s,∇t) =

{
k if s = t and i = 0;

0 otherwise.

Proof. The case when i ∈ {0, 1} is proved in Lemma 1.5, so that we only have
to prove the vanishing statement when i ≥ 2.

First, we assume that S is finite, and prove the claim by descending induction
on s. If s is maximal in S , then ∆s is a projective cover of Ls in A by axiom (3),
and the claim follows. In general, consider the projective cover Ps of Ls. By
Theorem 2.1, this object admits a ∆-filtration. Moreover, the last term in such a
filtration must be ∆s, since the top of Ps is Ls. In particular, we have an exact
sequence

ker ↪→ Ps ↠ ∆s

where ker admits a ∆-filtration. Moreover, (2.1) and (1.1) imply that if (ker : ∆t) ̸=
0, then t > s. Then the desired vanishing follows from induction and a long exact
sequence consideration.

Now we prove the general case. Let i ≥ 2, and consider a morphism f : ∆s →
∇t[i] in Db(A). This morphism is represented by a diagram

∆s
h←−M g−→ ∇t[i],
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where M is a bounded complex of objects of A, h is a quasi-isomorphism of com-
plexes, and g : M → ∇t[i] is a morphism of complexes. Choose a finite ideal
S ′ ⊂ S which contains s, t, and the isomorphism classes of all composition factors
of nonzero terms of M . (Such an ideal exists thanks to axiom (1).) Then our
diagram above defines a morphism in Db(AS ′), which must be the 0 morphism by
Lemma 1.4(2) and the case of finite weight posets. We deduce that f is also 0 in
Db(A), which concludes the proof. □

Remark 2.4. Let A be a highest weight category with weight poset (S ,≤).
Let ⪯ be the preorder generated by the relation

s ⪯ t if [∆t : Ls] ̸= 0 or [∇t : Ls] ̸= 0.

Then (1.1) implies that ⪯ is an order such that ≤ refines ⪯. We claim that A is
also a highest weight category for the poset (S ,⪯). Indeed, the only axiom which
might not be clear is (3). However, as in the proof of Corollary 2.3, to check this
axiom we can assume that S is finite. Then A has enough projective objects by
Theorem 2.1, and the reciprocity formula (2.1) ensures that, if Pt is the projective
cover of Lt in A, then we have an exact sequence

(2.2) ker ↪→ Pt ↠ ∆t

where ker admits a ∆-filtration such that if (ker : ∆s) ̸= 0, then s ≻ t. Now
if u ∈ S , considering the long exact sequence associated with (2.2) we obtain a
surjection

HomA(ker, Lu) ↠ Ext1A(∆t, Lu).

Hence if Ext1A(∆t, Lu) ̸= {0} then HomA(ker, Lu) ̸= {0}, so that there exists s ∈ S
such that (ker : ∆s) ̸= 0 and HomA(∆s, Lu) ̸= 0. Then u = s, so that u ≻ t. From
this it is easy to see that if T is an ideal in (S ,⪯) in which t is maximal, then ∆t

is projective in AT , hence the projective cover of Lt.
More generally, the same considerations show that if ≤′ is any order which

satisfies
s ⪯ t ⇒ s ≤′ t,

then A is a highest weight category for the poset (S ,≤′). These comments show
that it makes sense to say that a category is highest weight without specifying the
order ≤ (if one specifies the standard and costandard objects).

3. Ideals and associated subcategories and quotients

3.1. Serre quotients of abelian categories. The next property we will
see uses the notion of Serre quotient of an abelian category. Before stating this
property, let us recall this construction.

Let A be an abelian category, and B be a Serre subcategory of A, see [Ga].
Then the objects of the quotient category A/B are defined as those of A. Given
objects M,N in A, the morphism space HomA/B(M,N) is defined as the inductive
limit

lim−→
M ′,N ′

HomA(M
′, N/N ′)

where M ′ runs over the subobjects of M such that the quotient M/M ′ (in the
abelian category A) belongs to B, and N ′ runs over the subobjects of N which
belong to B. The composition law is defined as follows. Consider objects M , N , P
in A, and morphisms f : M → N , g : N → P in A/B. By definition, there exist
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subobjects M ′ ⊂ M , N ′, N ′′ ⊂ N , P ′ ⊂ P such that M/M ′, N ′, N/N ′′ and P ′

belong to B, and such that f , resp. g, is the image of a morphism f̃ :M ′ → N/N ′,

resp. g̃ : N ′′ → P/P ′. Let M ′′ be the preimage by f̃ of the image (N ′ + N ′′)/N ′

of N ′′ in N/N ′; then M/M ′′ belongs to B (because it embeds in N/(N ′ + N ′′),

which is a quotient of N/N ′′), and f̃ induces a morphism f̃ ′ :M ′′ → (N ′+N ′′)/N ′.
Similarly, the image g̃(N ′∩N ′′) of N ′∩N ′′ under g̃ belongs to B, hence so does the
sum P ′′ := g̃(N ′∩N ′′)+P ′, and g̃ induces a morphism g̃′ : N ′′/(N ′∩N ′′)→ P/P ′′.
We can finally consider the composition

M ′′ f̃ ′

−→ (N ′ +N ′′)/N ′ ∼= N ′′/(N ′ ∩N ′′)
g̃′−→ P/P ′′;

one can check that the class of this morphism in HomA/B(M,P ) does not depend

on the choice of f̃ and g̃ (but only on their classes f and g), hence can serve as
the definition of the composition g ◦ f . It can also be checked that the operation
◦ is associative, and that the class of idM is an identity for the object M ; this
construction therefore indeed defines a category A/B. We also have a canonical
functor Π : A → A/B, sending an object M to itself and a morphism f : M → N
to its class in HomA/B(M,N).

As explained in [Ga, Proposition 1 on p. 367], the category A/B is abelian, and
the functor Π is exact. Moreover, these data have the following universal property
(see [Ga, Corollaire 2 on p. 368]): if C is an abelian category and F : A → C is an
exact functor such that F (M) = 0 for any M in B, there exists a unique functor
G : A/B → C such that F = G ◦Π. In this setting, the functor G is moreover exact
by [Ga, Corollaire 3 on p. 369].

3.2. Statements. The following results show that highest weight categories
satisfy some “gluing” formalism which turns out to be very useful to run inductive
arguments.

Lemma 3.1. Let A be a highest weight category, with weight poset (S ,≤),
standard objects (∆s : s ∈ S ) and costandard objects (∇s : s ∈ S ). If T ⊂ S
is an ideal, then the Serre quotient A/AT is a highest weight category with weight
poset (S ∖T ,≤), standard objects (πT (∆s) : s ∈ S ∖T ), and costandard objects
(πT (∇s) : s ∈ S ∖ T ), where πT : A → A/AT is the quotient functor.

Proof. It is clear that the category A/AT and the data above satisfy ax-
ioms (1), (2) and (4).

Now we check axiom (3) in the case of ∆s; the case of ∇s is similar. First, we
claim that for any s ∈ S ∖ T and N in A, the morphism

(3.1) HomA(∆s, N)→ HomA/AT
(πT (∆s), πT (N))

induced by πT is an isomorphism. Indeed, consider a morphism f : πT (∆s) →
πT (N). By definition, this morphism is represented by a morphism f ′ : M ′ →
N/N ′ in A, where M ′ ⊂ ∆s and N ′ ⊂ N are subobjects such that ∆s/M

′ and N ′

belong to AT . Since the head of ∆s is Ls and s /∈ T , we have necessarily M ′ =
∆s. And since Ext1A(∆s, N

′) = 0, the morphism f ′ factors through a morphism
f ′′ : ∆s → N . These arguments show that (3.1) is surjective. Since the image of
any nonzero morphism from ∆s to N contains Ls as a composition factor, its image
under πT is nonzero, hence the image of the morphism itself is nonzero. This shows
that (3.1) is also injective, hence an isomorphism.
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Now, let U ⊂ S ∖ T be an ideal, and let s ∈ U be maximal. The isomor-
phisms (3.1) show that the top of πT (∆s) is πT (Ls). It remains to prove that
this object is projective in (A/AT )U . If f : πT (M) → πT (N) is a surjection
with πT (M) and πT (N) in (A/AT )U , then M and N belong to AU ⊔T , and f
is represented by a morphism f ′ : M ′ → N/N ′ in A whose cokernel C belongs to
AT , where M ′ ⊂ M and N ′ ⊂ N are subobjects such that M/M ′ and N ′ belong
to AT . Then using isomorphisms (3.1) we see that we have

HomA/AT
(πT (∆s), πT (M)) ∼= HomA/AT

(πT (∆s), πT (M ′)) ∼= HomA(∆s,M
′)

and

HomA/AT
(πT (∆s), πT (N)) ∼= HomA/AT

(πT (∆s), πT (N/N ′))

∼= HomA(∆s, N/N
′),

and that the morphism

HomA/AT
(πT (∆s), πT (M))→ HomA/AT

(πT (∆s), πT (N))

induced by f coincides with the morphism

HomA(∆s,M
′)→ HomA(∆s, N/N

′)

induced by f ′. Hence the desired surjectivity follows from the facts that ∆s is
projective in AU ⊔T and that HomA(∆s, C) = 0.

Finally, we need to check axiom (5). For this we first assume that S is finite.
Then A has enough projective objects by Theorem 2.1. Moreover, the proof of
Corollary 2.3 shows that to prove the desired vanishing it suffices to prove that
for any s ∈ S ∖ T there exists a projective object P in A/AT and a surjection
P ↠ πT (∆s) whose kernel admits a filtration with subquotients πT (∆t) with t > s.
We claim that P = πT (Ps) satisfies these properties. In fact, the only property
which is not clear is that P is projective. If this were not the case, there would
exist a non-split and non-trivial surjection f : πT (M)→ πT (Ps) for some M in A.
This morphism is represented by a morphism f ′ : M ′ → Ps/N

′ whose cokernel D
belongs to AT , where M ′ ⊂ M and N ′ ⊂ Ps are subobjects such that M/M ′ and
N ′ belong to AT . Now D is a quotient of Ps; hence if it belongs to AT it must be 0,
so that f ′ is surjective. Since Ps is projective, there exists a morphism g′ : Ps →M ′

such that f ′ ◦ g′ is the quotient morphism Ps ↠ Ps/N
′. Then πT (f ′) ◦ πT (g′) is

an isomorphism in A/AT , so that πT (f ′) is split. This is absurd, and finishes the
proof of axiom (5) in the case S is finite.

Property (5) in the general case follows from the same property for finite weight
posets using the same arguments as in the proof of Corollary 2.3. □

Proposition 3.2. Let A be a highest weight category with weight poset (S ,≤)
and let T ⊂ S be an ideal.

(1) The functor ıT : Db(AT ) → Db(A) induced by the embedding AT → A
is fully faithful.

(2) The quotient functor πT : A → A/AT induces an equivalence of cate-
gories

Db(A)/Db(AT )
∼−→ Db(A/AT ),

where Db(A)/Db(AT ) is the Verdier quotient.
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(3) The functor ıT and the quotient functor ΠT : Db(A)→ Db(A)/Db(AT )
admit (triangulated) left and right adjoints ıLT , ıRT and ΠL

T , ΠR
T respec-

tively. Moreover, we have isomorphisms

ıRT ◦ ıT ∼= idDb(AT )
∼= ıLT ◦ ıT

and ΠT ◦ΠR
T
∼= idDb(A)/Db(AT )

∼= ΠT ◦ΠL
T ,

for any s ∈ S ∖ T we have

ΠL
T ◦ΠT (∆s) ∼= ∆s, ΠR

T ◦ΠT (∇s) ∼= ∇s,
ıLT (∆s) = 0, ıRT (∇s) = 0,

and for any M in Db(A) there exist functorial distinguished triangles

ΠL
T ◦ΠT (M)→M → ıT ◦ ıLT (M)

[1]−→

and ıT ◦ ıRT (M)→M → ΠR
T ◦ΠT (M)

[1]−→

where the first and second morphisms are induced by adjunction.

Proof. This result is proved in [AR3, Lemma 2.2]. Here we explain the
construction in more detail.

For part (1), we remark that the category Db(AT ) is generated (as a triangu-
lated category) by the objects {∆t : t ∈ T } as well as by the objects {∇t : t ∈ T }.
Hence to prove the claim if suffices to prove that for s, t ∈ T the morphism

ExtiAT
(∆s,∇t)→ ExtiA(∆s,∇t)

induced by ıT is an isomorphism. This follows from Corollary 2.3 (applied to A
and AT ).

Then we prove part (3). Consider the full triangulated subcategory D∇
S∖T of

Db(A) generated by the objects ∇s with s ∈ S ∖T . Then for M in Db(AT ) and
N in D∇

S∖T , by Corollary 2.3 we have HomDb(A)(M,N) = 0. From this one can

deduce that, for any M in Db(A) and N in D∇
S∖T , the morphism

HomDb(A)(M,N)→ HomDb(A)/Db(AT )(ΠT (M),ΠT (N))

induced by ΠT is an isomorphism.
Now the category Db(A) is generated, as a triangulated category, by (the es-

sential image of) Db(AT ) and by D∇
S∖T . Using the octahedral axiom, we deduce

that for any M in Db(A) there exists a distinguished triangle

(3.2) M ′ →M →M ′′ [1]−→

whereM ′ belongs toDb(AT ) andM ′′ belongs to D∇
S∖T . Moreover, [BBD, Propo-

sition 1.1.9] implies that this triangle is unique and functorial.
These facts show that the restriction of ΠT to D∇

S∖T is an equivalence, and

that if we define ΠR
T : Db(A)→ Db(A)/Db(AT ) as the composition of the inverse

equivalence with the embedding D∇
S∖T → Db(A), then ΠR

T is right adjoint to ΠT .

(In more concrete terms, ΠR
T sends an object M to the object M ′′ in (3.2).)

Finally we define the functor ıRT as the functor sending an object M to the
objectM ′ in (3.2). Again, it is easily checked that this functor is right adjoint to ıT .
The isomorphisms ıRT ◦ıT ∼= idDb(AT ), ΠT ◦ΠR

T
∼= idDb(A)/Db(AT ), Π

R
T ◦ΠT (∇s) ∼=
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∇s and ıRT (∇s) = 0, and the existence of the functorial triangles ıT ◦ ıRT (M) →
M → ΠR

T ◦ΠT (M)
[1]−→, are clear from the construction of ΠR

T and ıRT .
The construction of the functors ΠL

T and ıLT is completely similar, using the
full triangulated subcategory D∆

S∖T generated by the objects ∆s with s ∈ S ∖T

instead of D∇
S∖T .

Finally we prove part (2). The universal property of the Verdier quotient
guarantees the existence of a natural functor Db(A)/Db(AT )→ Db(A/AT ), and
what we have to prove is that this functor is an equivalence of categories. Both
Db(A)/Db(AT ) and Db(A/AT ) are generated, as triangulated categories, by the
images of the objects ∆s with s ∈ S ∖ T , as well as by the images of the objects
∇s with s ∈ S ∖ T . Hence what we have to prove is that for any s, t ∈ S ∖ T
the induced morphism

HomDb(A)/Db(AT )(ΠT (∆s),ΠT (∇t)[i])→ HomDb(A/AT )(πT (∆s), πT (∇t)[i])

is an isomorphism. However we have

HomDb(A)/Db(AT )(ΠT (∆s),ΠT (∇t)[i]) ∼= HomDb(A)(∆s,Π
R
T ◦ΠT (∇t)[i])

∼= HomDb(A)(∆s,∇t[i]),

and then the claim follows from Corollary 2.3 applied to the highest weight cate-
gories A and A/AT , see Lemma 3.1. □

Remark 3.3. Assume that S is finite; in this case we can consider the inde-
composable projective objects (Ps : s ∈ S ), see Theorem 2.1. Remark 2.2 implies
that if s ∈ S , then (Ps : ∆t) = 0 for any t ∈ T . Proposition 3.2(3) therefore
implies that for any s ∈ S the natural morphism

ΠL
T ◦ΠT (Ps)→ Ps

is an isomorphism, which using adjunction implies that for any M ∈ A the functor
ΠT induces an isomorphism

HomA(Ps,M)
∼−→ HomA/AT

(ΠT (Ps),ΠT (M)).

Since any exact sequence in A/AT is the image under ΠT of an exact sequence
in A (see [Ga, Corollaire 1 on p. 368]) this shows that ΠT (Ps) is projective. This
property also implies that ΠT (Ps) is indecomposable; it is therefore the projective
cover of ΠT (Ls).

4. Criterion for the existence of standard and costandard filtrations

4.1. Costandard filtrations.

Proposition 4.1. Let A be a highest weight category with weight poset (S ,≤),
and let M be in A. Then the following conditions are equivalent:

(1) M admits a ∇-filtration;
(2) for any s ∈ S and i ∈ Z>0, we have ExtiA(∆s,M) = 0;
(3) for any s ∈ S , we have Ext1A(∆s,M) = 0.

Remark 4.2. It follows in particular from Proposition 4.1 that a direct sum-
mand of an object which admits a ∇-filtration also admits a ∇-filtration.
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Proof. The fact that (1)⇒ (2) follows from Corollary 2.3, and the implication
(2)⇒ (3) is clear. It remains to prove that (3)⇒ (1). For this we can assume that
S is finite, and argue by induction on #S , the case #S = 1 being obvious.

Assume that #S > 1, let t ∈ S be a minimal element, and let T = {t}. Let
M be an object in A such that Ext1A(∆s,M) = 0 for all s ∈ S . Then for any
s ∈ S ∖ T , using Proposition 3.2 we see that

Ext1A/AT
(πT (∆s), πT (M)) ∼= HomDb(A)/Db(AT )(ΠT (∆s),ΠT (M)[1])

∼= HomDb(A)(Π
L
T ◦ΠT (∆s),M [1]) ∼= Ext1A(∆s,M) = 0.

Hence, by induction, πT (M) admits a ∇-filtration in the highest weight category
A/AT . Using again Proposition 3.2, it follows that ΠR

T ◦ ΠT (M) belongs to A,
and admits a ∇-filtration.

Consider now the distinguished triangle

(4.1) ıT ◦ ıRT (M)→M → ΠR
T ◦ΠT (M)

[1]−→

provided once again by Proposition 3.2. Since the second and third terms belong
to A, the first term can have nonzero cohomology objects only in degrees 0 and 1.
Moreover, we have

HomDb(A)(∆t, ıT ◦ ıRT (M)[1]) ∼= HomDb(AT )(ı
L
T ◦ ıT (∆t), ı

R
T (M)[1])

∼= HomDb(AT )(∆t, ı
R
T (M)[1]) ∼= HomDb(A)(∆t,M [1]),

hence

(4.2) HomDb(A)(∆t, ıT ◦ ıRT (M)[1]) = 0.

We claim that ıT ◦ ıRT (M) belongs to A. Indeed, consider the truncation
distinguished triangle

H0(ıT ◦ ıRT (M))→ ıT ◦ ıRT (M)→ H1(ıT ◦ ıRT (M))[−1] [1]−→ .

Since the category AT is semisimple, this triangle is split. Hence if H1(ıT ◦ıRT (M))
were nonzero there would exist a nonzero morphism ∆t[−1]→ ıT ◦ ıRT (M), which
would contradict (4.2).

Finally, since the functor ıT is exact and does not kill any object (since it is
fully-faithful), we deduce that ıRT (M) belongs to AT , hence that ıT ◦ ıRT (M) is
a direct sum of copies of ∇t. Then the distinguished triangle (4.1) is an exact
sequence in A, and shows that M admits a ∇-filtration. □

4.2. Standard filtrations. Applying Proposition 4.1 to the opposite category
Aop (see Lemma 1.4(1)), we obtain the following “dual” statement.

Proposition 4.3. Let A be a highest weight category with weight poset (S ,≤),
and let M be in A. Then the following conditions are equivalent:

(1) M admits a ∆-filtration;
(2) for any s ∈ S and i ∈ Z>0, we have ExtiA(M,∇s) = 0;
(3) for any s ∈ S , we have Ext1A(M,∇s) = 0.

5. Tilting objects

In this section we fix a highest weight category A with weight poset (S ,≤).
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5.1. Definition. The following definition is due to Ringel [Rin].

Definition 5.1. An object M in A is said to be tilting if admits both a ∆-
filtration and a ∇-filtration.

It follows from Remark 4.2 that any direct summand of a tilting object is tilting.
Since A is Krull–Schmidt, this implies that any tilting objects is a direct sum of
indecomposable tilting objects.

5.2. Classification. The main result of this section is the following theorem,
which provides a classification of the indecomposable tilting objects.

Theorem 5.2. For any s ∈ S , there exists (up to isomorphism) a unique
indecomposable tilting object Ts such that

(5.1) [Ts : Ls] = 1 and [Ts : Lt] ̸= 0 ⇒ t ≤ s.
Moreover there exists an embedding ∆s ↪→ Ts whose cokernel admits a ∆-filtration,
and a surjection Ts ↠ ∇s whose kernel admits a ∇-filtration. Finally, any inde-
composable tilting object is isomorphic to Ts for a unique s ∈ S .

Our proof is inspired by the proof of [S4, Proposition 3.1] (where the author
considers a much more general setting). We begin with the following preliminary
result.

Lemma 5.3. For any s ∈ S , there exists a tilting object T endowed with an
embedding ∆s ↪→ T whose cokernel admits a ∆-filtration with subquotients ∆t with
t < s.

Proof. We proceed by induction on #{t ∈ S | t ≤ s}. If s is minimal then
we can take T = ∆s = ∇s. Otherwise, consider some minimal t ∈ S with t < s.
We set T = {t}. By induction, we have an object M in A/AT with the desired
properties, and we consider M ′ := ΠL

T (M). Using Proposition 3.2, we see that
there exists an embedding from ∆s = ΠL

T ◦ΠT (∆s) to M
′, whose cokernel admits

a ∆-filtration with subquotients ∆u with u < s. Moreover, for any u ̸= t we have

Ext1A(∆u,M
′) ∼= HomDb(A)(Π

L
T ◦ΠT (∆u),M

′[1])

∼= HomDb(A)/Db(AT )(ΠT (∆u),ΠT (M ′)[1])

∼= HomDb(A)/Db(AT )(ΠT (∆u),M [1]) = 0.

Now, consider the vector space E := Ext1A(∆t,M
′), which is finite-dimensional

by Exercise 7.2, and the image of idE in

Homk(E,E) ∼= E∗ ⊗k E ∼= Ext1A(E ⊗k ∆t,M
′).

This element corresponds to a short exact sequence

(5.2) M ′ ↪→ T ↠ E ⊗k ∆t.

Clearly, there exists an embedding ∆s ↪→ T whose cokernel admits a ∆-filtration
with subquotients ∆u with u < s. Hence to conclude our construction we only have
to prove that T also admits a ∇-filtration. By Proposition 4.1, for this it suffices
to prove that

Ext1A(∆u, T ) = 0

for any u ∈ S . If u ̸= t, this property follows from the similar vanishing for M ′

proved above and the fact that Ext1A(∆u,∆t) = Ext1A(∆u,∇t) = {0}. And to prove
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it for u = t we consider the following part of the long exact sequence obtained by
applying HomA(∆t,−) to (5.2):

HomA(∆t, E ⊗k ∆t)→ Ext1A(∆t,M
′)→ Ext1A(∆t, T )→ Ext1A(∆t, E ⊗k ∆t).

Here by construction the first morphism is the identity of E, and the fourth term
vanishes; hence the third term also vanishes, as desired. □

Now we prove Theorem 5.2.

Proof of Theorem 5.2. For any s ∈ S there exists an indecomposable tilt-
ing object Ts endowed with an embedding ∆s ↪→ Ts whose cokernel admits a ∆-
filtration with subquotients ∆t with t < s. Indeed, Lemma 5.3 provides an object
T with such properties, which is not necessarily indecomposable. But then T ad-
mits an indecomposable direct summand Ts with (Ts : ∆s) = 1. The composition
∆s ↪→ T ↠ Ts is still injective, and its cokernel still admits the required filtration,
since there exists no nonzero morphism from ∆s to any other direct summand of
T .

We fix such objects (and the corresponding embeddings), and now prove that
any indecomposable tilting object is isomorphic to Ts for some s ∈ S . In fact,
let T be an indecomposable tilting object, and choose t ∈ S and an embedding
∆t ↪→ T whose cokernel admits a ∆-filtration. Consider the diagram

∆t
� � // T

��

// // coker

∆t
� � // Tt // // coker′.

Since coker admits a ∆-filtration and Tt is tilting, we have Ext1A(coker,Tt) = 0.
Hence there exists a morphism φ : Tt → T which restricts to the identity on ∆t.
Similarly, there exists ψ : T → Tt which restricts to the identity on ∆t. Then
φ◦ψ is an element of the artinian local ring EndA(T ) which is not nilpotent, hence
invertible by Fitting’s lemma. Similarly ψ ◦ φ is invertible, hence φ and ψ are
isomorphisms.

We have proved that the objects (Ts : s ∈ S ) constructed above provide
representatives for all isomorphism classes of indecomposable tilting objects in A.
Among these objects, it is clear that Ts is characterized by (5.1). Hence to con-
clude it suffices to prove that there exists a surjection Ts ↠ ∇s whose kernel admits
a ∇-filtration. However, Lemma 5.3 applied to Aop guarantees the existence, for
any s ∈ S , of a tilting object T′

s with a surjection T′
s ↠ ∇s whose kernel ad-

mits a ∇-filtration with subquotients of the form ∇t with t < s. Moreover, as
above this object can be assumed to be indecomposable. This object satisfies the
conditions (5.1); hence it must be isomorphic to Ts. □

Remark 5.4. The proof of Theorem 5.2 shows also that if T is an indecom-
posable tilting object in A, then the first term in any ∆-filtration of T is ∆s, where
s is the (unique) maximal element of S such that [T : Ls] ̸= 0. In particular this
first term does not depend on the chosen ∆-filtration, and characterizes T up to
isomorphism.
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5.3. Describing a highest weight category in terms of its tilting ob-
jects. We denote by Tilt(A) the additive full subcategory of A whose objects are
the tilting objects. The following is an easy but very useful observation.

Proposition 5.5. The natural functor

KbTilt(A)→ Db(A)
is an equivalence of triangulated categories.

Proof. The category Db(A) is generated as a triangulated category by the
objects ∆s for s ∈ S , hence also (using Theorem 5.2) by the tilting objects. So, to
prove the proposition it suffices to prove that our functor is fully-faithful. However,
this follows directly from the observation that

ExtiA(T, T
′) = 0 for all i > 0

if T and T ′ are tilting objects, as follows from Corollary 2.3. □

5.4. ∇-sections. We now fix, for any s ∈ S , an indecomposable object Ts as
in Theorem 5.2. The following notion was introduced (using a slightly different ter-
minology) in [RW1]. (This definition has antecedents in the literature; see [RW1,
Remark 2.3.3] for references.) Here, for s ∈ S we consider the ideal {t ∈ S | t ̸≥ s},
and the quotient category

A≥s := A/A{t∈S |t ̸≥s}.

Definition 5.6. Let X be an object in A which admits a costandard filtration.
A ∇-section of X is a triple (Π, e, (φπ : π ∈ Π)) where

• Π is a finite set;
• e : Π→ S is a map;
• for each π ∈ Π, φπ is an element in HomA(Te(π), X)

such that for any s ∈ S the images of the morphisms

(φπ : Ts → X : π ∈ e−1(s))

form a basis of the k-vector space HomA≥s(Ts, X).

In this definition and below, we omit the notation for the obvious quotient
functor A → A≥s. Note that, since s is minimal in S ∖ {t ∈ S | t ̸≥ s}, the
images of the objects ∆s, ∇s, Ls and Ts in A≥s all coincide. In particular, for any
X in A we have

HomA≥s(Ts, X) ∼= HomA≥s(∆s, X).

On the other hand, by Exercise 7.7, if X admits a costandard filtration the natural
morphism

HomA(∆s, X)→ HomA≥s(∆s, X)

is an isomorphism. Finally, after a choice of a (necessarily injective) morphism
∆s → Ts, the induced morphism

HomA(Ts, X)→ HomA(∆s, X)

is surjective (because the cokernel Y of the morphism ∆s → Ts admits a standard
filtration, which implies that Ext1A(Y,X) = 0). These comments show that any
object which admits a costandard filtration admits a ∇-section: more specifically,
a choice of such a datum is equivalent to a choice, for any s ∈ S , of a family of
vectors in HomA(Ts, X) whose image in HomA(∆s, X) is a basis. (This family is
necessarily of cardinality (X : ∇s), where we use the notation of Exercise 7.6.)





APPENDIX B

Exercises

1. Exercises for Chapter 1

Exercise 1.1 (Representations of SL2). This exercise aims at proving the
Steinberg tensor product formula “by hand” for the group SL2(k). The reader is
supposed not to use the general theory to treat it.

Consider the ring k[x, y] of polynomials in two variables. The group SL2(k)
acts on this ring by linear substitutions in the variables:(

a b
c d

)
· f(x, y) = f(ax+ by, cx+ dy).

Let Mn ⊂ k[x, y] be the space of homogeneous polynomials of degree n (i.e., the
span of the polynomials xn, xn−1y, . . . , yn). This space is preserved by the action
of SL2(k). Let p be the characteristic of k. Let Ln denote the irreducible SL2(k)-
representation of highest weight n ·ϖ1.

(1) Show that if 0 ≤ n < p, thenMn is irreducible, so Ln ∼=Mn. In particular,
we have

chLn = e−n + e−n+2 + · · ·+ en if 0 ≤ n < p.

(2) (Frobenius twist) For any representation V , let V (1) be the representation
on the same underlying vector space, but with a modified action of SL2(k)
given by (

a b
c d

)
·new v =

(
ap bp

cp dp

)
·old v.

Show that if V is irreducible, then V (1) is irreducible. Show that L
(1)
n
∼=

Lpn.
(3) (Steinberg tensor product theorem) Show that if 0 ≤ a < p, and if n is

any nonnegative integer, then La ⊗ L(1)
n is irreducible. As a consequence,

La ⊗ L(1)
n
∼= La+pn.

(4) (Character formula) Now let n be any nonnegative integer. Write down
its “p-adic expansion” as

n =
∑
i≥0

aip
i where 0 ≤ ai < p for each i.

Then show that

chLn =
∏
i≥0

(chLai)|e 7→epi .

Exercise 1.2 (Root system of GLn(k)). Let k be an algebraically closed field.
We fix n ≥ 1, and consider the group G = GLn(k) of invertible n× n-matrices.

271
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(1) Let T ⊂ G be the subgroup of diagonal matrices. Show that T is a
maximal torus in G.

(2) Fox i ∈ {1, · · · , n} we denote by εi : T → k× the character sending an
invertible diagonal matrix to the i-th entry on its diagonal. Show that the
root system of (G,T) is

Φ := (εi − εj : i ̸= j ∈ {1, . . . , n}),

and describe the corresponding root spaces in the Lie algebra of G.
(3) Fox i ∈ {1, . . . , n} we denote by ε∨i : k× → T the cocharacter sending

t to the diagonal matrix with i-th coefficient t, and all other (diagonal)
coefficients equal to 1. Show that the coroot system of (G,T) is

Φ∨ := (ε∨i − ε∨j : i ̸= j ∈ {1, . . . , n}).

(4) Show that Φ+ := {εi − εj : 1 ≤ i < j ≤ n} is a positive system in Φ.
(5) Determine the basis of Φ associated with Φ+, and write every root as a

linear combination of simple roots.
(6) Determine the highest root in Φ.
(7) Determine the positive and negative Borel subgroups associated with our

choice of Φ+, and their respective unipotent radicals.
(8) Describe the standard parabolic subgroup of G (with respect to the neg-

ative Borel subgroup) associated with each subset of the set of simple
roots.

(9) Determine the Weyl group of (G,T).

(10) For i ∈ {1, . . . , n} we set ωi :=
∑i
j=1 εj . Show that the dominant weights

for the choice of Φ+ as above are the weights of the form

k1ω1 + · · ·+ kn−1ωn−1 + knωn

with k1, . . . , kn−1 ∈ Z≥0 and kn ∈ Z.

Exercise 1.3 (Root system of Sp2n(k)). Let k be an algebraically closed field.
We fix n ≥ 1, and consider the matrix

J :=

(
0 In
−In 0

)
(of size 2n). In this exercise we consider the group G = Sp2n(k) of matrices
X ∈ SL2n(k) which satisfy tXJX = J . Its Lie algebra is

g = sp2n(k) = {X ∈ sl2n(k) | tXJ + JX = 0}.

(1) We let T ⊂ G be the subgroup of diagonal matrices. Show that

T = {diag(t1, . . . , tn, t−1
1 , . . . , t−1

n ) : t1, . . . , tn ∈ k×},

and that T is a maximal torus in G.
(2) Show that the matrices

Ei,j − En+j,n+i (1 ≤ i, j ≤ n),
Ei,n+j + Ej,n+i (1 ≤ i ≤ j ≤ n),
En+j,i + En+i,j (1 ≤ i ≤ j ≤ n)

form a k-basis of g.
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(3) For i ∈ {1, . . . , n}, we denote by εi : T → k× the character sending a
matrix to its i-th diagonal entry. Using the preceding question, show that
the root system Φ of (G,T) consists of the characters

εi − εj (i ̸= j), εi + εj (i < j), −(εi + εj) (i < j), 2εi, −2εi

with i, j ∈ {1, . . . , n}.
(4) Fox i ∈ {1, . . . , n}, we denote by ε∨i : k× → T the cocharacter sending t

to the diagonal matrix with i-th coefficient t, n+ i-th coefficient t−1, and
all other (diagonal) coefficients equal to 1. Show that the coroot system
of (G,T) consists of the cocharacters

ε∨i − ε∨j (i ̸= j), ε∨i + ε∨j (i < j), −(ε∨i + ε∨j ) (i < j), ε∨i , −ε∨i
with i, j ∈ {1, . . . , n}.

(5) For i ∈ {1, . . . , n} we set

αi =

{
εi − εi+1 if i ̸= n;

2εn if i = n.

Show that (α1, . . . , αn) is a basis of Φ.
(6) Determine the system of positive roots associated with the basis of the

preceding question, and the associated positive and negative Borel sub-
groups.

(7) Determine the Weyl group of (G,T).

(8) For i ∈ {1, . . . , n} we set ωi :=
∑i
j=1 εj . Show that the dominant weights

for the choice of basis of Φ as above are the weights of the form

k1ω1 + · · ·+ knωn

with k1, . . . , kn ∈ Z≥0.

Exercise 1.4 (Root system of SO2n(k)). Let k be an algebraically closed field
of odd characteristic. We fix n ≥ 1, and consider the matrix

J :=

(
0 In
In 0

)
(of size 2n). In this exercise we consider the group G = SO2n(k) of matrices
X ∈ SL2n(k) which satisfy tXJX = J . Its Lie algebra is

g = so2n(k) = {X ∈ sl2n(k) | tXJ + JX = 0}.

(1) We let T ⊂ G be the subgroup of diagonal matrices. Show that

T = {diag(t1, . . . , tn, t−1
1 , . . . , t−1

n ) : t1, . . . , tn ∈ k×},

and that T is a maximal torus in G.
(2) Show that the matrices

Ei,j − En+j,n+i (1 ≤ i, j ≤ n),
Ei,n+j − Ej,n+i (1 ≤ i < j ≤ n),
En+j,i − En+i,j (1 ≤ i < j ≤ n)

form a k-basis of g.
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(3) For i ∈ {1, . . . , n}, we denote by εi : T → k× the character sending a
matrix to its i-th diagonal entry. Using the preceding question, show that
the root system Φ of (G,T) consists of the characters

εi − εj (i ̸= j), εi + εj (i < j), −(εi + εj) (i < j)

with i, j ∈ {1, . . . , n}.
(4) Fox i ∈ {1, . . . , n}, we denote by ε∨i : k× → T the cocharacter sending t

to the diagonal matrix with i-th coefficient t, n+ i-th coefficient t−1, and
all other (diagonal) coefficients equal to 1. Show that the coroot system
of (G,T) consists of the cocharacters

ε∨i − ε∨j (i ̸= j), ε∨i + ε∨j (i < j), −(ε∨i + ε∨j ) (i < j)

with i, j ∈ {1, . . . , n}.
(5) For i ∈ {1, . . . , n} we set

αi =

{
εi − εi+1 if i ̸= n;

εn−1 + εn if i = n.

Show that (α1, . . . , αn) is a basis of Φ.
(6) Determine the system of positive roots associated with the basis of the

preceding question, and the associated positive and negative Borel sub-
groups.

(7) Determine the Weyl group of (G,T).
(8) For i ∈ {1, . . . , n} we set

ωi :=


∑i
j=1 εj if i ≤ n− 2 ;

1
2 (ε1 + · · ·+ εn−1 − εn) if i = n− 1 ;
1
2 (ε1 + · · ·+ εn−1 + εn) if i = n.

Show that the dominant weights for the choice of basis of Φ as above are
the weights of the form

k1ω1 + · · ·+ knωn

with k1, . . . , kn ∈ Z≥0 and kn−1, kn of the same parity.

Exercise 1.5 (Root system of SO2n+1(k)). Let k be an algebraically closed
field of odd characteristic. We fix n ≥ 1, and consider the matrix

J :=

 0 In 0
In 0 0
0 0 1


(of size 2n+ 1). In this exercise we consider the group G = SO2n+1(k) of matrices
X ∈ SL2n+1(k) which satisfy tXJX = J . Its Lie algebra is

g = so2n+1(k) = {X ∈ sl2n+1(k) | tXJ + JX = 0}.

(1) We let T ⊂ G be the subgroup of diagonal matrices. Show that

T = {diag(t1, . . . , tn, t−1
1 , . . . , t−1

n , 1) : t1, . . . , tn ∈ k×},

and that T is a maximal torus in G.
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(2) Show that the matrices

Ei,j − En+j,n+i (1 ≤ i, j ≤ n),
Ei,n+j − Ej,n+i (1 ≤ i < j ≤ n),
En+j,i − En+i,j (1 ≤ i < j ≤ n),

Ei,2n+1 − E2n+1,n+i (1 ≤ i ≤ n),
En+i,2n+1 − E2n+1,i (1 ≤ i ≤ n)

form a k-basis of g.
(3) For i ∈ {1, . . . , n}, we denote by εi : T → k× the character sending a

matrix to its i-th diagonal entry. Using the preceding question, show that
the root system Φ of (G,T) consists of the characters

εi − εj (i ̸= j), εi + εj (i < j), −(εi + εj) (i < j), εi, −εi
with i, j ∈ {1, . . . , n}.

(4) Fox i ∈ {1, . . . , n}, we denote by ε∨i : k× → T the cocharacter sending t
to the diagonal matrix with i-th coefficient t, n+ i-th coefficient t−1, and
all other (diagonal) coefficients equal to 1. Show that the coroot system
of (G,T) consists of the cocharacters

ε∨i − ε∨j (i ̸= j), ε∨i + ε∨j (i < j), −(ε∨i + ε∨j ) (i < j), 2ε∨i , −2ε∨i
with i, j ∈ {1, . . . , n}.

(5) For i ∈ {1, . . . , n} we set

αi =

{
εi − εi+1 if i ̸= n;

εn if i = n.

Show that (α1, . . . , αn) is a basis of Φ.
(6) Determine the system of positive roots associated with the basis of the

preceding question, and the associated positive and negative Borel sub-
groups.

(7) Determine the Weyl group of (G,T).

(8) For i ∈ {1, . . . , n− 1} we set ωi :=
∑i
j=1 εj , and for i = n we set

ωn :=
1

2

(
ε1 + · · ·+ εn).

Show that the dominant weights for the choice of basis of Φ as above are
the weights of the form

k1ω1 + · · ·+ 2knωn

with k1, . . . , kn ∈ Z≥0.

Exercise 1.6 (Some induced and Weyl modules for SLn(k)). In this exercise
we consider the setting of Example 1.1, and denote by V = kn the natural module
for G = SLn(k).

(1) For any i ∈ {1, . . . , n− 1}, show that the only element λ ∈ X+ such that
λ ⪯ ωi is λ = ωi.

(2) Deduce that for i ∈ {1, . . . , n− 1} we have

wt(N(ωi)) = {wωi : w ∈W}.
(Hint: use Lemma 1.12 from Chapter 1.)
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(3) For any i ∈ {1, . . . , n − 1}, show that there exists a unique (up to an
invertible scalar) nonzero morphism of G-modules∧

iV → N(ωi),

and that this morphism is an isomorphism.
(4) Show that for i ∈ {1, . . . , n− 1} we also have

M(ωi) ∼= L(ωi) ∼=
∧
iV.

Exercise 1.7 (Divisibility of dimensions). This exercise is taken from [M2,
Lemma 10.1]. Here we assume that p ≥ h.

(1) Show that if λ ∈ X+, we have p | dim(N(λ)) iff λ is regular. (Hint : use
the formula from Remark 1.22.)

(2) Deduce that if µ ∈ X is singular, then p | dim(M) for any module M in
Rep(G)Waff ·pµ.

Exercise 1.8 (Coxeter groups). We recall that if W is a group and S ⊂W is
a subset consisting of involutions generating W , then (W,S) is a Coxeter system iff
it satisfies the exchange condition, i.e. iff for any reduced expression s1 · · · sk of an
element w ∈ W and any s ∈ S such that ℓ(sw) < ℓ(w), there exists i ∈ {1, · · · , k}
such that sw = s1 · · · ŝi · · · sk. (For this, see e.g. [Mi, Theorem 4.2].)

Let W be a group and S ⊂W a subset consisting of involutions generating W .
Let also (Ds : s ∈ S) be a set of subsets of W such that

(1) e ∈ Ds for any s ∈ S;
(2) Ds ∩ sDs = ∅ for any s ∈ S;
(3) if s, s′ ∈ S, w ∈ Ds and ws′ /∈ Ds, then ws

′ = sw.

Show that (W,S) is a Coxeter system and that moreover for any s ∈ S we have
Ds = {w ∈W | ℓ(sw) > ℓ(w)}. (Hint : if w ∈W∖Ds and w = s1 · · · sk is a reduced
expression, by considering the smallest i such that s1 · · · si /∈ Ds, show that there
exists j such that sw = s1 · · · ŝj · · · sk, so that in particular ℓ(sw) < ℓ(w). Deduce
that (W,S) satisfies the exchange condition.)

Exercise 1.9. Let (W,S) be a Coxeter system. Let w, x, y ∈ W be such that
ℓ(wy) = ℓ(w) + ℓ(y) and ℓ(xy) = ℓ(x) + ℓ(y). Show that w ≤ x if and only if
wy ≤ xy (for the Bruhat order). (Hint : Use the characterization of the Bruhat
order in terms of reduced expressions and the exchange condition.)1

Exercise 1.10. Show that if w ∈ fWaff and if y ∈ Waff satisfies wy < w, then
wy ∈ fWaff . (Hint : argue by induction on ℓ(y) and use Lemma 2.31.)

Exercise 1.11 (Dihedral groups). Let n ≥ 2, and let W be the set of symme-
tries of the regular n-gon in R2.

(1) If S ⊂ W consists of two reflections whose axes differ by an angle of π
n ,

show that (W,S) is a Coxeter system.
(2) Write all the elements of W as products of simple reflections, and deter-

mine the longest element in W .
(3) If n is twice an odd integer and S = {s, t}, show that (W, {s, w0t, w0}) is

also a Coxeter system.2

1This statement can be found in [AR5, Lemma 2.1].
2In particular, this example shows that given a groupW , there might exist essentially different

subsets S ⊂ W such that the pair (W,S) is a Coxeter system.
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(4) Show that for any w ∈W we have

Hw =
∑
x≤w

vℓ(w)−ℓ(x)Hx.

(For this question, in case of difficulties the reader might consult [H4,
§7.12].)

(5) Decompose, for any s ∈ S and w ∈ W , the element Hs · Hw in the
Kazhdan–Lusztig basis.

(6) Show that
ε(bs · bt · bs · · ·︸ ︷︷ ︸

2n terms

) ∈ 1 + v2Z[v2].

Exercise 1.12 (Coxeter groups of type A). Let W = Sn be the symmetric
group on n letters.

(1) Let S = {s1, . . . , sn−1}, where si is the permutation that swaps i and
i + 1. Show that (W,S) is a Coxeter system. (Hint : Use the criterion
from Exercise 1.8 above with Dsi = {w ∈W | w−1(i) < w−1(i+ 1)}.)

(2) Recall that for w ∈W = Sn, an inversion of w is a pair (i, j) ∈ {1, . . . , n}2
such that i < j and w(i) > w(j). Show that, for the set of Coxeter
generators as in the preceding question, ℓ(w) is the number of inversions
of w. (Hint : proceed by induction, using the description of Dsi in terms
of length proved in Exercise 1.8.)

(3) Show that the permutation τ defined by τ(i) = n+1− i for i ∈ {1, . . . , n}
is the longest element in W . Determine its length, and show that the
following is a reduced expression for τ :

τ = (sn−1sn−2 · · · s1)(sn−1sn−2 · · · s2) · · · (sn−1sn−2)sn−1.

(4) Recall the notion of minimal elements in cosets for parabolic subgroups,
cf. §2.8. Here we consider the case when (W,S) is as above, and I =
{s1, · · · , sn−2} (so that WI = Sn−1). Show that the following elements
are the minimal coset representatives for Sn/Sn−1:

id, sn−1, sn−2sn−1, sn−3sn−2sn−1, . . . , s1s2 · · · sn−1.

Exercise 1.13 (Coxeter groups of type B). We continue with the notation
W = Sn, si = (i, i+ 1).

(1) Let W act on (Z/2Z)n by permuting the coordinates, and let W ′ =
W⋉(Z/2Z)n. Show thatW ′ can be identified with the “group of permuta-
tions with sign changes,” i.e., the group of bijections σ : {±1, . . . ,±n} →
{±1, . . . ,±n} such that σ(−i) = −σ(i).

(2) Let s0 be the element (−1, 1, . . . , 1) ∈ (Z/2Z)n, regarded as an element
of W ′, and let S′ = {s0, . . . , sn−1}. Show that (W ′, S′) is a Coxeter
systrem. (This group is the Weyl group of SO2n+1 or of Sp2n.) (Hint :
Use the criterion from Exercise 1.8 above with Dsi = {w ∈W ′ | w−1(i) <
w−1(i+ 1)}, where by convention w(0) = 0 for any w ∈W ′.)

(3) What is the longest element in W ′?

Exercise 1.14 (Conjugacy of simple reflections in Wext). Show that if G has
simply-connected derived subgroup, every element in Saff is conjugate in Wext to
an element in S. (Hint : you might check the case when G is quasi-simple and
simply connected by case-by-case considerations, then deduce the case when G is
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semisimple and simply connected, and finally the general case using restriction to
the derived subgroup. In case of difficulties, consult [BR2, Lemma 3.1].)

Exercise 1.15 (Elements of length 0 in Wext). In this exercise we consider the
group Ω of Remark 2.26.

(1) Show that the composition

Wext → X→ X/ZR

restricts to an isomorphism Ω
∼−→ X/ZR.

(2) Show that if X/ZR has no p-torsion, then the action of Ω on X (via ·p) is
free.

Exercise 1.16 (Kazhdan–Lusztig element associated with the longest ele-
ment). Let (W,S) be a Coxeter system such that W is finite, and let w◦ be the
longest element in W. We set

R =
∑
y∈W

vℓ(w◦)−ℓ(y) ·Hy.

(1) Show that

{h ∈ H(W,S) | ∀s ∈ S, h ·Hs = (v + v−1) · h} = Z[v, v−1] ·R.
(2) Deduce that R is stable under the Kazhdan–Lusztig involution, and then

that R = Hw◦
.

Exercise 1.17 (Longest representatives and the Kazhdan–Lusztig basis). Let
(W,S) be a Coxeter system. For h ∈ H(W,S) we denote by aw(h) the coefficient of
H in the basis (Hw : w ∈ W), so that h =

∑
w aw(h) ·Hw.

(1) Show that if s ∈ S and w ∈ W we have

Hs ·Hw =

{
Hsw + vHw if sw > w;

Hsw + v−1Hw if sw < w.

(2) For s ∈ S we set
sH(W,S) := {h ∈ H(W,S) | Hs · h = (v + v−1)h}.

Show that for h ∈ H(W,S) we have h ∈ sH(W,S) iff for any y ∈ W such
that sy > y we have ay(h) = v · asy(h).

(3) Deduce that sH(W,S) = Hs · H(W,S).
(4) Our goal now is to show that

sH(W,S) =
⊕
w∈W
sw<w

Z[v, v−1] ·Hw.

(a) Show that in the formula (4.6), if py(0) ̸= 0 then y ≤ w and sy < y.
(b) Show that for any y ∈ W such that sy < y we have Hy ∈ sH(W,S).

(Hint : proceed by induction).
(c) Conclude.

(5) If I ⊂ S is a finitary subset (i.e. a subset such that WI is finite) we set

IH(W,S) =
⋂
s∈I

sH(W,S).

We also denote by IW ⊂ W the subset of longest right coset representa-
tives; in other words, IW = {w ∈ W | ∀x ∈ WI , xw < w}.
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(a) Show that for h ∈ H(W,S) we have h ∈ IH(W,S) iff for any y ∈ IW
and x ∈ WI we have axy(h) = vℓ(x) · ay(h).

(b) Show that

IH(W,S) =
⊕
w∈IW

Z[v, v−1] ·Hw.

(c) Show (without using Exercise 1.16) that we have

HwI
=
∑
x∈WI

vℓ(x) ·HxwI
.

(d) Show that IH(W,S) = HwI
· H(W,S).

Exercise 1.18 (Alcoves). For the indecomposable root systems of rank 2 (i.e. of
type A2, B2 or G2):

(1) draw the roots in the plane R2, and the corresponding hyperplanes;
(2) choose a basis (α, β), and write ρ in terms of α and β;
(3) draw the corresponding decomposition of X⊗Z R into facets (in the spirit

of Examples 2.22–2.23);
(4) determine C ∩ X (depending on p);
(5) determine the facets contained in C, and which of them contain elements

of X (the answer will depend on p).

Exercise 1.19 (Translation functors and quotient functors). Let λ, µ ∈ C, and
assume that µ belongs to the closure of the facet containing λ.

(1) Denote by Rep(G)Waff ·pλ the quotient of Rep(G)Waff ·pλ by the Serre sub-
category generated by the simple objects L(w ·p λ) where w ∈Waff is such
that w ·p λ ∈ X+ and w ·p µ does not belong to the upper closure of the
facet of w ·p λ. Show that there exists a unique functor

T
µ

λ : Rep(G)Waff ·pλ → Rep(G)Waff ·pµ

such that the composition

Rep(G)Waff ·pλ → Rep(G)Waff ·pλ
T

µ
λ−−→ Rep(G)Waff ·pµ

(where the first arrow is the canonical quotient functor) is Tµλ .

(2) Show that T
µ

λ is exact, and that it does not kill any object.

(3) Deduce that T
µ

λ is faithful.
(4) We now restrict to the caseG = SL2, λ = 0 and µ = p−1. Our goal in this

question is to show that in this case the functor T
µ

λ is not a equivalence
of categories.
(a) Show that the object T 0

p−1

(
L(p − 1)

)
is indecomposable of length 3,

with socle and top L(0), and the “middle” composition factor being
L(2p− 2). (Hint : use Proposition 2.27(3).)

(b) Deduce that

dimEndRep(G)

(
T 0
p−1(L(p− 1))

)
= 2,

and that the morphism

EndRep(G)

(
T 0
p−1(L(p− 1))

)
→ EndRep(G)Waff ·p0

(
T 0
p−1(L(p− 1))

)
induced by the quotient functor is an isomorphism.
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(c) Show that

T p−1
0 T 0

p−1(L(p− 1)) ∼= L(p− 1)⊕2,

and deduce that

dimEndRep(G)

(
T p−1
0 T 0

p−1(L(p− 1))
)
= 4.

(d) Conclude

Exercise 1.20 (A weak form of the strong linkage principal3). Consider a k-
algebraic group H, and the action of H on itself by left multiplication. Let h be
the Lie algebra of H. Recall that for any open subvariety V ⊂ H the space O(V )
has a canonical structure of Uh-module such that the restriction morphism

O(H)→ O(V )

is Uh-equivariant (where Uh acts on O(H) via the differential of the H-action). For
instance, if V is the principal open subvariety defined by an element f ∈ O(H),
then O(V ) = O(H)[ 1f ]; the action of Uh on O(H) is by derivations, hence it extends

naturally to an action on O(V ) by derivations.

(1) Let K ⊂ H be a subgroup. Show that for any M ∈ Rep∞(K) and for any
open subvariety V ⊂ H/K, the space Γ(V,LH/K(M)) admits a natural
structure of Uh-module.

(2) Fix an open affine cover U of the noetherian separated scheme H/K, and
recall the associated Čech cohomology groups Ȟi(U,F ), see [Ha, §III.4].
Show that for any M ∈ Rep∞(K) and i ≥ 0 the space Ȟi(U,LH/K(M))
has a canonical structure of Uh-module, and that we have a canonical
isomorphism of Uh-modules

Ri IndHK(M) ∼= Ȟi(U,LH/K(M)).

(3) Show that if the center Z(H) of H is contained in K, then each space
Ȟi(U,LH/K(M)) also has a canonical structure of Z(H)-module, and that
the isomorphism in (2) is also Z(H)-equivariant.

(4) Now we assume that H = G and K = B. Show that for any λ ∈ X
and any open subvariety V ⊂ G/B, the central subalgebra (Ug)G acts on
Γ(V,Lλ) via the character defined by the image of the differential of λ in
t∗/(W, •). (Hint : use a variant of [DM, II, §6, Corollaire 1.5].)

(5) Assume that the conditions considered in §2.5 are satisfied. Show that if

λ ∈ X and i ∈ Z, any composition factor of Ri IndGB (kB(λ)) is of the form
L(ν) with ν ∈Waff ·p λ.

Exercise 1.21 (Computation of simple characters for SL4). This exercise will
use the following result: for each λ ∈ X+, the Weyl module M(λ) of highest weight
λ admits a finite decreasing filtration

M(λ) = M(λ)0 ⊃ M(λ)1 ⊃ M(λ)2 ⊃ · · ·
such that

• we have∑
i>0

ch
(
M(λ)i

)
=
∑
α∈R+

∑
0<mp<⟨λ+ρ,α∨⟩

νp(mp) · χ(sα,mp ·p λ)

3The argument in the exercise is adapted from the proof of [GS, Lemma 4].
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where νp is the p-adic valuation,

χ(µ) =

∑
w∈Wf

(−1)ℓ(w)ew(λ+ρ)−ρ∑
w∈Wf

(−1)ℓ(w)ew(ρ)−ρ

and sα,mp(µ) = µ− (⟨µ, α∨⟩ −mp)α;
• M(λ)/M(λ)1 = L(λ).

(This filtration is called Jantzen’s filtration. For the construction of this filtration,
and the proof of its properties, see [J3, Proposition II.8.19].)

In this exercise we assume that G = SL4(k), and that p ≥ 5. We denote by ϖ1,
ϖ2, ϖ3 the 3 fundamental weights, numbered in the obvious way. We will write
(r, s, t) for the weight rϖ1 + sϖ2 + tϖ3.

(1) Show that the restricted dominant weights in the dot-orbit of 0 are:

λ0 = 0, λ1 = (p− 3, 0, p− 3), λ2 = (p− 2, 1, p− 4),

λ3 = (p− 4, 1, p− 2), λ4 = (p− 3, 2, p− 3), λ5 = (p− 2, 2, p− 2).

(2) Show that ch
(
L(λ0)

)
= χ(λ0).

(3) Using Jantzen’s filtration, show that

ch
(
L(λ1)

)
= χ(λ1)− χ(λ0), ch

(
L(λ2)

)
= χ(λ2)− χ(λ1) + χ(λ0),

ch
(
L(λ3)

)
= χ(λ3)− χ(λ1) + χ(λ0)

(4) Using the fact that [M(λ4) : L(λ1)] = [M(λ3) : L(λ1)] (which is a special
case of [J3, Proposition II.7.18]) and Jantzen’s filtration, show that

ch
(
L(λ4)

)
= χ(λ4)− χ(λ3)− χ(λ2) + χ(λ1)− 2χ(λ0).

(5) Using the fact that [M(λ5) : L(λ3)] = [M(λ4) : L(λ3)] and that [M(λ5) :
L(λ2)] = [M(λ4) : L(λ2)], prove that

ch
(
L(λ5)

)
= χ(λ5)− χ(λ4)− χ(λ′0)− χ(λ′′0) + χ(λ3) + χ(λ2)− 2χ(λ1) + 3χ(λ0),

where
λ′0 = (p, 0, p− 4), λ′′0 = (p− 4, 0, p).

(Hint : Start by computing ch
(
L(λ′0)

)
and ch

(
L(λ′′0)

)
.)

(6) Check that these computations agree with Lusztig’s conjecture.

(In case of difficulties with this exercise, see [J3, §II.8.20].)

Exercise 1.22 (Characters of simple modules in rank 2). Using the method of
Exercise 1.21 above, for the groups of type B2 and G2, and assuming that p ≥ h,
compute the character of each simple module whose highest weight is restricted and
in the dot-orbit of 0, and compare with Lusztig’s formula.

Exercise 1.23 (Lusztig’s conjecture for SL2). We consider the case G =
SL2(k), and assume that p is odd.

(1) Show that

(Waff ·p 0) ∩ X+ = {2jpϖ1 : j ∈ Z≥0} ∪ {(2jp− 2)ϖ1 : Z≥1}.

(2) Show that Lusztig’s conjecture says in this case that for j ∈ {0, . . . , p−1
2 }

we have

[L(2jp)] =

j∑
i=1

(
[N(2ip)]− [N(2ip− 2)]

)
+ [N(0)]
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and that for j ∈ {1, · · · , p−1
2 } we have

L(2jp− 2) = [N(2jp− 2)]−

(
j−1∑
i=1

(
[N(2ip)]− [N(2ip− 2)]

))
− [N(0)].

(Here the reader might want to use Exercise 1.11.)
(3) Show that these formulas indeed hold.
(4) Show that

dim(L(p2 + p− 2)) = 2p− 2

and that

dim(N(p2 + p− 2))−

 p−1
2∑
i=1

(
dim(N(2ip))− dim(N(2ip− 2))

)− dim(N(0))

is equal to p2 − 1. Deduce that the formula (4.8) from Chapter 1 does
not hold when w = t(p+1)ϖ1

s where s ∈ W is the unique simple reflec-
tion. (In this case the condition (4.7) is not satisfied, so that there is no
contradiction here!)

2. Exercises for Chapter 2

The book [EMTW] countains a large collection of exercises on the subject of
this chapter. Our advice to readers willing to understand this material better is to
try solving (part of) them.

Exercise 2.1. Consider the group Sn, with its standard set of Coxeter genera-
tors consisting of the transpositions (i, i+1) for i ∈ {1, . . . , n−1} (see Exercise 1.12).

(1) Describe the reflections in this Coxeter group.
(2) Let k be an infinite field whose characteristic is not 2. Consider the

vector space kn, with canonical basis (ei : i ∈ {1, . . . , n}), and the action
of Sn where τ · ei = eτ(i). Show (without using any general result from
Chapter 2) that this representation is reflection faithful.

Exercise 2.2. Let (W,S) be a Coxeter system, and let V be a reflection
faithful representation of W, with defining morphism ϱ : W → End(V ). For any
t ∈ T , we denote by V −t the eigenspace of the action of t for the eigenvalue −1.
The goal of this exercise is to show (following [S7, Bemerkung 1.6]) that for t, t′ ∈ T
we have

V −t = V −t′ ⇔ t = t′.

Of course the implication “⇐” is obvious. We therefore fix t, t′ ∈ T such that
V −t = V −t′ .

(1) Show that tt′ acts trivially on V/V −t.
(2) Deduce that ker(ρ(tt′) − id) contains a hyperplane. (Hint : use that the

kernel of a matrix and of its transpose have the same dimension.)
(3) Show that tt′ /∈ T . (Hint : consider the determinant.)
(4) Deduce that tt′ acts trivially on V , and conclude.
(5) Similarly, for t ∈ T we denote by V t ⊂ V the subspace of vectors fixed by

t. Show that

V t = V t
′
⇔ t = t′.
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Exercise 2.3. 4 Let (W,S) be a Coxeter system, and let (V, ρ) be a reflection-
faithful representation of (W,S) over an infinite field k of caracteristic ̸= 2. We
denote by R the symmetric algebra of V and, for s ∈ S, by Bs the associated
Soergel bimodule.

We fix s ∈ S.
(1) Show that for any graded R-bimodule M there exists an isomorphism of

graded R-bimodules

Bs ⊗RM ∼= R⊗Rs M(1).

and an isomorphism of graded (Rs, R)-bimodules

Bs ⊗RM ∼=M(−1)⊕M(1).

(2) The goal of this question is to construct, for any graded R-bimodules M
and N , a natural isomorphism

Hom(Bs ⊗RM,N) ∼= Hom(M,Bs ⊗R N)

where the Hom spaces are spaces of graded R-bimodules. (In other words,
we will show that the functor M 7→ Bs ⊗RM is self-adjoint.)
(a) Show that the map

F : Hom(Bs ⊗RM,N)→ Hom(M,Bs ⊗R N)

given by

F (f)(m) = vs ⊗ f(1⊗m) + 1⊗ f(1⊗ vsm)

is well defined.
(b) Show that if g :M → Bs⊗RN is a morphism of graded R-bimodules,

there exist unique morphisms of graded (Rs, R)-bimodules g1 :M →
N(1) and g2 :M → N(−1) such that for any m ∈M we have

g(m) = 1⊗ g1(m) + vs ⊗ g2(m)

where we use the identification of (1).
(c) With the notation of the previous section, show that the map

G : Hom(M,Bs ⊗R N)→ Hom(Bs ⊗RM,N)

sending a morphism g :M → Bs ⊗R N to the morphism

Bs ⊗RM = R⊗Rs M(1)→ N

given for r ∈ R andm ∈M by G(g)(r⊗m) = r ·g2(m) is well defined.
(d) Show that G ◦ F = id.
(e) Show that F ◦G = id.
(f) Conclude.

Exercise 2.4. We fix a Coxeter system (W,S), and set T = {xsx−1 : x ∈
W, s ∈ S}. We also fix a reflection faithful representation (V, ρ) of (W,S) over an
infinite field of caracteristic ̸= 2, of (finite) dimension n ≥ 1.

(1) Show that for w ∈W the following properties are equivalent:
(i) w ∈ T ;
(ii) the endomorphism ρ(w) of V is diagonalizable, of eigenvalues 1 with

multiplicity n− 1, and −1 with multiplicity 1.

4The proof in this exercise is taken from [Li1].
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(iii) the endomorphism tρ(w) of V ∗ is diagonalizable, of eigenvalues 1 with
multiplicity n− 1, and −1 with multiplicity 1.

(2) Let s ∈ S, and fix an eigenvector ξs of ρ(s) associated with the eigenvalue
−1.
(a) Show that, for r ∈ R, the exists a unique element ∂s(r) ∈ Rs such

that r − ξs · ∂s(r) ∈ Rs.
(b) Show that the map ∂s considered in the previous question defines a

morphism of graded Rs-modules R → Rs(−2), which restricts to a
linear form on V ∗ ⊂ R.

(c) Show that for ξ ∈ V ∗ we have ρ(s)(ξ) = ξ − 2∂s(ξ) · ξs.
(d) Show that there exist morphisms of graded R-bimodules

fs : R→ Bs(1), gs : Bs → R(1),

hs : Bs → Bs ⊗R Bs(−1), is : Bs ⊗R Bs → Bs(−1)

which satisfy

fs(1) = ξs ⊗ 1 + 1⊗ ξs, gs(r ⊗ r′) = rr′,

hs(1⊗ 1) = 1⊗ 1⊗ 1, is(r ⊗ r′ ⊗ r′′) = (r∂s(r
′))⊗ r′′

pour r, r′, r′′ ∈ R, where we used the natural identification Bs ⊗R
Bs = R⊗Rs R⊗Rs R(2).

(3) We fix now s, t ∈ S such that s ̸= t and st has finite order m. We also
choose vectors ξs and ξt as in question (2) (for s and t), and we consider
the associated maps ∂s and ∂t.
(a) Show that there exists up to scalar a unique nonzero morphism of

graded R-bimodules

φs,t : Bs ⊗R Bt ⊗R · · ·︸ ︷︷ ︸
m terms

→ Bt ⊗R Bs ⊗R · · ·︸ ︷︷ ︸
m terms

.

(Hint : use Exercise 1.11 and Remark 1.17(6).)
(b) Show that the restriction of φs,t to the components of degree −m

is an isomorphism. (Hint : use the fact that the component of the
indecomposable bimodule Bbim

ws,t
in degree −m has dimension 1, where

ws,t is the longest element in the subgroup of W generated by s and
t; see (1.13).)

(c) In this question we assume that m = 2.
(i) Show that Bs⊗R Bt is indecomposable. (Hint : first show that

R is generated by Rs and Rt, and then that Bs ⊗R Bt is gen-
erated as a bimodule by its component of degree −2.)

(ii) Deduce that φs,t is an isomorphism.
(d) In this question we assume that m ≥ 3.

(i) Show that ∂t(vs) ̸= 0. (Hint : consider the endomorphism
ρ(stst).)

(ii) Show that Bbim
s is a direct summand in Bbim

s ⊗R Bbim
t ⊗R Bbim

s .
(Hint : use the morphisms of question (2d).)

(iii) Deduce that φs,t is neither injective not surjective.

Exercise 2.5. Prove the inequality mentioned in Remark 1.24, and show that
this inequality can be strict. (Hint : consider the case of type A2.)
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Exercise 2.6. Let (W,S) be a Coxeter system, and let V be a reflection faithful
representation of W. Show that if w is the longest element in a finite parabolic
subgroup of W we have ε(Hw) = [Bbim

w ]. (Hint : use Exercise 1.16.)

Exercise 2.7. Check that the Kazhdan–Lusztig conjecture as stated in [Ac,
Remark 7.3.10] or [HTT] is indeed equivalent to the formula (1.22).

Exercise 2.8. Let A be a commutative ring and φ : Z[x, y] → A be a mor-
phism. Show that if φ([2]x[2]y) = 4, then for any n ≥ 0 we have

φ([2n]x) = φ([2]x) · n, φ([2n]y) = φ([2]y) · n, φ([2n+ 1]) = 2n+ 1.

Exercise 2.9. Prove Lemma 2.12. (Hint : check that the formulas in the
lemma produce morphisms which are killed by composition with (2.7) or (2.8).)

Exercise 2.10. Show that, under the assumption that the other 1-color rela-
tions hold, the needle relation (relation (8) in §2.5) is equivalent to the relation

= 0.

(Hint : add a trivalent vertex under the diagram.)

Exercise 2.11. Let (W,S) be a Coxeter system, let k be a complete local
domain, and let (V, (αs : s ∈ S), (α∨

s : s ∈ S)) be a realization satisfying the
technical conditions of §2.4.

(1) Consider the functor ι of Lemma 2.20. Show that, under the isomor-
phism chD (see Corollary 2.24), the induced automorphism of [D(V,W)]⊕
identifies with the Kazhdan–Lusztig involution (see §4.2 in Chapter 1).

(2) Show that for any w ∈ W we have satisfies ι(Bw) ∼= Bw.
(3) Deduce that for any w ∈ W, the element chD(Bw) is fixed by the Kazhdan–

Lusztig involution, and that the integers in (2.14) satisfy b
w
y,n = b

w
y,−n.

(4) In the setting of Remark 2.34, show that ay,w,n = ay,w,−n for any n ∈ Z.

Exercise 2.12. Let (W,S) be a Coxeter system, and let (V, (αs : s ∈ S), (α∨
s :

s ∈ S)) be a realization satisfying the technical conditions of §2.4. Show that for
any s ∈ S the functor

(−) · Bs : DBS(V,W)→ DBS(V,W)

is canonically self-adjoint. (Hint : use the cup and cap morphisms to define adjunc-
tion morphisms.)

Exercise 2.13. Let A be a generalized Cartan matrix and (W,S) the associ-
ated Coxeter system.

(1) Consider the polynomials (pay,w)y<w∈W of Corollary 2.44. Show that if
y, w are such that pay,w ̸= 0, and if s ∈ S is such that sw < w, then
sy < y. (Hint : use (2.16) and Exercise 1.17(4).)

(2) Deduce that if W is finite and w0 is its longest element we have pHw0
=

Hw0
for any p.

Exercise 2.14. (1) Show that for any p and for any expression w, the
coefficients of the expansion of the element Hw in the p-canonical basis
are Laurent polynomials with nonnegative coefficients, which are moreover
invariant under the replacement of v by v−1.
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(2) Deduce that if w ∈ W admits a reduced expression w such thatHw = Hw,
then pHw = Hw for any p.

(3) Show that if w ∈ W satisfies ℓ(w) ≤ 2, then pHw = Hw for any p.

Exercise 2.15. In the case of Cartan realizations, write down explicitly the
Jones–Wenzl relations (see (12) in §2.5).

Exercise 2.16. Check the assertions of §§2.3.3–2.3.4 regarding Cartan realiza-
tions.

Exercise 2.17. Let V , W be as in §2.12.3, and assume that k is a field.
Recall the category DBS(V,W) defined in this subsection. Let also I ⊂ S be

a subset. We define D
I

BS(V,W) as the category with objects in bijection with

expressions (via w 7→ B
I

w), and with morphisms from B
I

w to B
I

w′ by by the quo-

tient of HomDBS(V,W)(Bw,Bw′) by the subspace spanned by morphisms which factor

through an object By where y is an expression starting by an element of I. Let also

D
I
(V,W) be the Karoubian envelope of the additive hull of D

I

BS(V,W).

(1) Show that there exists a canonical full functor pI : D(V,W)→ D
I
(V,W).

(2) Show that if w ∈ W ∖ IW, then the image of Bw under pI vanishes.
(3) Show that if w ∈ IW, then the image of Bw under pI is a nonzero inde-

composable object.
(4) Show that the assignment (w, n) 7→ pI(Bw)(n) induces a bijection between

IW × Z and the set of isomorphism classes of indecomposable objects in

D
I
(V,W).

(5) Consider the antispherical module N I
(W,S) from §3.2 in Chapter 3. Show

that there exists a canonical isomorphism

[D
I
(V,W)]⊕ ∼= N I

(W,S).

The category D
I
(V,W) is an incarnation of the antispherical category associ-

ated to I. For more on this category, see [RW1, §§4.4–4.5] and [LW].

Exercise 2.18. Let (W,S) and V be as in Section 3. Show that if the W-
action on V is faithful, the functor of Remark 3.2 is fully faithful. Deduce analogues
of the results of §1.4 in this setting.

3. Exercises for Chapter 3

The topic of this chapter is also discussed in at length in Chapter 7 of [Ac]. We
recommend reading this other source, and trying to do the exercises given there.

Parity sheaves for parabolic stratifications.
Parity sheaves and pullback.
Affine Schubert varieties for SL2 are rationally smooth.

Exercise 3.1. Let G be a complex semisimple algebraic group with a choice
of Borel subgroup B and maximal torus T ⊂ B. Let W be the associated Weyl
group. Show that there exists a t-exact auto-equivalence of Db

(B)(X ,k) sending

the simple perverse sheaf, resp. standard perverse sheaf, resp. costandard perverse
sheaf, resp. normalized indecomposable parity complex, labelled by w to the similar
object labelled by w0ww0. (Hint : use an automorphism of G exchanging B with
the opposite Borel subgroup; see [J3, Proof of Corollary II.1.16].)
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4. Exercises for Chapter 4

Exercise 4.1. Show without using Theorem 2.2 or Steinberg’s tensor product
theorem that if V ∈ Rep(G) is semisimple, then V|G1

is a semisimple G1-module.
(Hint : use that the socle of V as a G1-module is G-stable.)

Exercise 4.2. Deduce from Theorem 1.5 that if M , N are objects of Rep(G)
which admit a costandard (resp. standard) filtration, then so does M ⊗N . (Hint :
use Exercise 7.5 below.)

In case of difficulties, the reader might consult [JMW3, §5].

Exercise 4.3 (Tilting modules for SLn(k)). In this exercise we consider the
setting of Example 1.1, and denote by V = kn the natural module for G = SLn(k).

(1) Show that for any i ∈ {1, . . . , n− 1} we have

T(ωi) =
∧
iV.

(Hint: use Exercise 1.6.)
(2) Deduce that each indecomposable tilting module appears as a direct sum-

mand of a module of the form

V ⊗k1 ⊗
(∧

2V
)⊗k2

⊗ · · · ⊗
(∧

n−1V
)⊗kn−1

for some k1, . . . , kn−1 ∈ Z≥0. (Hint: use Theorem 1.5.)
(3) Show that if p ≥ ⌊n/2⌋, then the tilting modules for G are exactly the

direct sums of direct summands of tensor powers of V .

Exercise 4.4 (Tilting tensor product theorem for SLn(k)). This exercise will
use the property that if λ ∈ X satisfies ⟨λ, α∨⟩ = −1 for some α ∈ Rs, then

Ri IndGB (λ) = 0 for any i ≥ 0; see [J3, Proposition II.5.4(a)]. Our goal in this
exercise is to prove Theorem 1.5 by elementary methods in the special case G =
SLn(k), assuming p ≥ ⌊n/2⌋. (Only the last question will use the assumption on
p.)

(1) Let V = kn be the natural representation ofG. Show that for any λ ∈ X+,
the module V ⊗N(λ) admits a costandard filtration. (Hint : use the tensor
identity and Kempf’s vanishing theorem.)

(2) Deduce that for any n ≥ 0, the G-module V ⊗n is tilting.
(3) Conclude. (Hint : a look at Exercise 4.3 might help.)

Exercise 4.5 (Tilting modules for products of groups). (1) Show that if
G1 and G2 are connected reductive groups, then the indecomposable tilt-
ing G1×G2-modules are exactly the modules V1⊗V2 where V1, resp. V2,
is an indecomposable tilting G1-module, resp. G2-module.

(2) In case G1 = G2(= G), deduce that for any tilting G ×G-module M ,
the restriction of M to the diagonal copy of G is tilting. (Hint: use
Theorem 1.5.)

Exercise 4.6 (Restriction of tilting modules to subgroups). This exercise is
taken from [Br1, Proposition 3.3].

(1) Let (G,H) be one the pairs

(SL2n(k),Sp2n(k)), (SL2n(k),SO2n(k)), (SL2n+1(k),SO2n+1(k))
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(for some n ≥ 1). Show that for any tilting G-module M , the restric-
tion M|H is tilting. (Hint: use Exercise 4.3 and the examples in §1.6 of
Chapter 4.)

(2) Consider V = k2n with its standard basis (e1, . . . , e2n). Fix m < n, and
write

V = V1 ⊕ V2
where

V1 = span(e1, . . . , em, en+1, . . . , en+m),

V2 = span(em+1, . . . , en, en+m+1, . . . , e2n).

Identifying V1 and V2 with the spaces k2m and k2(n−m) with the standard
alternating form as in Exercise 1.3, this decomposition provides embed-
dings

Sp2m(k)× Sp2(n−m)(k) ⊂ Sp2n(k) ⊂ SL2n(k)
and

Sp2m(k)× SL2(n−m)(k) ⊂ SL2m(k)× SL2(n−m)(k) ⊂ SL2n(k).
(a) Show that for any tilting SL2n(k)-module M , the restriction

M|SL2m(k)×SL2(n−m)(k)

is tilting.
(b) Deduce that for any tilting Sp2n(k)-module M , the restriction

M|Sp2m(k)×Sp2(n−m)(k)

is tilting. (Hint: use (1), Exercise 7.4 below and the examples
in §1.6.2 of Chapter 4.)

(3) Assume that p ̸= 2. Let V be a k-vector space endowed with a non-
degenerate symmetric bilinear form, and consider the associated special
orthogonal group SO(V ). Consider an orthogonal decomposition

V = V1 ⊕ V2,
and the corresponding embedding of groups

SO(V1)× SO(V2) ⊂ SO(V ).

Show that for any tilting SO(V )-module M , the restriction

M|SO(V1)×SO(V2)

is tilting. (Hint: use the same strategy as in (2).)

Exercise 4.7. Let G be a connected reductive algebraic group over k, and
let H ⊂ G be a connected reductive algebraic subgroup. Then one can consider
(co)standard modules both for H and for G. Show that the following properties
are equivalent:

(1) for any standard module V for G, ForGH(V ) admits a standard filtration;

(2) for any costandard module V for G, ForGH(V ) admits a costandard filtra-
tion;

(3) for any costandard module V for H, the G-module IndGH(V ) admits a
good filtration in the sense of Remark 1.2.

(Hint: use Remark 1.5 in Chapter 1.)
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Exercise 4.8 (Characters of baby Verma modules). Show that for any λ ∈ X
we have

ch(Ẑ(λ)) = eλ ·
∏
α∈R+

1− e−pα

1− e−α
.

Exercise 4.9 (G1T-modules for SL2(k)). In this exercise we assume that
G = SL2(k).

(1) Let n ∈ Z, and let r ∈ {0, . . . , p− 1} be the residue of n modulo p. Show

that if r = p− 1 then Ẑ(nϖ1) is simple, and that otherwise there exists a
nonsplit short exact sequence

L̂((n− 2r − 2)ϖ1) ↪→ Ẑ(nϖ1) ↠ L̂(nϖ1).

(2) Let n ∈ Z, and let r ∈ {0, . . . , p− 1} be the residue of n modulo p. Show

that if r = p − 1 then we have Q̂(nϖ1) = Ẑ(nϖ1), and that otherwise
there exists a nonsplit short exact sequence

Ẑ((n+ 2(p− r)− 2)ϖ1) ↪→ Q̂(nϖ1) ↠ Ẑ(nϖ1).

Exercise 4.10. This exercise is taken from [RW2, Lemma 5.6]. We assume
that DG is simply connected and p ≥ h, and fix ς ∈ X such that ⟨ς, α∨⟩ = 1 for
any α ∈ Rs. We will use the fact that for any λ, µ ∈ X there exists an exact functor

T̂µλ : Rep(G1T)→ Rep(G1T)

such that the diagram

Rep(G)Waff ·pλ
T̂µ
λ //

��

Rep(G)Waff ·pµ

��
Rep(G1T)

Tµ
λ // Rep(G1T)

commutes, and that for any λ, µ ∈ X the functor T̂µλ is both left and right adjoint

to T̂λµ , see [J3, §9.22].

(1) Show that the G1T-module T̂ ς(p−1)ς Ẑ((p− 1)ς) is injective.

(2) Show that the socle of this module is L̂(pς − 2ρ).

(3) Deduce that T̂ ς(p−1)ς Ẑ((p− 1)ς) ∼= Q̂(pς − 2ρ).

(4) Show that T(pς)|G1T
∼= Q̂(pς − 2ρ).

Exercise 4.11 (Tilting characters and Kazhdan–Lusztig combinatorics for
SL2(k)). In this exercise we assume that G = SL2(k). Recall that in this case
Waff is the infinite dihedral group; the unique element in S will be denoted s, and
the unique element in Saff ∖ S will be denoted s0.

(1) Show that for n ≥ 1 we have

H(s0s)n
= H(s0s)n + vH(s0s)n−1s0 + vHs(s0s)n−1 ,

and deduce that

N (s0s)n
= N(s0s)n + vN(s0s)n−1s0 .

(Hint : use Exercise 1.11.)
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(2) Show that for n ≥ 1 we have

H(s0s)ns0
= H(s0s)ns0 + vH(s0s)n + vH(ss0)n

,

and deduce that

N (s0s)ns0
= N(s0s)ns0 + vN(s0s)n .

(Hint : use Exercise 1.11.)
(3) Check Andersen’s conjecture (Conjecture 4.1) in this case using the for-

mulas above and Proposition 3.7.
(4) Show that T((p + 1)pϖ1) has 4 nonzero costandard objects in any of

its costandard filtrations, of highest weights (p2 + p)ϖ1, (p
2 + p − 2)ϖ1,

(p2 − p)ϖ1 and (p2 − p− 2)ϖ1.
(5) Show that the formula in Conjecture 4.1 does not hold for the weight

(p+1)pϖ1. (This weight does not satisfy the assumption in this conjecture,
so that there is no contradiction here.)

Exercise 4.12 (Dimensions). (1) Show that for any injectiveG1-module

M , dim(M) is divisible by p#R+

. (Hint : use Proposition 2.10.)
(2) Let us assume that DG is simply connected, and fix ς ∈ X such that
⟨ς, α∨⟩ = 1 for any α ∈ Rs. Show that for any µ ∈ (p − 1)ς + X+,

dim(T(µ)) is divisible by p#R+

.

Exercise 4.13. Prove the statements asserted without a detailed reference
in §4.3.

5. Exercises for Chapter 5

Exercise 5.1. Check the properties of the elements δsi stated in §1.5.

Exercise 5.2. Reprove the description of the p-canonical basis elements dis-
cussed in §2.15 of Chapter 2 using the method explained in §1.2. Then, compute
more involved examples using this method (following e.g. [JW, §5] or [HW, §2.10]).

Exercise 5.3. Let (W,S) be a Coxeter system. Show that if s ∈ S and w ∈ W
satify sw > w, then we have

Hs ·Hw ∈
∑
y∈W

Z≥0 ·Hy.

Exercise 5.4. In Example 1.10, show that e is indeed the unique subexpression
of w expressing y of defect 0.

6. Exercises for Chapter 6

Exercise 6.1. Show that if p ≥ h, Conjecture 2.1 implies Conjecture 2.3.
(Hint : use Corollary 1.10 in Chapter 4.)

Exercise 6.2. Show that if Conjecture 2.1 is true for one choice of λ ∈ C, then
it is true for any choice of such a weight.

Exercise 6.3. (1) Show that in Conjecture 1.3 one can equivalently re-
quire that there exists a left action of DBS on Rep0(G).

(2) Show that in Conjecture 1.3 one can equivalently require that there exists
a right action of DBS on the subcategory of tilting objects in Rep0(G).
(Hint : use Proposition 5.5 in Appendix A.)
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Exercise 6.4. Consider the case G = SL2 with p = 3, and identify X with
Z in the natural way. Denote by s the unique element in S, and by s0 the other
element in Saff . Show that

s0s ·3 0 = 6, s0ss0s ·3 0 = 12,

that

(T(12) : N(6)) = 1,

and that

ns0s,s0ss0s(v) = 0, 3ns0s,s0ss0s(v) = 1.

(For the second case, use the computation in §2.15.2 of Chapter 2.) Discuss this
example in light of Andersen’s conjecture and Conjecture 2.1.

Exercise 6.5. Identify [Rep0(G)] with N 0
aff as in §2.5. Consider the bilinear

pairing ⟨−,−⟩ which satisfies

⟨N0
x , N

0
y ⟩ = δx,y

for x, y ∈ fWaff . Show that for M,N ∈ Rep0(G) tilting we have

dimk Hom(M,N) = ⟨[M ], [N ]⟩.

(Hint : use Exercise 7.6.)

Exercise 6.6. Check the formula in Conjecture 2.1 for as many values of w as
you can. (Recall that the multiplicities of standard modules in tilting modules are
known in this case, see §3.2 in Chapter 4.)

7. Exercises for Appendix A

Exercise 7.1. Classify (up to equivalence respecting the highest weight struc-
ture) the highest weight categories with #S = 2.

Exercise 7.2 (Finiteness of Ext1-spaces in highest weight categories). Show
that if A is a highest weight category, then for any M,N ∈ A the vector space
Ext1A(M,N) is finite-dimensional. (Hint : Reduce to the case M,N are simple, and
then use the standard/costandard objects associated with these simple modules.)

Exercise 7.3 (Projective objects in highest weight categories). We consider a
highest weight category A with weight poset S . The goal of this exercise is to prove
that if S is finite then A has enough projective objects, and moreover that these
projective objects admit a standard filtration. The proof proceeds by induction on
the cardinality of S ; so we assume the result is known for highest weight categories
whose weight poset is strictly smaller than S . We fix s ∈ S maximal, and set
T := S ∖ {s}. Then by induction we know the result for the category AT .

(1) Show that ∆s is a projective cover of Ls in A.
(2) Let t ∈ T , and consider a projective cover P′

t of Lt in AT . We consider
the finite-dimensional vector space E := Ext1A(P

′
t ,∆s) (see Exercise 7.2

above). The identity of E defines a canonical short exact sequence

0→ E∗ ⊗∆s → Pt → P′
t → 0
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for some object Pt ∈ A. We now want to show that Pt is a projective
cover of Lt in A. First, show that for r ∈ T we have

dimk HomA(Pt, Lr) =

{
1 if r = t;

0 otherwise

and that Ext1A(Pt, Lr) = Ext2A(Pt, Lr) = 0.
(3) Show that HomA(Pt, Ls) = 0. (Hint : Consider the long exact sequences

obtained from the exact sequence ker ↪→ ∆s ↠ Ls by applying Hom(Pt,−)
and Hom(P′

t,−).)
(4) Show that Ext1A(Pt,∆s) = 0.
(5) Deduce that Ext1A(Pt, Ls) = 0. (Hint : Consider once again the long exact

sequence obtained from the exact sequence ker ↪→ ∆s ↠ Ls by applying
Hom(Pt,−).)

(6) Conclude.
(7) For general s, t ∈ S , show that the multiplicity of a standard object ∆t

in a standard filtration of Ps does not depend on the choice of filtration,
and equals [∇t : Ls].

(8) Show dually that (under the same assumptions) A has enough injective
objects, and that any injective object admits a costandard filtration.

Exercise 7.4 ((Co)standard filtrations and subobjects/quotients). Let A be a
highest weight category. Let M be an object in A, and let N ⊂M be a subobject.

(1) Show that if N and M admit costandard filtrations, then so does M/N .
(2) Show that if M and M/N admit standard filtrations, then so does N .
(3) Show that if N is a direct summand of M , then M is tilting iff N and

M/N are tilting.

Exercise 7.5 ((Co)standard filtrations and tilting resolutions). Let A be a
highest weight category, with weight poset S .

(1) The goal of this question is to prove that an object M of A admits a
costandard filtration iff it admits a “left tilting resolution”, i.e. iff there
exist tilting objects T1, . . . , Tn and an exact sequence

0→ T1 → · · · → Tn →M → 0.

(a) Show that if M admits a left tilting resolution, then it admits a
costandard filtration. (Hint: use induction on n and Exercise 7.4.)

(b) Let M ∈ A be an object admitting a costandard filtration, and let
T ⊂ S be an ideal containing the labels of all costandard objects
appearing in a costandard filtration of M . Let s ∈ T be maximal.
Show that there exists n ∈ Z≥0 and a surjection M ↠ ∇⊕n

s whose
kernel admits a costandard filtration, all of whose labels belong to
T ∖ {s}.

(c) In the setting of (1b), show that there exists a tilting object T and a
surjection T ↠M whose kernel admits a costandard filtration, all of
whose labels belong to T ∖ {s}. (Hint: reduce the claim to the case
T is finite, and then use induction on #T .)

(d) If M ∈ A admits a costandard filtration, show that it admits a left
tilting resolution. (Hint: argue again by induction on #T , where T
is a finite ideal as above.)
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(2) Show dually that an object M of A admits a standard filtration iff it ad-
mits a “right tilting resolution”, i.e. iff there exist tilting objects T1, . . . , Tn
and an exact sequence

0→M → T1 → · · · → Tn → 0.

Exercise 7.6 ((Co-)standard multiplicities). Let A be a highest weight cate-
gory, with weight poset S .

(1) Show that if M admits a costandard filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn =M,

then for any s ∈ S we have

#{i ∈ {1, . . . , n} |Mi/Mi−1
∼= ∇s} = dimk HomA(∆s,M).

In particular, the number in the left-hand side is independent of the choice
of filtration, and is denoted (M : ∇s).

(2) Show that if M admits a standard filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn =M,

then for any s ∈ S we have

#{i ∈ {1, . . . , n} |Mi/Mi−1
∼= ∆s} = dimk HomA(M,∇s).

In particular, the number in the left-hand side is independent of the choice
of filtration, and is denoted (M : ∆s).

(3) Show that if M and N are tilting objects, then we have

dimk HomA(M,N) =
∑
s∈S

(M : ∆s) · (N : ∇s).

Exercise 7.7 ((Co-)standard filtrations and quotient functors). Let A be a
highest weight category with weight poset S , and let T ⊂ S be an ideal. Consider
the quotient functor πT : A → A/AT , and the highest weight structure on A/AT

considered in Lemma 3.1.

(1) Show that if X admits a standard, resp. costandard, filtration, then so
does πT (X).

(2) Show that if X admits a costandard filtration, for any s ∈ S ∖ T the
natural morphism

HomA(∆s, X)→ HomA/AT
(πT (∆s), πT (X))

is an isomorphism.
(3) Show that if X, resp. Y , admits a standard, resp. costandard, filtration,

then the morphism

HomA(X,Y )→ HomA/AT
(πT (X), πT (Y ))

induced by the functor πT is surjective.

Exercise 7.8 ((Co-)standard filtrations and ideals). Let A be a highest weight
category with weight poset (S ,≤).

(1) Show that if s, t ∈ S are such that Ext1(∇s,∇t) ̸= 0, then s ≥ t.
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(2) Let X ∈ A be an object which admits a costandard filtration, and set
U := {s ∈ S | (X : ∇s) ̸= 0}. (See Exercise 7.6 for the notation
(X : ∇s).) Choose an enumeration s1, · · · , sr of the elements of U such
that si ≤ sj ⇒ i ≤ j. Show that there exists a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xr−1 ⊂ Xr = X

such that for any i the object Xi/Xi−1 is isomorphic to (∇si)⊕(X:∇si
).

(3) Show that if s, t ∈ S are such that Hom(∇s,∇t) ̸= 0, then t ≤ s.
(4) Let X ∈ A be an object which admits a costandard filtration. Show that

for any ideal T ⊂ S , there exists a unique subobject ΓT (X) ⊂ X which
admits a costandard filtration and such that

(ΓT (X) : ∇s) ̸= 0⇒ s ∈ T ;

(X/ΓT (X) : ∇s) ̸= 0⇒ s ∈ S ∖ T .

(Note that in this setup X/ΓT (X) automatically admits a costandard
filtration by Exercise 7.4.)

(5) Let T ⊂ S be an ideal. Denote by A∇ the full subcategory of A whose
objects are those which admit a costandard filtration, and by A∇,T ⊂ A∇
the full subcategory whose objects are those which satisfy (X : ∇s) = 0
for any s ∈ S ∖T . Show that the assignment X 7→ ΓT (X) extends to a
functor from A∇ to A∇,T which is right adjoint to the natural embedding
A∇,T → A∇.

(6) State and prove dual properties for standard filtrations.

Exercise 7.9. Let A be a highest weight category with weight poset (S ,≤).
Consider an ideal T ⊂ S and the functor ΓT introduced in Exercise 7.8. We fix
an objectM in A which admits a costandard filtration, and a ∇-section (Π, e, (φπ :
π ∈ Π)) for M .

(1) Show that for any t ∈ T and any π ∈ e−1(t) the morphism φπ : Tt →M
factors through a morphism φ′

π : Tt → ΓT (M).
(2) Set ΠT = e−1(T ), and denote by eT the restriction of e to ΠT . Show

that (ΠT , eT , (φ
′
π : π ∈ ΠT ) is a ∇-section of ΓT (M).

(3) Set ΠT := e−1(S ∖ T ), and denote by eT the restriction of e to ΠT .
For any π ∈ ΠT , denote by φ′′

t the composition

Tt →M →M/ΓT (M).

Show that (ΠT , eT , (φ′′
π : π ∈ ΠT ) is a ∇-section of M/ΓT (M).

Exercise 7.10. Let A be a highest weight category with weight poset (S ,≤).
Assume that A has a “duality”, i.e. that there exists an functor d : A → A which
satisfies d ◦ d = id and d(∆s) ∼= ∇s for any s ∈ S .

(1) Show that d(Ts) ∼= Ts for any s ∈ S .
(2) Show that

(Ts : ∆t) = (Ts : ∇t)
for any s, t ∈ S .

(3) Show that if (as,t : s, t ∈ S ) is a sequence of integers such that as,t = 0
unless s ≤ t, as,s = 1 for any s ∈ S , and for any s, t ∈ S we have

dimk HomA(Ts,Tt) =
∑
u∈S

au,sau,t,
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then for any s, t ∈ S we have

(Tt : ∇s) = as,t.

To see this idea used in practice, see [AR1, §6.2] or [RW3, Proof of Theorem 8.9].
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33, SMF, 2019.

[AR5] P. Achar and S. Riche, A geometric Steinberg formula, Transform. Groups 28 (2023),
no. 3, 1001–1032.

[AR6] P. Achar and S. Riche, A geometric model for blocks of Frobenius kernels,

preprint arXiv:2203.03530.
[AR7] P. Achar and S. Riche, Central sheaves on affine flag varieties, book in preparation,

available at https://lmbp.uca.fr/~riche/central.pdf.
[ARV] P. Achar, S. Riche, and C. Vay, Mixed perverse sheaves on flag varieties for Coxeter

groups, Canad. J. Math. 72 (2020), no. 1, 1–55.

[ARi1] P. Achar and L. Rider, Parity sheaves on the affine Grassmannian and the Mirković–
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