
WORKSHOP ON GEOMETRIC SATAKE

PROGRAM BY ARNAUD MAYEUX, TIMO RICHARZ AND SIMON RICHE

In [FS21, Chapter VI], Fargues–Scholze prove the geometric Satake equivalence for the B`dR-affine
Grassmannian, using the theory of diamonds and v-sheaves. The aim of this workshop is to translate
(elements of) the proof to the more classical world of schemes and explore further directions.

1. Introduction

The central topic of the workshop is the geometric Satake equivalence:

Theorem. Let k be an algebraically closed field, G a reductive k-group, and put Λ “ Z{`n for a
prime ` invertible in k. The Satake category SatG,Λ of flat perverse étale Λ-sheaves on the local Hecke
stack is equipped with a symmetric monoidal structure ‹, called convolution, and a fiber functor

(1.1) F: SatG,Λ Ñ Modfg,proj
Λ

to the category of finite projective Λ-modules that induces a Tannakian type equivalence

(1.2) SatG,Λ – Repp pGΛq,

with the category of algebraic representations of the Langlands dual group pGΛ on finite projective
Λ-modules.

By passing in Λ “ Z{`n to the inverse limit over n, there is an analogous statement for coefficients
in Z` and, by inverting `, also for coefficients in Q`. The proof proceeds, roughly, in three steps:

(1) Construct the triple pSatG,Λ, ‹,Fq.
(2) Check the tensor compatibilities of ‹ and F.

(3) Identify qG :“ Aut‹pFq with pGΛ.

(1): The definition of the category SatG,Λ involves, among other things, the local Hecke stack
HkG Ñ Spec k whose geometry can be understood through the equivariant geometry of the affine
Grassmannian:

(1.3) pGrGqred “
ď

µ

GrG,ďµ.

This is an infinite union (on the underlying reduced locus) of projective k-varieties GrG,ďµ, called
Schubert varieties and enumerated by the dominant cocharacters µ P X`˚ . The varieties GrG,ďµ are
singular for µ " 0. The perverse Λ-sheaves supported on these varieties encode the singularities and
generate the abelian category SatG,Λ. If Λ “ Q`, then SatG,Λ is semi-simple with simple objects
the intersection cohomology complexes ICµ,Q`

on GrG,ďµ. If Λ “ Z{`n or Z`, then the situation
is more complicated. For A,B P SatG,Λ, their convolution A ‹ B is modeled on the convolution
of functions in the spherical Hecke algebra, and the functor F is defined by taking cohomology
FpAq “ H˚pGrG, Aq.

(2): Next, one aims to equip the pair pSatG,Λ, ‹q with a symmetric monoidal structure and the

functor F: SatG,Λ Ñ Modfg,proj
Λ with functorial isomorphisms FpA ‹ Bq – FpAq b FpBq that are

compatible with the symmetric monoidal structures. This is surprisingly subtle! A central tool will
be the study of constant term functors attached to the choice of Levi subgroups in G.

(3): Using a version of Tannaka duality, one can then build a Hopf algebra in ModΛ whose

spectrum is a flat affine Λ-group scheme qG so that SatG,Λ is given by its category of representations.
With additional work, including an induction on the semi-simple rank of G, one can construct a

pinned isomorphism qG – pGΛ, giving the desired geometric Satake equivalence. Again, the final step
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is surprisingly subtle and requires to prove it for Λ “ Q` first, then to deduce the case Λ “ Z` and
finally the case Λ “ Z{`n by reduction modulo `n.

List of Talks. Every talk is 90 minutes long. As a consequence, speakers are advised to prepare
60–75 minutes of actual talk, leaving time for discussions. We encourage all participants to ask
many questions during the seminar and also before while preparing! The outline above leads to the
following structure for our workshop:

‚ Preliminaries: Talks 0–1 are a short Leitfaden and a motivational talk on the classical
Satake isomorphism.

‚ Sheaf-theoretic background: Talks 2–5 provide the necessary results on étale sheaves.
‚ Geometric background: Talks 6–8 study the geometry of affine Grassmannians.
‚ Construction of the Satake category: Talks 9–10 combine the previous talks to construct the

triple pSatG,Λ, ‹,Fq and check the tensor compatibilities.

‚ Proof of the equivalence: Talks 11–12 sketch the construction of Aut‹pFq “ qG as a group

scheme over Λ and its identification with pGΛ.

In particular, Talks 2–5 and Talks 6–8 are mostly independent of each other whereas the results
need to be combined in Talks 9–12.

Main references. These include [HS21] for the sheaf-theoretic background, [Zh16, Ri19] for affine
Grassmannians and [FS21, Chapter VI], [Sch20, Lectures 22–25], [BR18] for the geometric Satake
equivalence.

2. Preliminaries

Talk 0: Leitfaden. There will be a short talk (around 15 minutes) given by one of the organizers
which provides a Leitfaden for the workshop.

Talk 1: Definition of the dual group and the Satake isomorphism [AuP, Tag 00IZ], [Yu15,
Sections 3–4], [Gr98, Chapters 1–5]. Let F be a non-Archimedean local field with ring of integers
O and finite residue field k of cardinality q. Let G be a split reductive group over O (for example,

G “ Gln). Define the Langlands dual group pG and give examples, see [AuP, Tap 00IZ] and also
[Sch20, Lecture 25]. Put HkGpkq “ GpOqzGpF q{GpOq, Λ “ Z. Define the spherical Hecke algebra
HG “ FuncpHkGpkq,Λq of finitely supported functions and explain its convolution structure. Then

give an overview of the Satake isomorphism HGbΛrq˘
1
2 s – Rp pGq b Λrq˘

1
2 s, see [Gr98, Chapters

1–5] and also [Yu15, Sections 3–4]1 for the example of G “ GLn. If time permits, then make
for G “ SL2 the connection to functions on the Bruhat–Tits tree whose vertices correspond to
GrGpkq “ GpF q{GpOq.
Comment. There is a version of Theorem 1 for general fields k. When taking a finite field k
and letting F “ kpptqq, the equivalence (1.2) recovers the Satake isomorphism after passing to
Grothendieck rings and using the sheaf-function dictionary. So (1.2) can be seen as a categorical
enrichment.

3. Sheaf-theoretic background

Let X be a scheme and Λ a (commutative, unital) ring. Whenever convenient, we assume that
Λ is a finite local `-torsion ring (e.g., Λ “ Z{`n) for some prime number ` invertible on X and that
X has finite `-cohomological dimension. This includes all finite type schemes over an algebraically
closed field or a finite field.

1The isomorphism in Theorem 4.1.1 is only defined over Zr?q˘1s.
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Talk 2: Categories of étale sheaves [BS13, Section 6], [StP], [Ga21]. Follow [BS13, Sections 6.3,
6.4]: Introduce the derived category2 of étale sheaves DpX,Λq “ DpXét,Λq on a qcqs scheme X and
a coefficient ring Λ and its subcategory DconspX,Λq of perfect-constructible complexes. (If X “ ˚

is a geometric point, then DconspX,Λq Ă DpX,Λq is the full subcategory of perfect complexes of
Λ-modules in the derived category of all Λ-modules.) Under the cohomological finiteness assumption
on pX,Λq, the category DconspX,Λq is exactly the full subcategory of compact objects in DpX,Λq, see
[BS13, Proposition 6.4.8]. Recall the six functors3 [BS13, Section 6.7]: for a morphisms f : Y Ñ X
pairs of adjoint functors pf˚, f

˚q and, if f is separated of finite type, pf !, f!q and pHomp-, -q, -bΛ -q, all
to be understood on the level of derived categories. State that they satisfy a six functor formalism:
base change, projection formula, duality, etc., see also [Ga21] for a general introduction to six functor
formalisms. By construction, DpX,Λq carries the standard t-structure (being the derived category
of the abelian category of sheaves of Λ-modules on Xét) and DconspX,Λq carries a t-structure if
Λ “ F` is regular, see also [HRS21, Proposition 3.32].

Talk 3: Universally locally acyclic sheaves [BS13, Section 6.3], [HS21, Sections 3–4], [LZ20],
[Sch20, Lecture 18]. Focus on settings4 (A), (B) in [HS21] and assume that pX,Λq is as in Talk 2.
Discuss ULA (=universally locally acyclic) sheaves and nearby cycles following [HS21, Sections 3–4].
You probably will not have time to discuss arc descent; rather focus on the statements of Theorems
1.6 and 1.7 from the introduction. See also [LZ20] for a slightly different view on ULA sheaves and
[Sch20, Lecture 18].

Talk 4: Relative perverse sheaves [BBD82], [HS21, Section 6]. Follow [HS21, Section 6] and
define the perverse t-structure, give some details on its construction focussing on settings (A), (B)
and the compatibility with the ULA property in [HS21, Theorem 6.7]. Scholze’s talk [Sch21] might
be helpful as well. For absolute perversity, see [BBD82] and also the course notes [Bh15].

Talk 5: Hyperbolic localization [Br02], [DG13], [Ri16], [Sch20, End of Lecture 22/beginning
of Lecture 23]. Follow [Ri16] and introduce attractors, repellers, fixed points for schemes X Ñ S,
show their representability assuming that the Gm-action is Zariski locally linearizable and state
Braden’s theorem in the relative setting [Ri16, Theorem B]. (For examples of attractors/repellers,
see Talk 8 and/or speak to Timo.) Show that hyperbolic localization preserves ULA sheaves, using
the compatibility with nearby cycles and [HS21, Theorem 4.4 (iv)]. The proof of Braden’s theorem
in the relative setting follows [Br02] closely. For a more explicit description of X˘ Ñ X0 as a jet
bundle and a different proof of Braden’s theorem, see [DG13].

4. Geometric background

Throughout, we fix an algebraically closed field k and a split reductive k-group G. We also fix
an auxiliary pair T Ă B of a maximal split torus contained in a Borel subgroup in G. Let X˚pT q

`

be the B-dominant cocharacters.

Talk 6: Affine Grassmannians [Zh16, Sections 1.2, 1.3, 2.1], [Ri19]. The general outline follows
[FS21, Section VI.1], but translated to equicharacteristic and the case of a single modification, first.
The aim of the talk is to give an overview on the geometry of affine Grassmannians and to clarify
its relation to the double quotient GpOqzGpF q{GpOq appearing in Talk 1. For generalities on ind-
schemes, the speaker is referred to [Ri19, Section 1]. For an k-algebra R, let DR “ SpecRrrtss, called
the disc, and D˚R “ SpecRpptqq, called the punctured disc. Introduce the loop group LGpRq “ GpD˚Rq
and its subgroup functor of “contractible” loops L`GpRq “ GpDRq, see [Zh16, Section 1.3] and [Ri19,
Section 3.3].

Define the local Hecke stack HkG : Algk Ñ Gpd as the groupoid valued functor on the category
of k-algebras R parametrizing pairs of (right) G-torsors E0, E1 on DR together with an isomorphism

2For the seminar, it is (mostly) sufficient to work with triangulated categories as opposed to stable 8-categories.
3In the notation of loc. cit., we have mn “ 0 for some n ě 0 so that all formulas simplify: one can forget about

completions.
4Ignore 8-categories; we work with the underlying triangulated categories.
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α : E0 – E1 over D˚R. This defines a stack in the fpqc topology. If you are not familiar with stacks,
we highly recommend reading [He09], see also [StP]. Similarly to [FS21, Proposition VI.1.7], HkG
identifies with the étale stack L`GzLG{L`G, see also [Zh16, Proposition 1.3.6, Lemma 1.3.7]. In
particular5, HkGpkq{»“ GpOqzGpF q{GpOq for F :“ kpptqq Ą krrtss “: O, compare with Talk 1.

Define the affine Grassmannian as the functor GrG over HkG additionally parametrizing a trivi-
alization β : E1 – Etriv over DR where Etriv denotes the trivial G-torsor. The projection GrG Ñ HkG
is a (left) L`G-torsor and identifies GrG with the étale quotient LG{L`G. We are interested in
its L`G-equivariant geometry. The reason for passing from HkG to GrG is that the latter has a
nice geometric structure: GrG is an ind-projective ind-scheme over k (=infinite union of projective
k-schemes with transition maps closed immersions), see [Zh16, Theorem 1.2.2]. State the funda-
mental geometric properties on connected components π0pGrGq “ π0pLGq “ π1pGq and that GrG
is reduced if and only if G is semi-simple and charpkq - #π1pGq, see [Zh16, Theorem 1.3.11] and
[HLR20, Proposition 7.7].

Follow [Zh16, Section 2.1] and introduce the Cartan decomposition, Schubert varieties/cells
GrG,pďqµ, give the dimension formula and their closure relations. In particular, conclude that (1.3)

holds true and that on topological spaces |HkG| – X˚pT q
` where the target is equipped with the

topology induced by the dominance order. Give some examples of Schubert varieties if time permits.

Talk 7: Beilinson-Drinfeld Grassmannians [FS21, Section VI.1], [Zh16, Section 3.1]. Again,
we follow the outline [FS21, Section VI.1], but now deal with several modifications, compare with
Talk 6. Fix an auxiliary smooth projective geometrically connected k-curve X, for simplicity, take
X “ P1

k. For a finite index set I, let XI denote the I-fold product of X with itself.
Define the global (or Beilinson-Drinfeld) Hecke stack HkG,I : Algk Ñ Gpd as the groupoid valued

functor on the category of k-algebras R parametrizing a point xI “ txiuiPI P X
IpRq, pairs of (right)

G-torsors E0, E1 on XR together with an isomorphism α : E0 – E1 over XRzΓxI
where ΓxI

“ YiPIΓxi

and Γxi
Ă XR denotes the graph of xi, compare with [FS21, Definition VI.1.6]. If I “ t˚u is a

singleton, then, for any point x0 P Xpkq, the fiber HkG,I |x0
identifies with the local Hecke stack

HkG after choosing a local coordinate at x0, see [Zh16, Section 1.4]. Follow [Zh16, Section 3.1]
and introduce the loop groups LIG,L

`
I G, introduce the Beilinson–Drinfeld Grassmannians GrG,I

additionally parametrizing a trivialization E1 – Etriv over XR, state HkG,I “ L`I GzLIG{L
`
I G and

GrG,I “ LIG{L
`
I G as étale stacks, respectively sheaves over XI , see [Zh16, Proposition 3.1.9].

Again, GrG,I Ñ XI is an ind-projective ind-scheme, see [Zh16, Theorem 3.1.3], and, for a tuple
µI “ tµiuiPI P X˚pT q

`, the global Schubert variety GrG,I,ďµI
Ñ XI is projective. If I “ t1, 2u

contains two elements, then explain the factorization structure of HkG,I , respectively GrG,I as in
[Zh16, Proposition 3.1.13] and its behaviour on global Schubert varieties [Zh16, Proposition 3.1.14].

Talk 8: Semi-infinite orbits [BR18, Section I.3.2], [FS21, Section VI.3], [HR18, Section 3.3].
Follow [HR18, Section 3.3], and fix a cocharacter λ : Gm Ñ T Ă G. Introduce the associated pair
of parabolic parabolic subgroups P`, P´ in G with LiepP`q “ LiepGqλě0, respectively LiepP´q “
LiepGqλď0, the Levi subgroupM “ P`XP´ with LiepMq “ LiepGqλ“0, the maps of k-group schemes

M Ð P˘ Ñ G and the corresponding diagram GrM Ðq˘

GrP˘ Ñp˘

GrG on affine Grassmannians.

Also, λ defines the map Gm Ă L`Gm ÑL`λ L`G, thus an action of Gm on GrG. Show that the
action is Zariski locally linearizable and state [HR18, Proposition 3.3], identifying GrP˘ “ pGrGq

˘

as the attractor/repeller and GrM “ pGrGq
0 as the fixed points (compare with Talk 5). Also,

explain [HR18, Lemma 3.7] on the geometry of attractors/repellers and add in i) that the map p˘ is
bijective, due to the Iwasawa decomposition. Explain that the same results hold for the Beilinson-
Drinfeld Grassmannian Grp-q,I “ LIp-q{L

`
I p-q for any finite index set I and X “ P1

k, say, see Talk
7 and [HR18b, Theorem A]. State [FS21, Corollary VI.3.5], of course, translated to our setting for
Λ “ Z{`n, see also Talk 5. Here, the category of sheaves with bounded support on ind-schemes like
GrG,I is simply defined as the union of the categories DpGrG,I,ďµI

,Λq; it is denoted DpGrG,I ,Λq
bd,

and similarly DconspGrG,I ,Λq
bd for the perfect-constructible complexes with bounded support.

5This also holds for finite fields k and then involves the vanishing of H1
étpSpeck, L`Gq, see [Ri19, Corollary 3.22].
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If λ is B-dominant regular, then M “ T is the maximal torus and P` “ B is the Borel subgroup.
The map p˘ defines the stratification into so-called semi-infinite orbits: the connected components
GrB “ \νSν are enumerated by π0pGrT q “ X˚pT q and each Sν , called a semi-infinite orbit, immerses
locally closed into GrG. More explicitly, Sνpkq “ LUpkq ¨νptq where U Ă B is the unipotent radical.
Follow the argument in [FS21, Corollary VI.3.8] and prove that the intersections with Schubert
varieties Sν X GrG,ďµ are equidimensional of dimension xρ, λ ` νy, whenever non-empty, see also
[BR18, Section I, Theorem 5.2]. (Note that [FS21, Proposition VI.3.7] already follows from the
ind-affineness of q˘ proven in [HR18, Lemma 3.7 ii)].) If time permits, explain the picture of
semi-infinite orbits for G “ SL2 in terms of the Bruhat-Tits building as in [BR18, Section I.3.2].

5. Construction of the Satake category

We continue to fix an algebraically closed field k and a (split) reductive k-group G. Also, fix an
auxiliary pair T Ă B of a maximal torus contained in a Borel subgroup in G and the auxiliary curve
X :“ P1

k. Let Λ “ Z{`n for a prime ` invertible in k, used as sheaf coefficients.

Talk 81
2 : Technique talk on the formalism of equivariant sheaves. This is a short talk

(30–45 minutes) given by one of the organizers on the formalism of equivariant sheaves. The aim of
the talk is to justify (some of) the constructions appearing in Talk 9–10. In particular, we define the
categories DpHkG,Λq

bd together with the pullback functors to DpGrG,Λq
bd analogously to those

appearing in [FS21, Section VI] and their variants for the Beilinson–Drinfeld Grassmannian.

Talk 9: Definition of the Satake category and convolution [Zh16, Section 5.1], [FS21,
Sections VI.7, VI.9]. Introduce the Satake category SatG,Λ as the full subcategory of DpHkG,Λq

bd

of objects whose pullback to GrG is flat (absolute) perverse, in analogy to [FS21, Definition VI.7.8]
(the ULA property is automatic because the base scheme is the spectrum of the field k). Note that a
perverse sheaf on HkG is the same as a perverse sheaf on GrG such that there exists an isomorphism
p˚A » a˚A where p, a : L`G ˆ GrG Ñ GrG is the projection, respectively action, compare with
[Zh16, Lemma A.1.2]. That is, the pullback functor PervpHkG,Λq Ñ PervpGrG,Λq is fully faithful
with essential image those A such that p˚A » a˚A. Next, for A,B P DpHkG,Λq

bd, define the
convolution A ‹B “ q˚m˚pAbBq by pull-push6 along the diagram

(5.1) HkG ˆHkG
q
Ð HkG ˜̂HkG

m
Ñ HkG,

where HkG ˜̂HkGpRq is the convolution local Hecke stack parametrizing G-torsors E0, E1, E2 on DR
together with isomorphisms E0 – E1 and E1 – E2 over D˚R and the maps q, respectively m are given
by mapping pE0, E1, E2q to the pair ppE0, E1q, pE1, E2qq, respectively pE0, E2q. Make the construction
more explicit as in [Zh16, Section 5.1] or [BR18, Section I.6.2]. For an object A P SatG,Λ, define
FpAq “ H˚pGrG, Aq which is a Λ-module. This constructs the triple pSatG,Λ, ‹,Fq. We aim to prove
that ‹ preserves SatG,Λ, that F takes values in finite projective Λ-modules and that the triple has a
Tannakian type structure. The key tool is a globalization to the global Hecke stack as follows.

Introduce the variant of the Satake category for the global Hecke stack HkG,I Ñ XI , see [FS21,

Section VI.9]. Namely, for any finite index set I, the category SatIG,Λ is the full subcategory of

DpHkG,I ,Λq
bd of objects whose pullback to GrG,I Ñ XI is flat (relatively) perverse and ULA7.

Mention that the global convolution ‹I and FI can be defined analogously for HkG,I , leading to

the triple pSatIG,Λ, ‹I , FIq. If I “ t˚u is a singleton and x0 P Xpkq, then, under the identification

HkG,I |x0 » HkG, pullback to x0 induces an equivalence SatIG,Λ – SatG,Λ compatible with the
structures.

6Some of the technical details needed to make this precise appear in Talk 8 1
2

.
7We ignore the subtlety arising in [FS21, Proposition VI.6.2].
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Talk 10: Constant term functor and compatibility with tensor structures [FS21, Section

VI.6, VI.7, VI.8, VI.9]. Give an overview on the results in [FS21, Section VI.9]: SatIG,Λ is stable
under convolution ‹I ; it has the structure of a symmetric monoidal category; FI takes values in

LocSyspXIq “ Modfg,proj
Λ (here we use X “ P1

k and that k is separably closed) and has the structure
of a tensor functor (beware the sign issue); for each parabolic subgroup P with Levi M the constant

term functor CTP,I rdegP s : SatIG,Λ Ñ SatIM,Λ has the structure of a tensor functor. The main tool
is the study of the constant term functor CTB,I for the Borel, reducing many statement to the
(easy) case of the split maximal torus T , [FS21, Sections VI.6, VI.7, VI.8]. Taking I “ t˚u, we
obtain that pSatG,Λ, ‹,Fq has a Tannakian type structure.

6. Proof of the equivalence

Talk 11: Tannakian reconstruction [FS21, Section VI.10], [BR18, Section I.13]. Explain the re-
sults from [FS21, Section VI.10], see also [BR18, Section I.13]. In particular, explain the construction

of the flat Λ-group scheme qG “ Aut‹pF q.

Talk 12: Identification of the dual group [FS21, Section VI.11], [BR18, Section I.14]. Follow

[FS21, Section VI.11] and prove that qG “ pGΛ as pinned groups.
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