
TALK 8: SEMI-INFINITE ORBITS

SIMON RICHE

In these notes we explain what are the “semi-infinite orbits,” some very important locally-closed
sub-ind-schemes of the affine Grassmannian. We also explain a proof of the dimension estimates for
intersections of semi-infinite orbits with spherical orbits (Proposition 4.5) different from the original
proof of Mirković–Vilonen [MV07], due to Fargues–Scholze [FS21]. (For some details about the
original proof of Mirković–Vilonen, see [BR18, §1.5].) This statement will be used crucially in later
talks, in particular to show that (an appropriate renormalization of) the constant term functor sends
perverse sheaves to perverse sheaves.

The “dynamical” approach to semi-infinite orbits that we follow here was present in [MV07] in
some way, but was made more rigorous in [HR18, HR18b].

1. Preliminaries

1.1. Complements on ind-schemes.

1.1.1. Definition. We follow the conventions on ind-schemes developed in [Ri19]. Therefore, we
denote by AffSch the category of affine schemes, which identifies with the opposite of the category
Rings of unital commutative rings. Any scheme X defines a functor AffSchop

Ñ Sets via

T ÞÑ HompT,Xq,

and this assignment defines a fully faithful functor from the category of schemes to the category of
functors AffSchop

Ñ Sets; we will often identify the category of schemes with its image under this
functor. As usual, when T “ SpecpRq for some R P Rings we write XpRq “ HompSpecpRq, Xq.

An ind-scheme is a functor

X : AffSchop
Ñ Sets

such that there exists a filtered poset pI,ďq and an inductive system pXi : i P Iq of schemes such
that1

X – colimiPIXi,

and moreover each transition morphism Xi Ñ Xj is a closed immersion (for i, j P I with i ď j). We
denote by IndSch the full subcategory of the category of functors AffSchop

Ñ Sets whose objects are
ind-schemes. We will call an isomorphism X – colimiPIXi a presentation of X; whenever we write
an ind-scheme in this way, we implicity assume that the Xi’s form an inductive system of schemes
with closed immersions as transition morphisms, as above. As explained in [Ri19, Lemma 1.10],
IndSch is closed under fiber products.2

Of course, each scheme defines an ind-scheme, and this assignment defines a fully faithful functor
from the category of schemes to IndSch. Note that if X is a scheme and Y “ colimiPIYi is an
ind-scheme, then the canonical map

(1.1) colimiPIHompX,Yiq Ñ HompX,Y q

1Here, recall that colimits of functors can be computed termwise: if pFi : i P Iq is an inductive system of functors

AffSchop Ñ Sets, then its colimit satisfies pcolimiFiqpT q “ colimiFipT q for all T P AffSch.
2Here again, fiber products of functors can be computed termise, see [StP, Tag 0022].
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is injective, but not necessarily surjective. It is surjective (hence an isomorphism) if X is quasi-
compact, though; see [Ri19, Ex. 1.26].3

We will also consider ind-schemes over a fixed base scheme S. Such a datum consists of an ind-
scheme X together with a morphism X Ñ S. We will denote by IndSchS the category whose objects
are ind-schemes over S and whose morphisms are morphisms of ind-schemes compatible with the
given morphisms to S. In fact, if we denote by AffSchS the category of affine schemes T endowed
with a morphism T Ñ S, then the category of schemes over S embeds fully faithfully in the category
of functors AffSchop

S Ñ Sets, and IndSchS identifies with the category of functors AffSchop
S Ñ Sets

isomorphic to colimiPIXi where pXi : i P Iq is a filtered inductive system of schemes over S such that
the transition morphisms Xi Ñ Xj are closed immersions (over S). Of course, in case S “ SpecpRq
for some R P Rings, then the category AffSchS identifies with the opposite of the category AlgR of
unital commutative R-algebras.

1.1.2. Immersions. Recall that if X,Y are ind-schemes and f : X Ñ Y is a morphism, then we say
that f is representable by schemes4 if for any scheme Z and any morphism Z Ñ Y the fiber product
X ˆY Z is a scheme. Similarly, we say that f is representable by a locally closed, resp. closed,
resp. open, immersion if for any scheme Z and any morphism Z Ñ Y the fiber product X ˆY Z
is a scheme and the induced morphism X ˆY Z Ñ Z is a locally closed, resp. closed, resp. open,
immersion of schemes. (In fact, by [Ri16, Lemma 1.7] it suffices to check these properties when Z
is affine. This turns out to be very useful since (1.1) is an isomorphism in this case.)

1.1.3. Underlying topological space and connected components. If X is an ind-scheme, then its un-
derlying topological space |X| is defined as the colimit over the sets XpKq where K runs over fields,
with an appropriate topology; see [Ri19, Definition 1.11]. In fact, if X “ colimiXi is a presentation,
then we have a canonical identification

|X| “ colimi|Xi|

where the right-hand side is equipped with the colimit topology.5

For any scheme X, any connected component of the underlying topological space |X| admits a
canonical scheme structure, which is characterized by the property that the corresponding embed-
ding is a flat closed immersion, see [StP, Tag 04PX]. If X is an ind-scheme and X “ colimiXi is
a presentation, the connected components of |X| are increasing unions of connected components of
the spaces |Xi|. Hence they admit a canonical ind-scheme structure.

It is not clear to me how this structure behaves in a general setting (e.g., if the inclusion of
a connected component is representable by a closed immersion), but under appropriate technical
conditions that will be satisfied in all the cases we want to consider it is well behaved, as we
now explain. Consider an ind-scheme X with a presentation X “ colimiXi such that each Xi is
Noetherian and each transition morphism Xi Ñ Xj induces an injection on connected components.

Lemma 1.1. Under the assumptions above, for any connected component Y of X the natural
morphism Y Ñ X is representable by an open and closed immersion.

Proof. Our assumptions imply in particular that Xi has a finite number of connected components
for any i (see [StP, Tag 0052]); in particular, these connected components are open and closed. As
explained above, if Y is a connected component of X we have a presentation Y “ colimiYi where Yi
is a connected component of Xi for any i, and the closed immersion Xi Ñ Xj restricts to a closed

3Idea of the proof: if X “ SpecpRq is affine, then a morphism SpecpRq Ñ Y is the same as an element of Y pRq,

hence factors through some Yj by definition. In general, a quasi-compact scheme is a finite union of affine opens; on

each such open the morphism must factor through some Yj , and then one can use the assumption that I is filtered

to see that one can choose j which works for all opens at the same time.
4One sometimes also finds the terminology “f is schematic.”
5Concretely, this means that a subset of |X| is open, resp. closed, iff its intersection with each |Xi| is open,

resp. closed.

2

https://stacks.math.columbia.edu/tag/04PX
https://stacks.math.columbia.edu/tag/0052


immersion Yi Ñ Yj for any i ď j. Consider now an affine scheme Z and a morphism Z Ñ X. There
exists i such that this morphism factors through Xi, and then we have

Y ˆX Z “ colimjěiYj ˆXj Z.

Now, for any j ě i we have
Yj ˆXj Z “ pYj ˆXj Xiq ˆXi Z.

The fact that the morphism Xi Ñ Xj induces an injection on connected components means that
the underlying topological space of Yj ˆXj Xi is Yi; since the natural morphism Yj ˆXj Xi Ñ Xi is
a flat closed immersion (because so is Yj Ñ Xj), it follows that Yj ˆXj Xi “ Yi; in particular,

Y ˆX Z “ Yi ˆXi Z

is a scheme. Since Yi is open and closed in Xi, we deduce that the morphism Y ˆX Z Ñ Z is an
open and closed immersion, as desired. �

1.1.4. Additional properties. Recall that if X,Y are ind-schemes and f : X Ñ Y is a morphism,
then f is said to be ind-affine if there exist presentations X “ colimiXi and Y “ colimjYj such
that f is represented by a pro-ind-system of morphisms fi,j : Xi Ñ Yj which are affine.

If X is an ind-scheme over Specpkq for some base field k, we will say that X is of ind-finite-type
if it admits a presentation X “ colimiXi (over k) where each Xi is of finite type over k.

Finally, we say that an ind-scheme X over a scheme S is separated if the diagonal morphism
X Ñ X ˆS X is representable by a closed immersion. For this condition to hold, it suffices that X
admits a presentation X “ colimiXi over S where each morphism Xi Ñ S is separated, see [Ri16,
Exercise 1.31]. In fact, if this property holds, given any presentation X “ colimiXi over S, each
scheme Xi is separated over S.6

1.1.5. Sheaves on ind-schemes. Let ` be a prime number, and let Λ be a finite `-torsion ring. Recall
that for any quasi-compact and quasi-separated scheme X on which ` is invertible one can consider
the derived category DétpX,Λq of étale sheaves of Λ-modules on X, cf. Talk 2 or Talk 8 1

2 . Let X
be an ind-scheme which admits a presentation X “ colimiXi where each Xi is quasi-compact and
quasi-separated.7 Then one defines the derived category of bounded8 sheaves on X as

DétpX,Λq
bd “ colimiDétpXi,Λq

where X “ colimiXi is any presentation over S where each Xi is quasi-compact and quasi-separated
and the transition functor DétpXi,Λq Ñ DétpXj ,Λq is given by pushforward along the closed im-
mersion Xi Ñ Xj for i ď j.9 To justify that this definition makes sense, one needs to check that
the category does not depend on the choice of presentation, up to canonical equivalence. In fact, if
we are given another presentation X “ colimjYj where each Yj is quasi-compact, then the identity
morphism in

colimiXi “ X “ colimjYj

is represented by pro-systems f “ pfiqiPI and g “ pgjqjPJ in

lim
i

colimjHompXi, Yjq and lim
j

colimiHompYj , Xiq

respectively such that g ˝ f “ id and f ˝ g “ id. (Here we use our quasi-compactness assumption.)
Given i P I, if j P J is such that fi is represented by a morphism fi,j : Xi Ñ Yj then we have a
canonical functor

pfi,jq˚ : DétpXi,Λq Ñ DétpYj ,Λq

6To check this, one notes (by consideration of points over each affine scheme) that pXi ˆS Xiq ˆXˆSX X “ Xi

where the morphism X Ñ X ˆS X is the diagonal morphism, and then one uses the definition.
7If S is quasi-separated and X is a separated ind-scheme over S, given the comments in §1.1.4, here it suffices to

assume that X admits a presentation over S in which all schemes are quasi-compact.
8Here, “bounded” refers to the fact that the complexes are supported on a scheme Xi; this is unrelated to the

notion of bounded complex of objects in a category.
9Note that this functor is fully faithful. One can therefore safely think of an object in DétpX,Λqbd as an object

in some category DétpXi,Λq, where i can be replaced by a larger index whenever convenient.
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which defines a functor

pfiq˚ : DétpXi,Λq Ñ colimjDétpYj ,Λq

independent of the choice of j above (by compatibility of ˚-pushforward with composition of mor-
phisms). Taken together, these functors define a functor

f˚ : colimiDétpXi,Λq Ñ colimjDétpYj ,Λq

(for the same reason). We similarly get a functor

g˚ : colimjDétpYj ,Λq Ñ colimiDétpXi,Λq.

The fact that g ˝ f “ id means that for fixed i P I, if fi is represented by some morphism fi,j :
Xi Ñ Yj , and if gj is represented by some morphism gj,l : Yj Ñ Xl, then gj,l ˝ fi,j : Xi Ñ Xl is the
closed immersion given in our inductive system. From this one sees that g˚ ˝ f˚ “ id. One similarly
checks that f˚ ˝ g˚ “ id, which finishes the verification of our claim.

1.2. Affine Grassmannians.

1.2.1. Definition. Let k be an algebraically closed field.10 Given a k-algebra R, we denote by
Rrrzss the k-algebra of power series in the indeterminate z with coefficients in R, and by Rppzqq the
localization of Rrrzss with respect to z (i.e. the algebra of formal Laurent series in z with coefficients
in R). If R is a field, then Rppzqq is the field of fractions of the integral ring Rrrzss.

Recall that if G is a smooth affine group scheme over k, then the associated loop group LG is
the functor Algk Ñ Sets defined by

LGpRq “ GpRppzqqq.

The positive loop group L`G is the subfunctor defined by

L`GpRq “ GpRrrzssq.

It is a standard fact that L`G is represented by an affine group scheme over k, and that LG is
represented by an ind-affine group ind-scheme over k; see [Zh16, Proposition 1.3.2].

The affine Grassmannian GrG is the fpqc sheaf11 on the category Algk associated with the functor

R ÞÑ LGpRq{L`GpRq.

It is known that GrG is represented by a separated ind-scheme of ind-finite type, see [Zh16, Theo-
rem 1.2.2 and Proposition 1.3.6] or [Ri19, Theorem 3.4 and Proposition 3.18]. The proof of this fact
in case G is reductive is reviewed in §1.2.4 below; the general case is not very different (see Talk 6
for details). We will denote by r0s P GrGpkq the base point.

1.2.2. Big cell. We will also consider the functor L´G : Algk Ñ Sets defined by12

L´GpRq “ GpRrz´1sq.

It is known that L´G is represented by an ind-affine group ind-scheme of ind-finite type over k;
see [Zh16, §2.3]. There exists a canonical morphism L´G Ñ G induced by the ring morphisms
Rrz´1s Ñ R sending z´1 to 0; the kernel of this morphism is denoted L´´G. The following
statement is somewhat classical; a formal proof can be found in this generality in [HR18, Lemma 3.1].

Lemma 1.2. Let r0s P GrGpkq be the base point. Then the orbit morphism

L´´GÑ GrG, g ÞÑ g ¨ r0s

is representable by an open immersion.

10The assumption that k is algebraically closed is unnecessary for most of the results below. It is made only
because the author of these notes feels safer in this setting.

11Recall that a fpqc sheaf on Algk is a functor X : Algk Ñ Sets such that for any collection R1, ¨ ¨ ¨ , Rn of
k-algebras the natural morphism Xp

ś

i Riq Ñ
ś

i XpRiq is an isomorphism, and such that if RÑ R1 is faithfully flat

then the diagram XpRq Ñ XpR1q Ñ XpR1 bR R1q is an equalizer.
12In this formula, z´1 is treated as a formal variable; this element is not the inverse of anything.
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1.2.3. The case of GLn. Let us quickly review the description of GrGLn in terms of lattices, follow-
ing [Ri19, §2]. (For a formal definition of what we mean by a lattice, see [Ri19, Definition 2.1].)

Writing Λ0,R for the lattice Rrrzssn Ă Rppzqqn (for any R P Algk), we know that we have a
presentation GrGLn “ colimiě0GrGLn,i where GrGLn,i is the scheme whose set of R-points is the set
of Rrrzss-lattices Λ Ă Rppzqqn with

ziΛ0,R Ă Λ Ă z´iΛ0,R.

For any k-vector space V , it is known that the functor GrasspV q sending a k-algebra R to the
set of R-submodules M Ă V bk R such that the quotient pV bk Rq{M is finite locally free is a
smooth projective scheme over k (see [GW, §8.4]); in fact it is a disjoint union of the Grassmannians
GrassdpV q of d-dimensional subspaces in V , and for any d we have a natural closed immersion

GrassdpV q ãÑ Pp
Źd

V q, see [GW, §8.10].
Writing Mi :“ z´iΛ0,k{z

iΛ0,k, we then have a closed embedding of schemes

GrGLn,i ãÑ GrasspMiq

which is defined on R-points by Λ ÞÑ Λ{ziΛ0,R, hence a closed embedding GrGLn,i ãÑ
Ů

d Pp
Źd

Miq.
For i ě 0, since GrGLn,i and GrGLn,i`1 are proper, the natural morphism GrGLn,i Ñ GrGLn,i`1

is proper too, see [StP, Tag 01W6]. Since this morphism is a monomorphism, it must be a closed
immersion by [StP, Tag 04XV].

From these considerations we see that GrGLn admits a presentation in which all schemes that
appear are projective (in particular, of finite type) over k.

1.2.4. The case of reductive groups. Now, assume that G is a (connected) reductive group over k. A
choice of a faithful representation of G provides a closed immersion G ãÑ GLn for some n, and the
quotient GLn{G is automatically affine by the main result of [Ric]. By [Zh16, Proposition 1.2.6],
it follows that the induced morphism GrG Ñ GrGLn is representable by a closed immersion. In
particular, if GrGLn,i is as above and if we set

GrG,i :“ GrG ˆGrGLn
GrGLn,i,

then GrG,i is a scheme, and the natural morphism GrG,i Ñ GrGLn,i is a closed immersion. It is also
easily seen that

GrG “ colimiě0GrG,i,

and that for any i ě 0 the natural morphism GrG,i Ñ GrG,i`1 is a closed immersion. In particular,
as in the case of GLn, GrG admits a presentation in which all schemes that appear are projective
over k.13

1.2.5. Spherical orbits and Schubert varieties. We continue to assume that G is reductive, and fix
a Borel subgroup B Ă G and a maximal torus T Ă B. The choice of B determines a system of
positive roots for pG,T q (consisting of the nonzero T -weights in the Lie algebra of B), hence a notion
of dominant coweights in X˚pT q. By [Ric] again the quotient G{T is affine, so that the morphism
GrT Ñ GrG is representable by a closed immersion (again by [Zh16, Proposition 1.2.6]).

Any λ P X˚pT q determines a k-point zλ P pLT qpkq, namely the image under the morphism
LGm Ñ LT induced by λ of z P pLGmqpkq “ pkppzqqqˆ. The image of this point in GrT pkq will be
denoted rλs. We will also denote by zλ and rλs the images of these points in LGpkq and GrGpkq
respectively.

Let us denote by X˚pT q
` Ă X˚pT q the subset of dominant cocharacters. Consider a presentation

GrG “ colimiGrG,i as in §1.2.4, so that the L`G-action on GrG is induced by compatible actions on
each GrG,i, and that the action on GrG,i factors through a quotient Ki of L`G which is a smooth
group scheme of finite type over k. If µ P X˚pT q

`, we can choose i such that rµs P GrG,i. Then
it makes sense to consider the Ki-orbit GrG,µ of rµs, which is a reduced locally closed subscheme
of GrG. If GrG,ďµ is the closure of GrG,µ, endowed with the reduced closed subscheme structure,
then GrG,ďµ is a projective reduced scheme over k, and the natural morphism GrG,µ Ñ GrG,ďµ is

13One must be aware that this property does not hold when G is not reductive.
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an open immersion, see [StP, Tag 03DQ]. It is clear that this construction does not depend on i,
nor on the choice of presentation of GrG. It is a standard fact that for µ, ν P X˚pT q

`, we have
GrG,ďµ Ă GrG,ďν iff µ ď ν, where ď is the order on X˚pT q such that ν ď ν1 iff ν1 ´ ν is a sum of
positive coroots. The varieties GrG,µ, resp. GrG,ďµ, are called spherical orbits, resp. Schubert cells.

1.2.6. Connected components. If G is as in §1.2.5, it is a standard fact that the connected com-
ponents of GrG are parametrized by X˚pT q{ZR_, see e.g. [PR08, Theorem 0.1]. Given a coset
Λ P X˚pT q{ZR_, the subscheme GrG,ďν is contained in the component corresponding to Λ iff ν P Λ.

We will call a coweight λ minuscule14 if xλ, αy P t0, 1u for any positive root α. If we denote by
X˚pT qmin Ă X˚pT q the subset of minuscule coweights, then it is well known that the composition

X˚pT qmin ãÑ X˚pT q� X˚pT q{ZR_

is a bijection. Moreover, for any Λ P X˚pT q{ZR_, if λ0 is the unique minuscule coweight in Λ we
have λ0 ď λ for any λ P ΛXX˚pT q

`. As a consequence, for any such λ we have GrG,ďλ0
Ă GrG,λ.

The Schubert varieties attached with minuscule coweights will also be called minuscule.
This property implies that the assumptions of Lemma 1.1 are satisfied in this case: given any

presentation GrG “ colimiGrG,i such that the L`G-action on GrG is induced by compatible actions
on the GrG,i’s which factor through an action of a smooth group scheme of finite type, the connected
components in GrG,i are determined by the unique minuscule Schubert variety that they contain
(because they are closed and L`G-stable), so that the morphism GrG,i Ñ GrG,j indeed induces an
injection on sets of connected components if i ď j. In particular, the embedding of any connected
component in GrG is representable by an open and closed immersion.

1.3. Attractors and repellers. Here we briefly recall the main constructions of Talk 5, and give
some complements that will be used below.

1.3.1. Definitions. Let us consider a base scheme S, and a scheme X over S. An action of Gm on
X is the datum of a morphism of S-schemes Gm,S ˆS X Ñ X which satisfies the obvious axioms.15

Recall from Talk 5 that we define the functor X0 of Gm-fixed points in X as sending T P AffSchS
to the set of morphisms T Ñ X ˆS T over T such that the diagram

Gm,T //

��

Gm,T ˆT pX ˆS T q

��
T // X ˆS T

commutes, where the left vertical arrow is the structure morphism, the right vertical arrow is induced
by the action morphism Gm,S ˆS X Ñ X, and the horizontal morphisms are induced by the given
morphism T Ñ X ˆS T . In other words, given T P AffSchS , X0pT q consists of the T -points of X
such that for any affine scheme T 1 Ñ T the induced morphism T 1 Ñ X ˆS T

1 commutes with the
action of elements in GmpT 1q (where the action on the left-hand side is trivial).

Similarly, we denote by pA1
Sq
`, resp. pA1

Sq
´, the scheme A1

S with the natural action of Gm,
resp. the opposite of the natural action. Then we define X` as the functor sending T P AffSchS to
the set of morphisms pA1

T q
` Ñ X ˆS T over T such that the diagram

Gm,T ˆT pA1
T q
` //

��

Gm,T ˆT pX ˆS T q

��
pA1

T q
` // X ˆS T

14Note that our definition is more general than that given e.g. in Bourbaki. In particular, for us 0 is a minuscule

coweight.
15Here, Gm,S is the group scheme over S sending T P AffSchS to OpT qˆ. In practice, below S will be a k-scheme

for some algebraically closed field k. The datum of an action of Gm on X is then equivalent to the datum of an action

on X seen as a k-scheme, such that the structure morphism X Ñ S is Gm-equivariant for the trivial action on S.
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commutes, where the vertical arrows are the action morphisms and the horizontal morphisms are
induced by the given morphism pA1

T q
` Ñ X ˆS T . In other words, given T P AffSchS , X`pT q

consists of the A1
T -points of X such that for any affine scheme T 1 Ñ T the induced morphism

A1
T 1 Ñ X ˆS T

1 commutes with the action of elements in GmpT 1q. The functor X´ is defined
similarly, replacing pA1

Sq
` by pA1

Sq
´.

The natural morphisms relating the schemes T , pA1
T q
` and pA1

T q
´ induce morphisms16

X0 Ñ X, X0 Ð X˘ Ñ X.

1.3.2. Local linearizability. IfX is a scheme over S with an action of Gm, this action is said to be étale
(resp. Zariski) locally linearizable if there exists a Gm-equivariant covering family pUi Ñ X : i P Iq
where each Ui is affine over S and the maps Ui Ñ X are étale (resp. open immersions). This
condition is interesting in this context since, thanks to [Ri16, Theorem 1.8], if the Gm-action is étale
locally linearizable then X0, X` and X´ are representable by schemes.

1.3.3. Compatibility with closed immersions. We will need the following facts below.

Lemma 1.3. Let X be a scheme over S endowed with an étale locally linearizable action of Gm. If
Y Ă X is a Gm-stable closed subscheme, then the Gm-action on Y Ñ S is étale locally linearizable,
and the natural morphisms Y 0 Ñ X0 and Y ˘ Ñ X˘ are closed immersions. More specifically, there
exist canonical isomorphisms

Y 0 „
ÝÑ Y ˆX X0, Y ˘

„
ÝÑ Y ˆX X˘,

such that the morphisms Y 0 Ñ X0 and Y ˘ Ñ X˘ are induced by the closed immersion Y Ñ X,
and the morphisms Y 0 Ñ Y , Y ˘ Ñ Y and Y ˘ Ñ Y 0 and induced by the similar morphisms for X.

Proof. If pUi Ñ X : i P Iq is an equivariant étale covering as above, then of course pUi ˆX Y Ñ Y :
i P Iq is an equivariant étale covering of Y , and each Ui ˆX Y is affine over S since it is a closed
subscheme of the affine scheme Ui. Hence the Gm-action on Y is étale locally linearizable, so that
we can consider the schemes Y 0 and Y ˘.

We will construct the isomorphism Y `
„
ÝÑ Y ˆX X`; the other assertions can be obtained

similarly. First, the natural morphisms Y ` Ñ Y and Y ` Ñ X` induce a canonical morphism

(1.2) Y ` Ñ Y ˆX X`.

Now, assume that X Ñ S is affine. Checking that (1.2) is an isomorphism can be done Zariski
locally over S, so that we can assume that S (hence also X) is affine. In this case for T P AffSchS , a
T -point of Y ˆX X` is a certain morphism of T -schemes A1

T Ñ X whose restriction to Gm,T takes
values in Y . It is clear that this morphism then factors uniquely through a morphism A1

T Ñ Y ,
which proves that (1.2) is an isomorphism in this case.

To treat the general case, consider an equivariant étale covering pUi Ñ X : i P Iq where each
Ui Ñ S is affine. Then we have an étale covering pUi ˆX Y Ñ Y : i P Iq, hence étale coverings
pU`i Ñ X` : i P Iq and ppUiˆX Y q

` Ñ Y ` : i P Iq by [Ri16, Theorem 1.8], and from the affine case
treated above we see that for any i we have a canonical identification

pUi ˆX Y q`
„
ÝÑ pUi ˆX Y q ˆUi pUiq

` “ Y ˆX U`i .

This shows that (1.2) is an isomorphism étale locally over the target. Hence it is an isomorphism
by [StP, Tag 02L4]. �

Remark 1.4. Let ` be a prime number, and let Λ be a finite `-torsion ring. Assume that S is
quasi-compact and quasi-separated, and let X be a scheme over S such that the morphism X Ñ S
is of finite presentation (or, in other words, locally of finite presentation, quasi-compact and quasi-
separated, see [StP, Tag 01TP]). Assume we are given an étale locally linearizable action of Gm
on X Ñ S, and assume that ` is invertible on X. Let also Y Ă X be a closed subscheme. (Note
that Y Ñ S is again of finite presentation.) Recall that we denote by DétpX,Λq

Gm-mon the full

16Here and below, we use the symbol ˘ to mean either ` or ´.
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subcategory of DétpX,Λq generated (as a triangulated category) by objects in DétpX,Λq whose
pullback to Gm,S ˆS X under the action morphism and the projection are isomorphic, see [Ri16,
Definition 2.3]. We use similar notation for Y .

In this setting, the schemes X0, X˘, Y 0 and Y ˘ are quasi-compact and quasi separated over S
(see [Ri16, Theorem 1.8(iii)]), hence quasi-compact and quasi separated, and we can consider the
hyperbolic localization functors

LX{S : DétpX,Λq
Gm-mon Ñ DétpX

0,Λq, LY {S : DétpY,Λq
Gm-mon Ñ DétpY

0,Λq,

see [Ri16, §2.1]. (Here we identify the canonically isomorphic functor L˘X{S from [Ri16], and denote

them LX{S for simplicity.) From the base change theorem one sees that the pushforward functor
i˚ : DétpY,Λq Ñ DétpX,Λq associated with the embedding i : Y Ñ X induces a functor from
DétpY,Λq

Gm-mon to DétpX,Λq
Gm-mon. Lemma 1.3 shows that the squares of natural morphisms

Y

i

��

Y ˘oo //

��

Y 0

i0

��
X X˘oo // X0

are Cartesian. Using the base change theorem, one deduces a canonical isomorphism

LX{S ˝ i˚ – pi
0q˚ ˝ LY {S : DétpY,Λq

Gm-mon Ñ DétpX
0,Λq.

1.3.4. Points over fields. Now we assume that S “ Specpkq for some field k.

Lemma 1.5. Let X be a proper k-scheme with an étale locally linearizable action of Gm. Then the
natural morphism X` Ñ X induces a bijection

X`pKq
„
ÝÑ XpKq

for all field extension k Ñ K. In particular, this morphism induces a bijection

|X`|
„
ÝÑ |X|

on the underlying topological spaces.

Proof. Since X is separated, the morphism X` Ñ X is a monomorphism by [Ri16, Remark 1.19(i)].
In particular, the map X`pKq Ñ XpKq is injective for any K. The surjectivity of this map follows
from the fact that any morphism Gm,K Ñ X bk K can be extended to a morphism A1

K Ñ X bk K
by properness, see [StP, Tag 0BXZ]. The final claim follows from the fact that the underlying
topological space of a scheme is the colimit of its points over all fields, see [StP, Tag 01J9]. �

Remark 1.6. The map |X`|
„
ÝÑ |X| is not a homeomorphism in general.

1.4. Attractors and repellers for ind-schemes. Now we explain how to adapt the constructions
of §1.3 to the setting of ind-schemes.

1.4.1. Definitions. We continue with our base scheme S, and now consider an ind-scheme X over
S. An action of Gm on X is the datum of a morphism of S-ind-schemes Gm,S ˆS X Ñ X which
satisfies the obvious axioms. In practice, we will in fact assume that there exists a presentation
X “ colimiXi by S-schemes such that the action morphism is defined by compatible actions of Gm
on each Xi (in the sense of schemes). (As explained in [RS20, Lemma A.5], this is always satisfied
if S is Noetherian and X is of ind-finite type over S.)

Given X Ñ S as above, we will say that the Gm-action is étale (resp. Zariski) locally linearizable
if there exists a presentation X “ colimiXi such that the action of Gm is induced by compatible
actions on the Xi’s, and the action on Xi Ñ S is étale (resp. Zariski) locally linearizable for any i.
Given such a datum, when writing a presentation X “ colimiXi we will always implicitly assume
that each Xi is Gm-stable with an étale/Zariski locally linearizable action.
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1.4.2. Representability. The following theorem is an easy extension of the main result of [Ri16],
treated in [HR18, Theorem 2.1].

Theorem 1.7. Let X Ñ S be an S-ind-scheme with an étale locally linearizable Gm-action, and
write a presentation X “ colimiXi as above.

(1) The functor X0 is an ind-scheme, and we have a presentation X0 “ colimipXiq
0. Moreover,

the natural morphism X0 Ñ X is representable by a closed immersion.
(2) The functor X˘ is an ind-scheme, and we have a presentation X˘ “ colimipXiq

˘. More-
over, the natural morphism X˘ Ñ X is representable by schemes.

Proof. If X “ colimiXi is a presentation such that each Xi has an étale locally linearizable action,
then as functors we have X0 “ colimipXiq

0 and X˘ “ colimipXiq
˘. Hence X0 and X˘ are ind-

schemes by Lemma 1.3. To show that X0 Ñ X, resp. X˘ Ñ X, is representable by a closed
immersion, resp. representable by schemes, one notices that if Z is an affine scheme and Z Ñ X is
a morphism, then there exists i such that this morphism is induced by a morphism Z Ñ Xi, and
then we have

(1.3) Z ˆX X0 “ Z ˆXi pXiq
0, resp. Z ˆX X˘ “ Z ˆXi pXiq

˘.

(For instance, in the case of attractors, we have Z ˆX X` “ colimjěiZ ˆXj pXjq
`, and for any

j ě i we observe that Z ˆXj pXjq
` “ Z ˆXi pXi ˆXj pXjq

`q “ Z ˆXi pXiq
` by Lemma 1.3.) �

1.4.3. Compatibility with immersions. We will also need the following property, which is more tech-
nical (in the “open” case); see [HR18, Corollary 2.3].

Proposition 1.8. Let X and Y be S-ind-schemes equipped with Gm-actions. Assume that the
action on X, resp. Y , is étale, resp. Zariski, locally linearizable, and that Y is separated. Let also
f : X Ñ Y be a Gm-equivariant morphism. If f is represented by a closed, resp. open, immersion,
then so are the morphisms X0 Ñ Y 0 and X˘ Ñ Y ˘.

Remark 1.9. In [HR18, Corollary 2.3] it is assumed that S is affine and connected. However the
connectedness is not necessary for the arguments there to apply, and one can reduce to the case
where S is affine by considering an open affine cover.

1.4.4. Braden’s theorem. Now we assume that S is quasi-compact and quasi-separated, and we
consider an ind-scheme X Ñ S with an action of Gm which admits a presentation X “ colimiXi

over S where each Xi Ñ S is of finite presentation, and such that the action on X is induced by
compatible Gm-actions on the Xi’s which are étale locally linearizable. We have defined the category
DétpX,Λq

bd in §1.1.5. We set

DétpX,Λq
Gm-mon,bd :“ colimiDétpXi,Λq

Gm-mon,

where DétpXi,Λq
Gm-mon is defined in Remark 1.4. We can also consider the category DétpX

0,Λqbd,
which satisfies

DétpX
0,Λqbd :“ colimiDétppXiq

0,Λq.

The comments in Remark 1.4 show that the functors LXi{S “glue” to define a triangulated functor

LX{S : DétpX,Λq
Gm-mon,bd Ñ DétpX

0,Λqbd.

2. Fixed points on the affine Grassmannian

From now on we fix an algebraically closed field k, and consider a fixed connected reductive
algebraic group G over k. We also consider a cocharacter χ : Gm Ñ G. From the action of L`G on
GrG, and using the embedding Gm Ă L`Gm (as constant loops) and the morphism L`χ : L`Gm Ñ
L`G we obtain an action of Gm on GrG.
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2.1. Local linearizability. In order to start considering the formalism of §1.3, we need to check
that the action under consideration is locally linearizable.

Lemma 2.1. The Gm-action on GrG is Zariski locally linearizable.

Proof. First we consider the case G “ GLn. Recall the construction of §1.2.3; we use the notation

introduced there. The cocharacter χ defines a Gm-action on Ank , hence on Mi, on
Źd

Mi and finally

on Pp
Źd

Miq (for any i and d), such that the closed embedding GrGLn,i ãÑ
Ů

d Pp
Źd

Miq is Gm-

equivariant. Since the Gm-action on Pp
Źd

Miq is easily checked to be Zariski locally linearizable
(see Talk 5), we deduce that so is the Gm-action on GrGLn,i, which finishes the proof in this case.

To treat the case of a general reductive group G, we choose a closed embedding G ãÑ GLn
for some n as in §1.2.4. We then get a presentation GrG “ colimiě0GrG,i and closed immersions
GrG,i Ñ GrGLn,i. The composition of χ with the embedding G Ñ GLn provides a cocharacter χ1

of GLn. This cocharacter defines a Gm-action on each GrGLn,i, such that the closed immersion
GrG,i Ñ GrGLn,i is equivariant. Since the action on GrGLn,i is Zariski locally linearizable by the
case treated above, the same is true for the action on GrG,i (see Lemma 1.3), which finishes the
proof. �

In view of Lemma 2.1 and Theorem 1.7, we can consider the ind-schemes pGrGq
0 and pGrGq

˘,
and the natural morphisms

(2.1) pGrGq
0 Ð pGrGq

˘ Ñ GrG.

2.2. Description of fixed points, attractors and repellers.

2.2.1. Statement. The cocharacter χ defines via conjugation a Gm-action on G. If we set

M :“ G0, P` :“ G`, P´ :“ G´

(with respect that this action), then it is known that P` and P´ are parabolic subgroups of G, that
M is a Levi factor in P` and P´, and that M “ P` X P´, see [CGP, §2.1]. The natural maps

M Ð P˘ Ñ G

are the projection to the Levi quotient and the natural embeddings, respectively. We can consider
the affine Grassmannians GrM , GrP˘ , and the induced morphisms

(2.2) GrM Ð GrP˘ Ñ GrG.

Theorem 2.2. There exist canonical isomorphisms

GrM
„
ÝÑ pGrGq

0, GrP˘
„
ÝÑ pGrGq

˘

which identify the diagrams (2.1) and (2.2).

2.2.2. Study of the big cell. For the proof of Theorem 2.2 we will need the following preliminary.
Recall the ind-affine ind-scheme L´´G, see §1.2. The Gm-action on G (via conjugation) induces an
action on L´´G, so that we can consider the (ind-affine) ind-schemes pL´´Gq0 and pL´´Gq˘. The
closed immersion M Ñ G, resp. P˘ Ñ G, induces a morphism L´´M Ñ L´´G, resp. L´´P˘ Ñ
L´´G.

Lemma 2.3. The morphisms above induce isomorphisms

L´´M
„
ÝÑ pL´´Gq0, L´´P˘

„
ÝÑ pL´´Gq˘.

Proof. 17 It suffices to prove the similar claims for L´ instead of L´´. We first consider L´M and
pL´Gq0. By definition, for R P Algk, pL´Gq0pRq consists of the points g P GpRrz´1sq such that for
any R-algebra S and any λ P Sˆ we have

χpλq ¨ g ¨ χpλq´1 “ g

17This proof is a corrected version of that of [HR18, Proposition 3.4], which is slightly wrong.
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in GpSrz´1sq. On the other hand, pL´MqpRq “ MpRrz´1sq. Since M “ G0 for the Gm-action on
G, the set MpRrz´1sq consists of the elements g P GpRrz´1sq such that for any S1 P AlgRrz´1s and

λ P pS1qˆ we have

χpλq ¨ g ¨ χpλq´1 “ g

in GpS1q. These two sets are subsets of GpRrz´1sq, and we will check that they coincide.
Given g P MpRrz´1sq, for any S P AlgR and λ P Sˆ we can consider the Rrz´1s-algebra S1 :“

Srz´1s and the element λ P Sˆ Ă pS1qˆ. From the description of MpRrz´1sq given above we obtain
that χpλq ¨ g ¨ χpλq´1 “ g in GpS1q “ GpSrz´1sq, so that g belongs to pL´Gq0pRq. In the other
direction, consider g P pL´Gq0pRq. Then if S1 is an Rrz´1s-algebra, we can consider S1 as an
R-algebra, and the image of z´1 defines an element s P S1. Since g belongs to pL´Gq0pRq, we have

(2.3) χpλq ¨ g ¨ χpλq´1 “ g

in GpS1rz´1sq. The element s P S1 defines an S1-algebra morphism S1rz´1s Ñ S1, hence a group
morphism GpS1rz´1sq Ñ GpS1q. Taking the image of the identity (2.3) in GpS1q we see that g
belongs to pL´MqpRq, which shows indeed that our two subsets coincide.

The proof of the isomorphisms involving P˘ is similar. If R P Algk, then pL´Gq˘pRq is a subset
of pL´GqpRrtsq “ GpRrz´1, tsq determined by an appropriate equivariance condition, where t is
another indeterminate (such that A1

R “ SpecpRrtsq). Similarly we have pL´P˘qpRq “ P˘pRrz´1sq,
which is a certain subset of GpRrz´1, tsq determined by an a priori different equivariance condition.
The same considerations as above show that these conditions are in fact equivalent. �

2.2.3. Proof.

Proof of Theorem 2.2. The action of Gm is obtained by functoriality from an action on G. Since
the embedding M ãÑ G is Gm-equivariant for the trivial action on M , we deduce that the induced
morphism GrM Ñ GrG is also Gm-equivariant for the trivial action on GrM , which shows that this
embedding factors through a morphism GrM Ñ pGrGq

0. On the other hand, the conjugation action
on G stabilizes P`, and extends to an action of the monoid A1

k on this subgroup. It follows that
the induced action on GrP` also extends to an action of A1

k.18 For this action, we therefore have
GrP` “ pGrP`q

`. We deduce that the morphism GrP` Ñ GrG factors through a morphism

GrP` “ pGrP`q
` Ñ pGrGq

`.

We obtain similarly that the morphism GrP´ Ñ GrG factors through a morphism GrP´ Ñ pGrGq
´.

(Note that in these considerations we have used the fact that GrG, GrP` , GrP´ are separated, so that
the morphisms pGrGq

˘ Ñ GrG, pGrP˘q
˘ Ñ GrP˘ are monomorphisms, see [Ri16, Remark 1.19(i)].)

To conclude, it remains to prove that the morphisms

GrM Ñ pGrGq
0, GrP` Ñ pGrGq

`, GrP´ Ñ pGrGq
´

are isomorphisms. We will treat the case of the morphism GrP` Ñ pGrGq
`; the case of the

morphism GrP´ Ñ pGrGq
´ follows by applying the previous case to the cocharacter χ´1, and the

case of GrM Ñ pGrGq
0 can treated similarly (with some simplifications).

We fix an embedding G ãÑ GLn, and consider the presentation GrG “ colimiGrG,i as in the proof
of Lemma 2.1, so that each GrG,i is projective over k and Gm-stable. For any g P LMpkq, it follows
from Lemma 1.2 that the morphism L´´G Ñ GrG defined by h ÞÑ gh ¨ r0s is representable by an
open immersion. Moreover these open subschemes form a covering of GrG, in the sense that for
any i they induce an open covering of GrG,i. (In fact, since these schemes are of finite type over k,
using [GW, Corollary 3.36] it suffices to prove that any k-point in some GrG,i belongs to such an open
subset, which follows e.g. from the Birkhoff decomposition; in fact it suffices to consider elements
in LT pkq where T is a maximal torus contained in M , see [Fal, Lemma 4].) By Proposition 1.8,
for any g P LMpkq we deduce a morphism pL´Gq` Ñ pGrGq

` which is representable by an open
immersion, and by [Ri16, Theorem 1.8] these open sub-ind-schemes form a covering of pGrGq

`.

18See [HR18, p. 153] for an explicit description of this action in terms of a Rees construction.
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For fixed g P LMpkq, by Lemma 2.3 our morphism GrP` Ñ pGrGq
` induces an isomorphism

between an open sub-ind-scheme of GrP` and the open sub-ind-scheme of pGrGq
` considered above.

We can therefore consider the inverse isomorphism, for any g P LMpkq. Given two elements in
LMpkq, these inverse isomorphisms (each defined on the corresponding open sub-ind-scheme of
pGrGq

`) coincide on the intersection of these sub-ind-schemes; in fact since all the schemes considered
here are of finite type (see [GW, Example 3.45]), as above it suffices to prove that they coincide on k-
points, which follows from the fact that the morphism GrP`pkq Ñ GrGpkq is injective, since these sets
identify with P`pkppzqqq{P`pkrrzssq and Gpkppzqqq{Gpkrrzssq respectively, see [Ri19, Corollary 3.22].
These morphisms therefore glue to define a morphism pGrGq

` Ñ GrP` , which by construction is
an inverse to our given morphism GrP` Ñ pGrGq

`. �

2.3. Some geometric consequences.

Proposition 2.4. (1) The natural morphism GrP˘ Ñ GrM is ind-affine with geometrically
connected fibers.19 In particular, it induces a bijection between the sets of connected com-
ponents of GrP˘ and GrM ,20 and for any connected component of GrP˘ the embedding in
GrP˘ is representable by an open and closed immersion.

(2) The natural morphism GrP˘ Ñ GrG is bijective and restricts to a morphism representable
by a locally closed immersion on each connected component of GrP˘ .

Proof. (1) By Lemma 2.1, we can choose a presentation GrG “ colimiGrG,i as considered in §1.4.1–
1.4.2. Then by Theorem 2.2 and Theorem 1.7 we have

GrP˘ “ colimipGrG,iq
˘, GrM “ colimipGrG,iq

0,

and the morphism GrP˘ Ñ GrM is induced by the canonical morphisms pGrG,iq
˘ Ñ pGrG,iq

0.
Each of these morphisms is affine by [Ri16, Corollary 1.12], proving that our morphism is ind-affine.
Regarding fibers, if K is a field, a morphism SpecpKq Ñ GrM must factor through a morphism
SpecpKq Ñ pGrG,iq

0 for some i. Then we have

GrP˘ ˆGrM SpecpKq “ colimjěipGrG,jq
˘ ˆpGrG,jq0 SpecpKq.

The underlying topological space of the right-hand side is an increasing union of connected spaces
by [Ri16, Corollary 1.12], with closed immersions as transition maps, hence is connected. The final
claim follows, since a continuous map of topological spaces with connected fibers and which admits
a section induces a bijection between connected components.

Finally, since each morphism pGrG,iq
˘ Ñ pGrG,iq

0 induces a bijection between sets of connected
components, and because pGrG,iq

0 Ñ pGrG,jq
0 induces an injection between sets of connected com-

ponents for any i ď j (by the identification in Theorem 2.2 and §1.2.6), the same property holds for
the morphism pGrG,iq

˘ Ñ pGrG,jq
˘, so that the embedding of each connected component in GrP˘

is representable by an open and closed immersion by Lemma 1.1.
(2) Fix a presentation GrG “ colimiGrG,i as in the proof of Lemma 2.1; then we have a presen-

tation GrP˘ “ colimipGrG,iq
˘. By Lemma 1.5, for any i the map

|pGrG,iq
˘| Ñ |GrG,i|

is bijective. Passing to colimits we deduce that the morphism |GrP˘ | Ñ |GrG| is bijective, as
claimed.

Let us now prove that for any i the morphism

pGrG,iq
˘ Ñ GrG,i

restricts to a locally closed immersion on each connected component. In fact, using the notation of

the proof of Lemma 2.1 we have a Gm-equivariant closed immersion GrG,i ãÑ
Ů

d Pp
Źd

Miq and an

19By this we mean that for any field K and any morphism SpecpKq Ñ GrM , the underlying topological space of

the ind-scheme GrP˘ ˆGrM SpecpKq is connected.
20More specifically, this bijection sends a connected component of GrP˘ to its image in GrM , and a connected

component of GrM to its inverse image in GrP˘ .
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induced closed immersion pGrG,iq
˘ ãÑ

Ů

dpPp
Źd

Miqq
˘, see Lemma 1.3. Any connected component

of pGrG,iq
˘ embeds as a closed subscheme in a connected component of

Ů

dpPp
Źd

Miqq
˘. On the

other hand, for any action of Gm on a finite-dimensional vector space V , for the induced action
on PpV q the morphism PpV q˘ Ñ PpV q restricts to a locally closed immersion on each connected
component, as can be seen explicitly (see Talk 5 for details). We deduce that the composition

pGrG,iq
˘ Ñ

Ů

d Pp
Źd

Miq restricts to a locally closed immersion on each connected component,
see [StP, Tag 02V0]. Using [StP, Tag 07RK] we deduce that pGrG,iq

˘ Ñ GrG,i restricts to a locally
closed immersion on each connected component.

Now, consider a connected component Y of GrP˘ . We can write Y “ colimiYi where Yi is a
connected component of pGrG,iq

˘ for any i. If Z is an affine scheme and Z Ñ GrG is a morphism,
then this morphism factors through GrG,i for some i, and we have

Y ˆGrG Z “ colimjěiYj ˆGrG,j Z.

Now for any j ě i we have

Yj ˆGrG,j Z “ pYj ˆGrG,j GrG,iq ˆGrG,i Z

“
`

Yj ˆpGrG,jq` ppGrG,jq
` ˆGrG,j GrG,iq

˘

ˆGrG,i Z “ pYj ˆpGrG,jq` pGrG,iq
`q ˆGrG,i Z

by Lemma 1.3. Now, as seen in the proof of Lemma 1.1 we have Yj ˆpGrG,jq` pGrG,iq
` “ Yi, so that

Y ˆGrG Z “ Yi ˆGrG,i Z.

In particular this ind-scheme is a scheme, and the morphism Y ˆGrG Z Ñ Z is an open and closed
immersion because so is the morphism Yi Ñ GrG,i. �

2.4. Braden’s theorem. Let ` be a prime number invertible in k, and let Λ be a finite `-torsion
ring. The analysis in §2.1 shows that the Gm-action on GrG satisfies the conditions in §1.4.4. In
view of the identifications in §2.2, we therefore have a hyperbolic localization functor

LGrG,χ : DétpGrG,Λq
pGm,χq-mon,bd Ñ DétpGrM ,Λq

bd,

where we add χ in the notation to emphasize the dependence on the choice of the cocharacter (and
suppress the indication of the base scheme Specpkq).

3. The relative case

Next, we need to discuss the analogue of the theory considered in Section 2 for affine Grassman-
nians over copies of curves. We continue with the setting of Section 2.

3.1. Bĕılinson–Drinfeld Grassmannians. We set X “ P1
k.21 We consider a smooth affine group

scheme H over k. If Y is any scheme, we denote by Etriv the trivial right H-torsor over Y . (The
base scheme Y is not indicated in this notation, but it will be clear from the context.)

Recall that given a finite set I, we denote by GrH,I the functor on Algk sending R to the set of
isomorphism classes of triples px, E , βq where:

‚ x is an R-point of XI , i.e. a collection pxi : i P Iq of R-points of X parametrized by I;
‚ E is a (right) H-torsor on XR :“ X bk R;

‚ β : E|XRrΓx
„
ÝÑ Etriv is a trivialization (in other words, an isomorphism of torsors).

Here if x “ pxi : i P Iq P XIpRq, then we set Γx “
Ť

iPI Γxi where Γxi Ă XR is the graph of xi.
22

It is a standard fact that GrH,I is a separated ind-scheme of ind-finite type over XI . (To prove
this claim, one uses a closed embedding H ãÑ GLn such that the quotient GLn{H is quasi-affine
to reduce the claim to the case H “ GLn, see [HR18b, Proposition 3.10]. In the latter case, one
checks the claim explicitly using the theory of Quot schemes; see [HR18b, Lemma 3.8].) In case H
is reductive, GrH,I admits a presentation GrH,I “ colimjě0GrH,I,j where each GrH,I,j is projective
over XI .

21All the geometric story holds for more general curves; see Talk 7 for details.
22See [StP, Tag 0C4H] for the scheme structure on a finite union of closed subschemes.
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If R P Algk and x P XIpRq, then we can consider the formal completion pΓx of XR along Γx,

which is an affine formal scheme, and denote by pΓ1x the spectrum of its algebra of functions (a

“true” affine scheme). It turns out that the natural morphism pΓx Ñ XR uniquely extends to a

morphism of schemes pΓ1x Ñ XR; see [Zh16, §3.1] or [HR18b, §3.1.1] for details and references. Let

also pΓ˝x :“ pΓ1xrΓx, which is again an affine scheme. We then define the functor LIH : Algk Ñ Sets,

resp. L`I H : Algk Ñ Sets sending R to the set of pairs px, βq where x P XIpRq and β P HppΓ˝xq,

resp. β P HppΓ1xq. The functor L`I H is an affine group scheme over XI , LIH is an ind-affine
group ind-scheme over XI , and GrH,I is the fpqc quotient LIH{L

`
I H; see [Zh16, Proposition 3.1.9]

or [HR18b, Lemma 3.2 and Lemma 3.4].
For details on all of this, see Talk 7.

3.2. Local linearizability. Now we consider our reductive group G, and a cocharacter χ : Gm Ñ
G. This provides a (fiberwise) action of Gm on LIGÑ XI by conjugation, and then on GrG,I Ñ XI .

Lemma 3.1. The action of Gm on GrG,I Ñ XI is Zariski locally linearizable.

The proof of this lemma (given in [HR18b, Lemma 3.16], where “étale” can be replaced by
“Zariski” in the special setting we consider here) is similar to that of Lemma 2.1: one uses a closed
embedding G ãÑ GLn to reduce to the case G “ GLn, and then checks the claim explicitly in this
case (reducing to the case of the action on a Quot scheme).

In view of Lemma 3.1 and Theorem 1.7, we can consider the ind-schemes pGrG,Iq
0 and pGrG,Iq

˘

over XI , and the natural morphisms

(3.1) pGrG,Iq
0 Ð pGrG,Iq

˘ Ñ GrG,I .

3.3. Description of fixed points, attractors and repellers. As in §2.2, the conjugation action
of Gm on G via χ defines parabolic subgroups P`, P´ of G, and a common Levi factor M . We can
then consider the Bĕılinson–Drinfeld Grassmannians GrP˘,I and GrM,I over XI , and the natural
morphisms

M Ð P˘ Ñ G

induce morphisms of ind-schemes

(3.2) GrM,I Ð GrP˘,I Ñ GrG,I .

Theorem 3.2. There exist canonical isomorphisms

GrM,I
„
ÝÑ pGrG,Iq

0, GrP˘,I
„
ÝÑ pGrG,Iq

˘

of ind-schemes over XI , which identify the diagrams (3.1) and (3.2).

The proof of this theorem is based on the same ideas as that of Theorem 2.2, but is more
technical. (In particular, the “fiberwise” identifications given by Theorem 2.2 are not sufficient to
conclude.) One also uses a “big cell” in this context; see [HR18b, §3.2]. More specifically, paving
P1
k by two copies of A1

k we reduce the question to the analogous claim for the version GrG,pA1
kq
I of

GrG over pA1
kq
I . Any R-point in pA1

kq
I defines an R-point in pP1

kq
I , which allows to define L´

pA1
kq
IG

as the functor sending R to the set of pairs consisting of an R-point x in pA1
kq
I and an element in

GpP1
R r Γxq. Restriction to the point 8 P pP1

kqpkq allows to define a morphism L´
pA1
kq
IG Ñ G, and

the kernel L´´
pA1
kq
IG of this morphism. As explained in [HR18b, Lemma 3.15], L´´

pA1
kq
IG identifies with

an open ind-scheme in GrG,pA1
kq
I .

For details on the proof of Theorem 3.2, see [HR18b, Theorem 3.17].

3.4. Braden’s theorem. If ` and Λ are as in §2.4, then once again we can consider the categories
DpGrG,I ,Λq

pGm,χq-mon,bd and DpGrM,I ,Λq
bd, and we have a hyperbolic localization functor

LGrG,I ,χ : DétpGrG,I ,Λq
pGm,χq-mon,bd Ñ DétpGrM,I ,Λq

bd.
14



4. Dimension estimates

4.1. Semi-infinite orbits. Let B and T be as in §1.2.5. We consider the setting of Section 2,
assuming that χ is a cocharacter of T which is dominant and regular. In this case we have G0 “ T ,
G` “ B, and G´ is the Borel subgroup of G opposite to B with respect to T .

Recall from Proposition 2.4(1) that the morphism GrB Ñ GrT induces a bijection between the
connected components of GrB and GrT . It is a standard fact that |GrT | is discrete, with

|GrT | “ trλs : λ P X˚pT qu.

Therefore, the map sending λ P X˚pT q to the connected component GrλT containing rλs induces
a bijection between X˚pT q and the set of connected components of GrT . For any λ P X˚pT q we

have GrλT pkq “ trλsu “ |GrλT |. By Lemma 1.2 and commutativity of LT , the morphism L´´T Ñ

GrT given by g ÞÑ g ¨ rλs induces an isomorphism L´´T
„
ÝÑ GrλT , since it is representable by an

open immersion and a bijection on k-points. (A description of L´´T can be derived from [Ri19,
Example 2.8] or [PR08, §3.a].)

For any λ P X˚pT q we will denote by Sλ the connected component of GrB corresponding to

GrλT under the bijection considered above; then we have a natural morphism Sλ Ñ GrG which is
representable by a locally closed immersion by Proposition 2.4(2). The setting considered in Section 2
can be made slightly more explicit in this case. Namely, choose a presentation GrG “ colimiGrG,i
as in §1.2.4. Then for any i the scheme of finite type pGrG,iq

0 is discrete, hence the spectrum of
a finite-dimensional k-algebra, see [EGA1, Chap. I, Prop. 6.4.4]. Moreover this algebra is a finite
product of finite-dimensional local algebras (see [EGA1, Chap. I, §6.2]), hence pGrG,iq

0 is the disjoint
union of the spectra of these local algebras, which are the connected components of pGrG,iq

0. If i
is large enough we have rλs P pGrG,iq

0, and if we denote by pGrG,iq
0,λ the connected component

of pGrG,iq
0 containing λ, then pGrG,iq

0,λ is the spectrum of a finite-dimension k-algebra. The fiber
product

Sλ,i :“ pGrG,iq
` ˆpGrG,iq0 pGrG,iq

0,λ

is an affine connected scheme of finite type over k by [Ri16, Theorem 1.8, Corollary 1.12]. For
j ě i we have a closed immersion pGrG,iq

0,λ Ñ pGrG,jq
0,λ induced by a surjection of the associated

finite-dimensional local k-algebras, and an induced closed immersion

pGrG,iq
` ˆpGrG,iq0 pGrG,iq

0,λ “ pGrG,iq
` ˆpGrG,jq0 pGrG,iq

0,λ Ñ pGrG,iq
` ˆpGrG,jq0 pGrG,jq

0,λ.

Now the natural morphism pGrG,iq
` Ñ pGrG,jq

` is also a closed immersion (see Lemma 1.3), hence
induces a closed immersion

pGrG,iq
` ˆpGrG,jq0 pGrG,jq

0,λ Ñ pGrG,jq
` ˆpGrG,jq0 pGrG,jq

0,λ.

Composing these immersions we obtain a closed immersion

Sλ,i Ñ Sλ,j ,

and we obtain a presentation
Sλ “ colimiSλ,i.

In particular, these considerations show that Sλ is an ind-affine ind-scheme.
Note that this fact can also be seen in a different way, by remarking that the morphism

(4.1) L´´B Ñ Sλ

defined by g ÞÑ zλg ¨ r0sB is an isomorphism, since it is representable by an open immersion (see
Lemma 1.2) and a bijection on k-points.

We have
GrBpkq “ Bpkppzqqq{Bpkrrzssq,

see [Ri16, Corollary 3.22]. Since B – T ˆ U , denoting by rλsB the image of zλ in GrB we deduce
that

GrBpkq “
ğ

λPX˚pT q

Upkppzqqq ¨ rλsB ,
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and
Sλpkq “ Upkppzqqq ¨ rλsB .

It follows from Proposition 2.4(2) that for any λ P X˚pT q the morphism Sλ Ñ GrG is repre-
sentable by a locally closed immersion, and that these morphisms induce a bijection

ğ

λPX˚pT q

Sλpkq
„
ÝÑ GrGpkq.

By [Ri19, Corollary 3.22] once again we have GrGpkq “ Gpkppzqqq{Gpkrrzssq. These considerations
therefore show that

Gpkppzqqq “
ğ

λPX˚pT q

Upkppzqqq ¨ zλ ¨Gpkrrzssq,

which provides a geometric proof of the Iwasawa decomposition in this setting.

Remark 4.1. For any λ P X˚pT q, the action of zλ induces an isomorphism of ind-schemes S0
„
ÝÑ Sλ.

This allows to reduces many questions about semi-infinite orbits to the case of S0.

4.2. Affineness of intersections with spherical orbits. We will denote by W the Weyl group
of pG,T q and, for any λ P X˚pT q, we will denote by λ` the unique dominant W -translate of λ.
Given µ P X˚pT q

`, we set
Λµ “ tλ P X˚pT q | λ

` ď µu.

It is a standard fact that Λµ is finite, and coincides with the set of elements λ P X˚pT q such that
rλs P GrG,ďµ. (This set can also be described as the intersection of λ ` ZR_ with the convex hull
of Wλ in RbZ X˚pT q.)

Proposition 4.2. For any λ P X˚pT q and µ P X˚pT q
`, the intersection

Sλ XGrG,ďµ :“ Sλ ˆGrG GrG,ďµ

is a connected affine scheme of finite type over k, such that the natural morphism

Sλ XGrG,ďµ Ñ GrG,ďµ

is a locally closed immersion. This scheme is nonempty iff λ P Λµ, and the natural map
ğ

λPΛµ

Sλ XGrG,ďµ Ñ GrG,ďµ

is a bijection on the underlying topological spaces.

Proof. 23 Since the morphism Sλ Ñ GrG is represented by a locally closed immersion, Sλ XGrG,ďµ
is a locally closed subscheme of GrG,ďµ. Since the latter scheme is of finite type, so is SλXGrG,ďµ,
see [GW, Example 3.45].

To prove the remaining assertions we will make this scheme more explicit. Consider a presentation
GrG “ colimiGrG,i as in §4.1, and fix i such that GrG,i contains GrG,ďµ and rλs. Then we have

Sλ ˆGrG GrG,ďµ “ colimjěiSλ,j ˆGrG,j GrG,ďµ

where Sλ,j is as in §4.1. For j ě i we have

Sλ,j “ pGrG,jq
` ˆpGrG,jq0 pGrG,jq

0,λ,

hence
Sλ,j ˆGrG,j GrG,ďµ “ pGrG,jq

0,λ ˆpGrG,jq0 pGrG,jq
` ˆGrG,j GrG,ďµ.

Now GrG,ďµ Ñ GrG,j is a closed immersion, hence using Lemma 1.3 we deduce that

Sλ,j ˆGrG,j GrG,ďµ “ pGrG,ďµq
` ˆpGrG,jq0 pGrG,jq

0,λ

“ pGrG,ďµq
` ˆpGrG,ďµq0 pGrG,ďµq

0 ˆpGrG,jq0 pGrG,jq
0,λ.

23The proof of the corresponding statement in [FS21] is more complicated, using a reduction to GLn and then an

explicit proof in this case. The proof given here was explained to me by T. Richarz. It is closely related to the proof

of [AGLR, Lemma 5.5].
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Now pGrG,ďµq
0 ˆpGrG,jq0 pGrG,jq

0,λ is a closed subscheme of pGrG,jq
0,λ, hence is either empty or

the spectrum of a finite-dimensional local k-algebra. More explicitly, if rλs R GrG,ďµ (i.e. if λ R Λµ)
this scheme is empty (hence so his Sλ ˆGrG GrG,ďµ), and if rλs P GrG,ďµ then pGrG,ďµq

0 ˆpGrG,jq0

pGrG,jq
0,λ is the connected component pGrG,ďµq

0,λ of pGrG,ďµq
0 containing λ. In particular, this

shows that
Sλ,j ˆGrG,j GrG,ďµ “ pGrG,ďµq

` ˆpGrG,ďµq0 pGrG,ďµq
0,λ.

The right-hand side is independent of j, which proves that

Sλ ˆGrG GrG,ďµ “ pGrG,ďµq
` ˆpGrG,ďµq0 pGrG,ďµq

0,λ.

The morphism pGrG,ďµq
` Ñ pGrG,ďµq

0 is affine with connected fibers by [Ri16, Corollary 1.12].
Our considerations above show that pGrG,ďµq

0,λ is affine and connected; as e.g. in the proof of
Proposition 2.4(1), we deduce that Sλ ˆGrG GrG,ďµ is affine and connected too.

Finally, using the identification above, the fact that the natural morphism
ğ

λPΛµ

Sλ XGrG,ďµ Ñ GrG,ďµ

is a bijection on the underlying topological spaces follows from Lemma 1.5. �

Remark 4.3. The fact that Sλ X GrG,ďµ is affine is not explicitly proved in [MV07]. The crucial
Proposition 4.5 below is derived in another way in this paper, using an embedding in an infinite-
dimensional projective space; see e.g. [Zh16, Comments after Corollary 5.3.8] for a discussion.

The choice of B determines a system of Coxeter generators in W ; we will denote by w˝ the
longest element for this structure, i.e. the unique element which sends each dominant cocharacter
to an antidominant cocharacter. We will also need the following fact below.

Lemma 4.4. For any µ P X˚pT q
` we have |Sw˝pµq XGrG,ďµ| “ trw˝pµqsu. In particular, we have

dimpSw˝pµq XGrG,ďµq “ 0.

Proof. It is well known that

pSw˝pµq XGrG,ďµqpkq “ Sw˝pµqpkq XGrG,ďµpkq “ trw˝pµqsu;

see [Zh16, (5.3.11)] or [MV07, (3.6)]. Since Sw˝pµq X GrG,ďµ is a scheme of finite type over k, its
k-points are dense (see e.g. [GW, Corollary 3.36]). We deduce that |Sw˝pµq XGrG,ďµ| “ trw˝pµqsu,
as desired. �

4.3. Application to the dimension estimate. In this subsection we fix µ P X˚pT q
`. In the

following statement we denote by ρ P 1
2X

˚pT q the halfsum of the positive roots of pG,T q.

Proposition 4.5. For any λ P Λµ, the scheme Sλ X GrG,ďµ is equidimensional,24 of dimension
xρ, µ` λy.

The proof will require a number of (easy, or at least standard) preliminary results.

Lemma 4.6. (1) Let X be a noetherian topological space, and let U Ă X be an open subset.
The assignments Z ÞÑ Z X U and Y ÞÑ Y induce a bijection between the set of irreducible
components of X intersecting U and the set of irreducible components of U .

(2) If X is an irreducible scheme of finite type over k and U Ă X an open subscheme, then
dimpXq “ dimpUq.

Proof. The claim in (1) is classical; its proof is left to the reader. For (2), see [StP, Tag 0A21]. �

Lemma 4.7. Let X be a separated k-scheme of finite type, and let Z Ă X be a closed subscheme
such that X r Z is affine. Let X 1 Ă X be an irreducible component25 not contained in Z and such
that X 1 X Z ‰ ∅, and let Z 1 be an irreducible component of X 1 X Z. Then dimpZ 1q “ dimpX 1q ´ 1.

24By this we mean that all irreducible components have the same dimension.
25We will use the convention that irreducible components are always endowed with the reduced subscheme struc-

ture, as e.g. in [StP, Tag 01IZ].
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Proof. The scheme X 1 r pX 1 X Zq is a closed subscheme of X r Z, hence is affine. Since X 1 is
separated as a closed subscheme of a separated scheme (see e.g. [StP, Tag 01L7]) and Z 1 is an
irreducible component in

X 1 X Z “ X 1 r
`

X 1 r pX 1 X Zq
˘

,

we can use [StP, Tag 0BCV] and [StP, Tag 02IZ] to conclude that codimpZ 1, X 1q “ 1. Now
codimpZ 1, X 1q “ dimpX 1q ´ dimpZ 1q by [GW, Proposition 5.30], which allows to conclude. �

For λ P Λµ we set

Y ˝λ,µ :“
`

Sλ XGrG,ďµ
˘

red
,

a reduced locally closed subscheme of GrG,ďµ, and denote by Yλ,µ the closure of Y ˝λ,µ, endowed with
the reduced closed subscheme structure. Then we have morphisms

Y ˝λ,µ ãÑ Yλ,µ ãÑ GrG,ďµ

where the first arrow is an open immersion and the second one a closed immersion, see [StP, Tag
03DQ].

Lemma 4.8. Let λ, λ1 P Λµ. If Y ˝λ,µ X Yλ1,µ ‰ ∅, then λ ď λ1.

Proof. For any ν P Λµ, using e.g. the isomorphism L´´B
„
ÝÑ Sν (see §4.1) and the fact that

Sν XGrG,ďµ is a quasi-compact scheme, one sees that for γ P X˚pT q sufficiently dominant, we have
zγ ¨ Y ˝λ,µ Ă GrG,λ`γ . Given weights λ and λ1 as in the statement, we can choose γ such that this

condition holds both for λ and λ1. Then we obtain that GrG,ďλ1`γ contains a point in GrG,λ`γ ,
which implies that λ` γ ď λ1 ` γ (see §1.2.5), hence λ ď λ1. �

Note that the integers x2ρ, λy for λ P Λµ all have the same parity, namely that of x2ρ, µy, and
vary between ´x2ρ, µy and x2ρ, µy. For d P t´x2ρ, µy,´x2ρ, µy ` 2, ¨ ¨ ¨ , x2ρ, µyu we set

Xd :“
ď

λPΛµ
x2ρ,λyďd

Yλ,µ,

where the scheme structure on the union is as in [StP, Tag 0C4H]. Then each Xd is a reduced closed
subscheme of GrG,ďµ, hence is projective and thus separated, see [StP, Tag 07RL] and [StP, Tag
01VX]. Using Proposition 4.2 and Lemma 4.4 we see that

trw˝pµqsu “ X´x2ρ,µy Ă X´x2ρ,µy`2 Ă ¨ ¨ ¨ Ă Xx2ρ,µy´2 Ă Xx2ρ,µy “ GrG,ďµ.

Moreover, Lemma 4.8 implies that for any d as above we have

(4.2) Xd rXd´2 “
ğ

λPΛµ
x2ρ,λy“d

Y ˝λ,µ,

where the right-hand side is affine by Proposition 4.2, and its set of irreducible components is
the (disjoint) union of the sets of irreducible components of the schemes Y ˝λ,µ, i.e. of the schemes
Sλ X GrG,ďµ. These considerations and Lemma 4.6 show that Proposition 4.5 will follow once we
prove the following claim.

Lemma 4.9. For any d P t´x2ρ, µy,´x2ρ, µy ` 2, ¨ ¨ ¨ , x2ρ, µyu, the scheme Xd is equidimensional

of dimension d`x2ρ,µy
2 .

Proof. First we prove by descending induction on d that any irreducible component Z of Xd satisfies

dimpZq ě d`x2ρ,µy
2 . If d “ x2ρ, µy we have Z “ GrG,ďµ, hence the result is satisfied. Now if the

claim is known for d` 2, if Z is still an irreducible component of Xd`2 then by induction we have

dimpZq ě
d` 2` x2ρ, µy

2
ě
d` x2ρ, µy

2
.
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Otherwise there exists an irreducible component Z 1 of Xd`2 containing Z strictly. By Lemma 4.7
applied to Xd`2 and its closed subscheme Xd we then have

dimpZq “ dimpZ 1q ´ 1,

from which we deduce the claim since dimpZ 1q ě d`2`x2ρ,µy
2 .

We now note that if d P t´x2ρ, µy ` 2, ¨ ¨ ¨ , x2ρ, µyu, no irreducible component of Xd is contained
in XdrXd´2. Indeed, otherwise this irreducible component would be affine (as a closed subscheme
in the affine scheme XdrXd´2) and proper (as a closed subscheme of GrG,ďµ) hence finite (see [StP,
Tag 01WN]), hence of dimension 0, which would contradict the inequality we have just proved.

Finally we prove by (ascending) induction on d that for any irreducible component Z of Xd we

have dimpZq ď d`x2ρ,µy
2 . If d “ ´x2ρ, µy then Xd is a point by Lemma 4.4, hence the claim is clear.

Assume the claim is known for d ´ 2, and let Z be an irreducible component of Xd. If Z Ă Xd´2,
then we conclude by induction. Otherwise we consider Z XXd´2, which is nonempty as explained
above. If Z 1 is an irreducible component of this intersection, by Lemma 4.7 (applied to Xd and its
closed subscheme Xd´2) we have dimpZ 1q “ dimpZq ´ 1. On the other hand Z 1 is contained in an
irreducible component of Xd´2; using the induction hypothesis we deduce that

dimpZq ´ 1 “ dimpZ 1q ď
d´ 2` x2ρ, µy

2
,

hence that dimpZq ď d`x2ρ,µy
2 , as desired. �

Remark 4.10. The claim about the dimension of Sλ X GrG,ďµ in Proposition 4.5 is extremely
important in the proof of the Satake equivalence. On the other hand, the equidimensionality is not
used.

4.4. Comments. The arguments of §4.3 give a bit more than Proposition 4.5. In particular, since
the irreducible components of Xd´2 have dimension strictly less than those of Xd, no irreducible
component of Xd can be contained in Xd´2; this implies that XdrXd´2 is dense in Xd. Moreover, in
view of Lemma 4.6(1) there exists a canonical bijection between the sets of irreducible components
of Xd and of Xd rXd´2, i.e. the union of the connected components of the schemes Sλ X GrG,ďµ
where λ runs over the set of weights in Λµ which satisfy x2ρ, λy “ d.

Similarly, let GrG,ăµ be the complement of GrG,µ in GrG,ďµ (endowed with the reduced subscheme
structure). Then we have a decomposition

Sλ XGrG,ďµ “
`

Sλ XGrG,µ
˘

\
`

Sλ XGrG,ăµ
˘

where the first term on the right-hand side is open and the second one is closed. Here GrG,ăµ is
the union of the varieties GrG,ďµ1 where µ1 runs over the dominant weights which satisfy µ1 ă µ;
each irreducible component in Sλ X GrG,ăµ therefore has dimension strictly smaller than that of
irreducible components of SλXGrG,ďµ. It follows that all the irreducible components of SλXGrG,ďµ
meet Sλ X GrG,µ. In conclusion, we have proved that Sλ X GrG,µ is equidimensional of dimension
xρ, λ` µy, and that there exists a canonical bijection between the sets of irreducible components of
Sλ XGrG,µ and of Sλ XGrG,ďµ.

Continuing on this topic, we have proved in Lemma 4.8 that for λ P Λµ we have

Yλ,µ r Y ˝λ,µ Ă
ď

λ1PΛµ
λ1ăλ

Yλ1,µ,

where the left hand side is endowed with the reduced subscheme structure. It seems reasonable
(though maybe optimistic?) to expect that this inclusion is an equality. The following weaker claim
is well known and easy to obtain.

Lemma 4.11. Consider a presentation GrG “ colimiGrG,i as in §4.1. If λ, λ1 P X˚pT q are such
that λ1 ď λ, then for any i there exists j ě i such that

pSλ1 XGrG,iqred Ă Sλ XGrG,j .
19
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Proof. It suffices to prove the claim in case λ1 “ λ´ α_ for some simple root α. The construction
sketched above [BR18, (1.3.4)] or explained more precisely in [Zh16, Proof of Proposition 2.1.5(2)]
shows that for l sufficiently large there exists a closed immersion P1

k Ñ GrG,l sending 0 to rλs,
8 to rλ ´ α_s, and such that the image of A1

k is contained in Sλ X GrG,l. In this case we have

rλ´ α_s P Sλ XGrG,l.
Next, we consider the identification (4.1) for the weight λ ´ α_, and a presentation L´´B “

colimnL
´´
n B. Via this identification, the morphism Sλ´α_ X GrG,i Ñ Sλ´α_ factors through a

morphism Sλ´α_ X GrG,i Ñ L´´n B for some n; in other words we have pSλ´α_ X GrG,iqred Ă

pL´´n Bq ¨ rλ´ α_s. Then if j ě maxpi, lq is such that pL´´n Bq ¨ pSλ XGrG,lq Ă GrG,j , we have

pSλ´α_ XGrG,iqred Ă Sλ XGrG,j ,

as desired. �

Lemma 4.11 is often loosely stated as

Sλ “
ğ

λ1ďλ

Sλ1 .

4.5. The case G “ SL2.

4.5.1. Description on the tree. As explained in Talk 1, the k-points of the affine Grassmannian
GrPGL2

can be described as the vertices of a regular tree, where each vertex has a collection of
neighbors parametrized by P1pkq. On this picture, the spherical orbits (which are parametrized by
X˚pT q

` “ Zě0) are spheres centered at the point corresponding to r0s (with respect to the distance
given by the length of paths from one point to another), and the corresponding Schubert variety is
the set of points in the associated ball at distance from the sphere an even integer.

On such a picture, the semi-infinite orbits can be described as “spheres centered at 8.” For a
graphical illustration, see [BR18, Fig. 1.5 in §1.3.2].

4.5.2. Description of k-points. Now we assume that G “ SL2, with T the standard maximal torus
consisting of diagonal matrices and B the Borel subgroup of upper triangular matrices. In this case
X˚pT q identifies naturally with 2Z, in such a way that 2` corresponds to the class of the matrix

ˆ

z` 0
0 z´`

˙

.

In these terms we have

S2`pkq “

"ˆ

1 Q
0 1

˙

¨

ˆ

z` 0
0 z´`

˙

¨Gpkrrzssq : Q P kppzqq

*

.

This set is in bijection with z`´1krz´1s via the assignment

P ÞÑ

ˆ

z` P
0 z´`

˙

¨Gpkrrzssq.

We now explain in which spherical orbit the point corresponding to P lies.

‚ If P “ 0, this point belongs to GrSL2,2|`|.

‚ If P ‰ 0, we write P “ azm ` ¨ ¨ ¨ ` bz`´1 with m ď ` ´ 1 and a P kˆ. If ` `m ď 0, using
the identity

ˆ

z` P
0 z´`

˙

¨

ˆ

0 ´z´mP
Q z`´m

˙

“

ˆ

1 0
z´`´mQ 1

˙

¨

ˆ

zm 0
0 z´m

˙

where Q P krrzss is the inverse of z´mP we obtain that the point belongs to GrSL2,2|m|. If
``m ą 0, using the equality

ˆ

z` P
0 z´`

˙

“

ˆ

1 z`P
0 1

˙

“

ˆ

z` 0
0 z´`

˙
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we see that the point belongs to GrSL2,2|`|. So, in all cases the point belongs to the orbit
GrSL2,2 maxp|`|,|m|q.

From this analysis we deduce that for ` P Z and n P Zě0 such that |`| ď n we have

pS2` XGrSL2,ďnqpkq “ S2`pkq XGrSL2,ďnpkq “

"ˆ

z` P
0 z´`

˙

: P P kz´n ‘ ¨ ¨ ¨ ‘ kz`´1

*

.

This is in accordance with Proposition 4.5, which says that S2` X GrSL2,ďn is affine of dimension
n` `.

Remark 4.12. It is likely that a refinement of the computation above can be used to construct an
isomorphism of schemes An``k

„
ÝÑ S2` XGrSL2,ďn.
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