# TALK $8\frac{1}{2}$ : SHEAVES ON STACKS

#### BY TIMO RICHARZ

The aim of this talk is to explain a construction of categories of étale sheaves on (pre-)stacks using Kan extensions in the framework of  $\infty$ -categories.

Fix a prime number  $\ell \in \mathbb{N}$ . Denote by  $\Lambda$  a finite  $\ell$ -torsion ring. By definition, all rings and schemes in this talk are over  $\mathbb{Z}[\ell^{-1}]$ . For a scheme X, we denote by  $D(X) := D_{\text{\'et}}(X,\Lambda)$  the left completion of  $D(X_{\text{\'et}},\Lambda)$ , see [BS15, Definition 3.3.1].

**Remark 0.1.** If X has finite  $\Lambda$ -cohomological dimension, then  $D(X_{\text{\'et}}, \Lambda)$  is left complete, that is, the map  $A \to \lim_{n \ge 0} \tau^{\ge -n} A$  is an isomorphism for all  $A \in D(X_{\text{\'et}}, \Lambda)$ , see [BS15, Lemma 6.4.3].

#### 1. Limit extended sheaf theories

Let  $\Pr^L$  be the category with objects the presentable  $\infty$ -categories and with maps the colimit preserving functors. We denote by  $\Pr^{St}$  the full subcategory of stable objects (so the homotopy category is triangulated). Both categories are bicomplete and the inclusion  $\Pr^{St} \subset \Pr^L$  preserves both limits and colimits (reference).

There is a natural enrichment  $\mathcal{D}(X) \in \Pr^{\operatorname{St}}$  such that  $\operatorname{D}(X) = \operatorname{ho}(\mathcal{D}(X))$  on homotopy categories. We consider the Yoneda embedding

$$(1.1) AffSch \rightarrow PreStk := Fun(AffSch^{op}, Ani),$$

where AffSch is the category of affine schemes (over  $\mathbb{Z}[\ell^{-1}]$ , by definition) and Ani the  $\infty$ -category of anima (also called spaces, Kan complexes or  $\infty$ -groupoids).

## **Definition 1.1.** The functor

$$(1.2) \mathcal{D} \colon \operatorname{PreStk}^{\operatorname{op}} \to \operatorname{Pr}^{\operatorname{St}}$$

is the right Kan extension of AffSch<sup>op</sup>  $\to$  Pr<sup>St</sup>,  $X \mapsto \mathcal{D}, f \mapsto f^*$ . For each  $X \in$  PreStk, one denotes  $D(X) := ho(\mathcal{D}(X))$  the homotopy category.

The right Kan extension exists because Pr<sup>St</sup> is complete.

- **Properties 1.2.** (1) The functor (1.2) is limit preserving. In particular, if  $X \in \operatorname{PreStk}$ ,  $X = \operatorname{colim}_{T \to X} T$  with  $T \in \operatorname{AffSch}$ , then  $\mathcal{D}(X) = \lim_{T \to X} \mathcal{D}(T)$  with transition maps given by \*-pullback. Here we note that the (non-full) inclusion  $\operatorname{Pr}^{\operatorname{St}} \subset \operatorname{Cat}_{\infty}$  preserves limits so that the limit can equivalently be computed in  $\operatorname{Cat}_{\infty}$ .
  - (2) For every  $f: Y \to X$  in PreStk, one has an adjunction

$$(1.3) f^*: \mathcal{D}(X) \leftrightarrows \mathcal{D}(Y): Rf_*,$$

where  $f^*$  exists by construction and  $Rf_*$  is defined as its right adjoint using (reference). Note that  $Rf_*$  is in general not colimit preserving, so it is only a functor in  $Cat_{\infty}$ .

(3) The functor  $\mathcal{D}$  is an étale sheaf of  $\infty$ -categories: If  $X \in \operatorname{PreStk}$  and  $f: X \to X_{\operatorname{\acute{e}t}}$  the étale sheafification (or stackification), then

$$(1.4) f^* : \mathcal{D}(X_{\text{\'et}}) \to \mathcal{D}(X)$$

is an equivalence. In other words, the functor  $\mathcal{D}\colon \operatorname{PreStk}^{\operatorname{op}}\to\operatorname{Pr}^{\operatorname{St}}$  factors through the sheafification functor  $\operatorname{PreStk}^{\operatorname{op}}\to\operatorname{Stk}_{\operatorname{\acute{e}t}},X\mapsto X_{\operatorname{\acute{e}t}}$  where, by definition,  $\operatorname{Stk}_{\operatorname{\acute{e}t}}$  is the localization of  $\operatorname{PreStk}$  at the maps  $\operatorname{colim} S^{\bullet/T}\to T$  induced by the Čech nerves for all  $S\to T$  in AffSch. By [HS21, Theorem],  $\mathcal D$  is a sheaf for universal submersions ( $\Longrightarrow$  v-sheaf  $\Longrightarrow$  fpqc sheaf), but not an arc sheaf.

1

- (4) For  $X \in \text{PreStk}$ , the category  $\mathcal{D}(X)$  carries a t-structure  $(\mathcal{D}^{\leq 0}(X), \mathcal{D}^{\geqslant 0}(X))$  such that  $f^* : \mathcal{D}(X) \to \mathcal{D}(Y)$  is t-exact for all  $f : Y \to X$  in PreStk.
- (5) For  $X \in \text{PreStk}$ , one has the full subcategory

$$\mathcal{D}_{\text{cons}}(X) \subset \mathcal{D}(X)$$

of perfect-constructible complexes compatibly with \*-pullbacks.

### 2. Sheaves on the Hecke Stack

Let k be an algebraically closed field,  $X \to \operatorname{Spec}(k)$  a smooth, separated curve and G be a smooth, affine, connected k-group scheme.

Recall the definition of Hecke stacks from Talk 7: For a finite index set I and a point  $x_I = (x_i)_{i \in I} \in I$  $X^{I}(R)$  for some k-algebra R, the union of the graphs  $\Gamma_{x_{I}} = \bigcup_{i \in I} \Gamma_{x_{i}} \subset X_{R}$  defines a relative effective Cartier divisor over R. The formal completion  $(X_R/\Gamma_{x_I})^{\wedge}$  is a formal affine scheme, say, equal to  $Spf(A_{x_I})$ . We define the affine schemes

(2.1) 
$$\mathbb{D}_{x_I} := \operatorname{Spec}(A_{x_I}), \quad \mathbb{D}_{x_I}^* := \mathbb{D}_{x_I} \backslash \Gamma_{x_I}.$$

If  $J \subset I$ ,  $x_J = (x_i)_{i \in J}$ , then there is a natural map  $\mathbb{D}_J \to \mathbb{D}_I$  compatible with the punctured discs.

**Example 2.1.** For 
$$X = \mathbb{A}^1_k$$
 and  $(x_1, x_2) \in X^2(k) = k^2$ , one has  $A_{(x_1, x_2)} = k[T]^{\wedge}_{(T-x_1)(T-x_2)}$ .

The central objects are as follows:

**Definition 2.2.** For any finite index set I, there are the following functors  $Alg_k/X^I \to 1$ - Groupoids of "Beilinson-Drinfeld type" given on a k-algebra R and a point  $x_I \in X^I(R)$  as follows:

- (1) The Hecke stack  $Hk_{G,I}(R)$  parametrizes two G-torsors  $\mathcal{E}_1, \mathcal{E}_2$  on  $\mathbb{D}_{x_I}$  and an isomorphism  $\alpha \colon \mathcal{E}_1 \cong \mathcal{E}_2 \text{ over } \mathbb{D}_{x_I}^*.$
- (2) The affine Grassmannian  $Gr_{G,I}(R)$  parametrizes  $\underline{\mathcal{E}} = (\mathcal{E}_1, \mathcal{E}_2, \alpha) \in Hk_{G,I}(R)$  together with an isomorphism  $\beta \colon \mathcal{E}_2 \cong \mathcal{E}_0$  on  $\mathbb{D}_{x_I}$  where  $\mathcal{E}_0$  is the trivial G-torsor.
- (3) The loop group  $L_IG(R)$  parametrizes  $\gamma \in G(\mathbb{D}_{x_I}^*)$ . Its subfunctor  $L_I^+G(R)$ , called the positive loop group, parametrizes  $\gamma \in G(\mathbb{D}_{x_I})$ .

Note that  $Gr_{G,I}$  is (equivalent to) a set valued functor and that  $L_IG$ ,  $L_I^{\dagger}G$  are group valued functors.

The forgetful morphism  $Gr_{G,I} \to Hk_{G,I}, (\underline{\mathcal{E}},\beta) \mapsto \underline{\mathcal{E}}$  is an  $L_I^+G$ -torsor and induces an equivalence  $\operatorname{Hk}_{G,I} \cong \left[L_I^+ G \backslash \operatorname{Gr}_{G,I}\right]_{\text{\'et}}$ . We choose a  $L_I^+ G$ -stable filtered presentation  $\operatorname{Gr}_{G,I} = \operatorname{colim} X_i$ by finite type k-schemes  $X_i$  with closed transition morphisms. Writing  $L_I^+G = \lim_{i \ge 0} G_i$ ,  $G_i =$  $\operatorname{Res}_{\Gamma^{(i)}}$   $_{/X^I}(G)$  and possibly renumbering the  $X_i$ , we may assume that the  $L_I^+G$ -action on each  $X_i$ factors through  $G_i$ . In particular, we obtain as objects in PreStk:

(2.2) 
$$\operatorname{Hk}_{G,I} = \operatorname{colim} \left[ L_I^+ G \backslash X_i \right]_{\text{\'et}}, \quad \left[ L_I^+ G \backslash X_i \right]_{\text{\'et}} = \lim_{j \geqslant i} \left[ G_j \backslash X_i \right]_{\text{\'et}}.$$

**Definition 2.3.** One defines the following full subcategories of  $D(Hk_{G,I})$ , respectively  $D(Gr_{G,I})$  of sheaves with bounded supports:

- $\begin{array}{ll} (1) \ \ \mathrm{D}(\mathrm{Hk}_{G,I},\Lambda)^{\mathrm{bd}} = \mathrm{colim}\, \mathrm{D}([L_I^+G\backslash X_i]_{\mathrm{\acute{e}t}}); \\ (2) \ \ \mathrm{D}(\mathrm{Gr}_{G,I},\Lambda)^{\mathrm{bd}} = \mathrm{colim}\, \mathrm{D}(X_i). \end{array}$

In both cases, the transition maps are given by \*-push forward.

The following lemma allows to relate the above categories:

**Lemma 2.4.** For each  $G_i$  acting on  $X_i$ , there are natural equivalences

$$(2.3) \qquad \mathcal{D}([L_I^+G\backslash X_i]_{\text{\'et}}) \stackrel{\cong}{\to} \mathcal{D}([G_i\backslash X_i]_{\text{\'et}}) \stackrel{\cong}{\to} \lim \left(\mathcal{D}(X_i) \stackrel{\text{act}^*}{\underset{\text{pr}^*}{\to}} \mathcal{D}(G_i \times X_i) \stackrel{\longrightarrow}{\to} \cdots \right).$$

Furthermore, the induced functor on the hearts of the standard t-structure

$$D([L_I^+G\backslash X_i]_{\text{\'et}})^{\heartsuit} \to D(X_i)^{\heartsuit}$$

is fully faithful with essential image those objects  $A \in D(X_i)^{\heartsuit}$  such that act\*  $A \cong \operatorname{pr}^* A$ .

Proof. The affine group scheme  $L_I^+G \to X^I$  is strictly pro-algebraic in the sense of [RS20, Appendix A.2] with geometrically connected fibers and the kernel of  $L_I^+G \to G_i$  is split pro-unipotent for every  $i \geq 0$ . So the first arrow in (2.3) being an equivalence follows from  $\mathbb{A}^1$ -invariance using that the coefficients  $\Lambda$  are of torsion invertible on  $\operatorname{Spec}(k)$ , the argument of [RS20, Proposition 2.2.11] translates to our context. By étale descent, we have an equivalence  $\mathcal{D}([G_i \setminus X_i]_{\text{\'et}}) \cong \mathcal{D}(G_i \setminus X_i)$ . Using that  $G_i \setminus X_i$  is the colimit of the Bar resolution, the second arrow in (2.3) is an equivalence because (1.2) is limit-preserving. For the fully faithfulness of (2.4) and the description of its essential image, we refer to Talk 9.

#### References

- [BS15] B. Bhatt, P. Scholze: The pro-étale topology for schemes, Astérisque 369 (2015), 99–201. 1
- [HS21] D. Hansen, P. Scholze: Relative perversity, https://arxiv.org/abs/2109.06766. 1
- [RS20] T. Richarz, J. Scholbach: The intersection motive of the moduli stack of shtukas, Forum of Mathematics (Sigma) 8 (2020). 3

 $Email\ address: {\tt richarz@mathematik.tu-darmstadt.de}$