Talk 6: Affine Grassmanian

Anton Güthge

These notes are mostly based on [Zhu16]. Throughout, let k be an algebraically closed field and G a (connected) reductive group over k. For a k-algebra R, let D_R and D_R^* denote $\operatorname{Spec}(R[[t]])$ and $\operatorname{Spec}(R((t)))$, respectively. One central player in the geometric Satake equivalence is the $\operatorname{Hecke\ stack\ } \operatorname{Hk}_G$ over k, defined by sending a k-algebra R to the groupoid whose objects consist of the following data:

- two G-torsors $\mathcal{E}_1, \mathcal{E}_2$ on D_R .
- an isomorphism $\varphi \colon \mathcal{E}_1 \otimes_{D_R} D_R^* \xrightarrow{\sim} \mathcal{E}_2 \otimes_{D_R} D_R^*$.

Recall that for a group scheme G and a scheme X, a G-torsor over X is a scheme map $Y \to X$ together with a G-action on Y such that Zariskii locally (equivalently, étale locally) on X one has $Y = X \times G$, equivariantly for the canonical G-action on the right. The G-torsors on X form a category and for any map of schemes $X \to S$ one gets a pullback functor from the G-torsors on S to those on X, compatibly with composition of maps of schemes. The principal example in the world of affine Grassmanians is that of GL_n -torsors — those are just vector bundles of rank n.

In order to describe Hk_G and in particular the étale sheaves on it, we will look at a simpler object, additionally parametrizing a trivialization of the second torsor:

Definition 6.1. The *affine Grassmanian* Gr_G is the presheaf sending a k algebra R to the set of isomorphism classes of the following data:

- a G-torsor \mathcal{E} on R[[t]].
- an isomorphism $\mathcal{E} \otimes_{D_R} D_R^* \xrightarrow{\sim} \mathcal{E}_0 \otimes_{D_R} D_R^*$, where \mathcal{E}_0 denotes the standard G-torsor on R[[t]].

So, for instance, an element in $Gr_{GL_n}(R)$ would consist of a finite projective R[[t]]module of rank n (or rather its isomorphism class) together with a trivialization after
inverting t — or, equivalently, an R[[t]] sublattice of R((t)). Note that, by fixing the
trivialization of \mathcal{E}_2 , these data (even before taking isomorphism classes) have no nontrivial automorphisms, so we can expect Gr_G to be a reasonable set-valued sheaf. In fact Gr_G even has a nice geometric structure:

Proposition 6.2. Gr_G is an ind-projective ind-scheme over k.

By an ind-scheme, we will mean an fpqc sheaf on the category of k-algebras which can be written as a filtered colimit $\varinjlim X_i$, where the X_i are schemes and the transition maps are closed immersions. It is called ind-projective if all the X_i can be chosen to be projective.

Proof. See [Zhu16, theorem 1.1.3] for $G = GL_n$ and [Zhu16, theorem 1.2.2] for the general case. Let us present the idea: For the GL_n case, one can always find some $r \in \mathbb{Z}_{\geq 0}$ such that

$$(1) t^r \mathcal{E}_0 \subseteq \mathcal{E} \subseteq t^{-r} \mathcal{E}_0.$$

Some work is done to show that projectivity of \mathcal{E} as an R[[t]]-module and of $\mathcal{E}/t^r\mathcal{E}_0$ as an R-module align, after which one can realize all R-points satisfying (1) as a closed subscheme of $\mathbb{P}^{(2r+1)n}$. Taking the filtered colimit over the different values of r then yields the ind-projectivity of Gr_{GL_n} .

For general G, one finds a embedding $G \to \operatorname{GL}_n$ with affine quotient. It turns out that this induces a closed embedding $\operatorname{Gr}_G \to \operatorname{Gr}_{GL_n}$, so Gr_G is ind-projective as well.

As mentioned before, there is a map $Gr_G \to Hk_G$, simply forgetting that \mathcal{E}_0 is the trivial torsor. This map has a nice description in terms of so-called loop groups:

Definition + **Proposition 6.3.** Define the loop group and positive loop group as the presheaves on k-algebras

$$LG: R \mapsto G(R((t))), \qquad L^+G: R \mapsto G(R[[t]]).$$

Then L^+G is represented by a scheme (of infinite type over k), while LG is represented by an ind-affine ind-scheme. Furthermore, LG and L^+G inherit the structure of a group object in their respective category (equivalently, in the category of sheaves) from the group structure of G.

Proof. For the first part, see [PR08, 1.a]. For the group structure, note that LG(R) = G(R((t))) has the structure of a group (since G is a group scheme), compatible with maps $R \to R'$, and similarly for L^+G .

Proposition 6.4. $\operatorname{Gr}_G = [LG/L^+G]$ and $\operatorname{Hk}_G = [L^+G \backslash \operatorname{Gr}_G] = [L^+G \backslash LG/L^+G]$ as étale (equivalently, fpqc) quotients.

Proof. See [Zhu16, Proposition 1.3.6] for the first claim. The second one can be proven very similarly. \Box

If one is willing to picture $D_R^* = \operatorname{Spec}(R((t)))$ as a punctured formal disc, then in a way LG describes the space of loops in G, while the subsheaf L^+G are the loops whose homotopy class is trivial. The following result reinforces that impression:

Theorem 6.5. 1. One has isomorphisms $\pi_0(LG) \cong \pi_1(G)$ and $\pi_0(LG) \cong \pi_0(Gr_G)$.

2. If $G \otimes_k k((t))$ is semisimple and $p \nmid \pi_1(G \otimes_k k((t)))$, then Gr_G is reduced.

Proof. [Zhu16, Theorem 1.3.11]; In (1), we can omit the Galois group mentioned in loc. cit. since for us, G is always constant over $k = \overline{k}$ and thus the Galois group of k(t) acts trivially on $\pi_1(G)$.

We want to further understand the geometry of Gr_G . From now on, let $\mathcal{O} = k[[t]]$ and F = k((t)). For now, fix embeddings $T \subset B \subset G$, where T is a maximal torus and B a Borel subgroup. The group theoretical data $X_{\bullet}, X^{\bullet}, X^{\bullet}_{\bullet}, X^{\bullet}_{\bullet}, W$ are defined as usual. Recall the Cartan decomposition:

Proposition 6.6.

$$G(F) = \bigsqcup_{\mu \in X_{\bullet}(T)^{+}} G(\mathcal{O}) t^{\mu} G(\mathcal{O}).$$

Proof. The proof in full generality can be found e.g. in [BT72, Proposition 4.4.3]. Let's look at a simpler one for $G = \operatorname{GL}_n$. Let $M_0 \subset F^n$ be the standard lattice with basis (e_i) . Now every $g \in \operatorname{GL}_n(F)$, identified with its matrix with respect to e_i , defines a translated lattice $g(M_0) \subset F^n$ and we can find some $N \in \mathbb{Z}$ such that $t^N g(M_0) \subset M_0$. By the theory of finitely generated lattices over a DVR, we can now find a basis $e'_1 \dots e'_n$ of M_0 and integers $r_0 \geq \dots \geq r_n$ such that

$$t^{r_1}e'_1,\ldots,t^{r_n}e'_n$$

forms a basis of $t^N g(M_0)$, and hence

$$t^{r_1-N}e_1',\ldots,t^{r_n-N}e_n'$$

forms a basis of $g(M_0)$. Let B be the matrix of g with respect to the basis e'_1, \ldots, e'_n of M_0 . Since (e_i) and (e'_i) are both \mathcal{O} -bases of M_0 , there is some $S \in \mathrm{GL}_n(\mathcal{O})$ such that $g = SBS^{-1}$. Similarly, $g(e_1), \ldots, g(e_n)$ and $t^{r_1-N}e'_1, \ldots, t^{r_n-N}e'_n$ are both \mathcal{O} -bases of $g(M_0)$, so there exists some $C \in \mathrm{GL}_n(\mathcal{O})$ such that $B = \mathrm{diag}(t^{r_1-N}, \ldots, t^{r_n-N}) \cdot C$, so

$$g = S \operatorname{diag}(t^{r_1 - N}, \dots, t^{r_n - N})CS^{-1} \in G(\mathcal{O})t^{\mu}G(\mathcal{O}).$$

Corollary 6.7.

$$G(\mathcal{O})\backslash G(F)/G(\mathcal{O}) = X_{\bullet}(T)^{+}.$$

Note that while the Cartan decomposition depends on both the choice of a uniformizer $t \in F$ and an embedding $T \hookrightarrow G$, Corollary 6.7 depends on neither (if one views $X_{\bullet}(T)^+$ as a quotient of $X_{\bullet}(T)$ instead of a subgroup).

We now want to dissect Gr_G into simpler geometric objects (actual varieties). This will be done by bounding the so-called relative position — roughly speaking, how far our torsor \mathcal{E}_0 is from the trivial one.

Construction 6.8. Let $\mathcal{E}_1, \mathcal{E}_2$ be two G-torsors over $D = D_k$ and let $\beta \colon \mathcal{E}_1|_{D^*} \cong \mathcal{E}_2|_{D^*}$ be an isomorphism. Since k is an algebraically closed field, the \mathcal{E}_i are in fact trivial, so one can choose trivializations $\Phi_i \colon \mathcal{E}_i \to \mathcal{E}_0$ and obtain an automorphism of the trivial G-torsor $\Phi_2 \beta \Phi_1^{-1} \in \operatorname{Aut}(\mathcal{E}^0|_{D^*})$. This is an element of G(F), and changing the trivializations Φ_i amounts to left- and right multiplication by elements of $G(\mathcal{O})$, so we get a well-defined element

$$\operatorname{Inv}(\beta) \in G(\mathcal{O}) \backslash G(F) / G(\mathcal{O}) \cong X_{\bullet}(T)^+,$$

called the relative posistion of β .

Even if we replace k by a not necessarily algebraically closed k-algebra K, we can still define $\text{Inv}(\beta)$ by base changing the \mathcal{E}_i to an algebraic closure \overline{K} ; the resulting $\text{Inv}(\beta)$ will be independent of the choice of \overline{K} .

Finally, replace K by any k-algebra R. Then we can still define the relative position of β at any $x \in \operatorname{Spec}(R)$ by base changing the \mathcal{E}_i to $D_{k(x)}$, where k(x) is the residue field at x.

Proposition 6.9. [Zhu16, Proposition 2.1.4] Let $X = \operatorname{Spec}(R)$ and $\mu \in X_{\bullet}(T)^+$. Consider a morphism $\beta \colon \mathcal{E}_1 \to \mathcal{E}_2$ between two G-torsors $\mathcal{E}_1, \mathcal{E}_2$. Then the set of points

$$X_{\leq \mu} := \{ x \in X | \operatorname{Inv}_x(\beta) \leq \mu \}$$

is Zariski-closed in X.

Definition 6.10. Let $|\operatorname{Gr}_{\leq \mu}| \subset |\operatorname{Gr}_G|$ be the closed subset of points \mathcal{E}, β with $\operatorname{Inv}(\beta) \leq \mu$, endowed with the reduced subscheme structure and call it the *Schubert variety* (of μ). Similarly, the open subscheme

$$Gr_{\mu} = Gr_{<\mu} \setminus \bigcup_{\lambda < \mu} Gr_{\lambda}$$

will be called a Schubert cell

Proposition 6.11. 1. $\operatorname{Gr}_{\operatorname{red}} = \bigcup_{u} \operatorname{Gr}_{\leq u}$

- 2. Gr_{μ} forms a single L^+G -orbit inside Gr_G and is quasi-projective and smooth of dimension $(2\rho, \mu)$.
- 3. $\operatorname{Gr}_{\leq \mu}$ is the Zariski closure of Gr_{μ} . In particular, it is a projective (non-smooth) variety.

Proof. For the first statement, note that we have an obvious map $\cup_{\mu} \operatorname{Gr}_{\leq \mu} \to \operatorname{Gr}_{\operatorname{red}}$, which is an isomorphism on topological spaces since every field-valued point has relative position bounded by some μ . Since $\operatorname{Gr}_{\leq \mu}$ is defined as having the reduced subscheme structure of Gr_G , this map is in fact an isomorphism. For (ii) and (iii), see [Zhu16, Proposition 2.1.5].

Corollary 6.12. $|\operatorname{Hk}_G| = X_{\bullet}(T)^+$, where the right hand side is equipped with the topology induced by the dominance order.

Proof. A point in $|Hk_G|$, represented by some field valued point $(\mathcal{E}_1, \mathcal{E}_2, \beta)$, is uniquely determined by $Inv(\beta)$, so

$$|\operatorname{Hk}_G| = G(\mathcal{O}) \backslash G(F) / G(\mathcal{O}) = X_{\bullet}(T)^+$$

as sets. But now, the left side is homeomorphic to $|\operatorname{Gr}_G|$, on which the closed subsets are described by Proposition 6.11: They are exactly the $\operatorname{Gr}_{\leq \mu}$, which correspond to the closed subsets in the dominance order on the right side.

References

- [BT72] François Bruhat and Jacques Tits. "Groupes réductifs sur un corps local: I. Données radicielles valuées". fr. In: *Publications Mathématiques de l'IHÉS* 41 (1972), pp. 5–251. URL: http://www.numdam.org/item/PMIHES_1972__41__5_0/.
- [PR08] G. Pappas and M. Rapoport. Twisted loop groups and their affine flag varieties. 2008. arXiv: math/0607130 [math.AG].
- [Zhu16] Xinwen Zhu. An introduction to affine Grassmannians and the geometric Satake equivalence. 2016. arXiv: 1603.05593 [math.AG].
- [Sta20] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu. 2020.