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These notes are mostly based on [Zhu16]. Throughout, let k be an algebraically closed
field and G a (connected) reductive group over k. For a k-algebra R, let DR and D∗

R

denote Spec(R[[t]]) and Spec(R((t))), respectively. One central player in the geometric
Satake equivalence is the Hecke stack HkG over k, defined by sending a k-algebra R to
the groupoid whose objects consist of the following data:

• two G-torsors E1, E2 on DR.

• an isomorphism φ : E1 ⊗DR
D∗

R
∼−→ E2 ⊗DR

D∗
R.

Recall that for a group scheme G and a scheme X, a G-torsor over X is a scheme map
Y → X together with a G-action on Y such that Zariskii locally (equivalently, étale
locally) on X one has Y = X ×G, equivariantly for the canonical G-action on the right.
The G-torsors on X form a category and for any map of schemes X → S one gets a
pullback functor from the G-torsors on S to those on X, compatibly with composition of
maps of schemes. The principal example in the world of affine Grassmanians is that of
GLn-torsors — those are just vector bundles of rank n.
In order to describe HkG and in particular the étale sheaves on it, we will look at a

simpler object, additionally parametrizing a trivialization of the second torsor:

Definition 6.1. The affine Grassmanian GrG is the presheaf sending a k algebra R to
the set of isomorphism classes of the following data:

• a G-torsor E on R[[t]].

• an isomorphism E ⊗DR
D∗

R
∼−→ E0 ⊗DR

D∗
R, where E0 denotes the standard G-torsor

on R[[t]].

So, for instance, an element in GrGLn(R) would consist of a finite projective R[[t]]-
module of rank n (or rather its isomorphism class) together with a trivialization after
inverting t — or, equivalently, an R[[t]] sublattice of R((t)). Note that, by fixing the
trivialization of E2, these data (even before taking isomorphism classes) have no non-
trivial automorphisms, so we can expect GrG to be a reasonable set-valued sheaf. In fact
GrG even has a nice geometric structure:

Proposition 6.2. GrG is an ind-projective ind-scheme over k.



By an ind-scheme, we will mean an fpqc sheaf on the category of k-algebras which
can be written as a filtered colimit lim−→Xi, where the Xi are schemes and the transition
maps are closed immersions. It is called ind-projective if all the Xi can be chosen to be
projective.

Proof. See [Zhu16, theorem 1.1.3] for G = GLn and [Zhu16, theorem 1.2.2] for the general
case. Let us present the idea: For the GLn case, one can always find some r ∈ Z≥0 such
that

(1) trE0 ⊆ E ⊆ t−rE0.

Some work is done to show that projectivity of E as an R[[t]]-module and of E/trE0 as
an R-module align, after which one can realize all R-points satisfying (1) as a closed
subscheme of P(2r+1)n. Taking the filtered colimit over the different values of r then
yields the ind-projectivity of GrGLn .

For general G, one finds a embedding G → GLn with affine quotient. It turns out that
this induces a closed embedding GrG → GrGLn , so GrG is ind-projective as well.

As mentioned before, there is a map GrG → HkG, simply forgetting that E0 is the
trivial torsor. This map has a nice desription in terms of so-called loop groups:

Definition + Proposition 6.3. Define the loop group and positive loop group as the
presheaves on k-algebras

LG : R 7→ G(R((t))), L+G : R 7→ G(R[[t]]).

Then L+G is represented by a scheme (of infinite type over k), while LG is represented
by an ind-affine ind-scheme. Furthermore, LG and L+G inherit the structure of a group
object in their respective category (equivalently, in the category of sheaves) from the group
structure of G.

Proof. For the first part, see [PR08, 1.a]. For the group structure, note that LG(R) =
G(R((t))) has the structure of a group (since G is a group scheme), compatible with
maps R → R′, and similarly for L+G.

Proposition 6.4. GrG = [LG/L+G] and HkG = [L+G\GrG] = [L+G\LG/L+G] as
étale (equivalently, fpqc) quotients.

Proof. See [Zhu16, Proposition 1.3.6] for the first claim. The second one can be proven
very similarly.

If one is willing to picture D∗
R = Spec(R((t))) as a punctured formal disc, then in a

way LG describes the space of loops in G, while the subsheaf L+G are the loops whose
homotopy class is trivial. The following result reinforces that impression:

Theorem 6.5. 1. One has isomorphisms π0(LG) ∼= π1(G) and π0(LG) ∼= π0(GrG).

2. If G⊗k k((t)) is semisimple and p ∤ π1(G⊗k k((t))), then GrG is reduced.



Proof. [Zhu16, Theorem 1.3.11]; In (1), we can omit the Galois group mentioned in loc.
cit. since for us, G is always constant over k = k and thus the Galois group of k((t)) acts
trivially on π1(G).

We want to further understand the geometry of GrG. From now on, let O = k[[t]] and
F = k((t)). For now, fix embeddings T ⊂ B ⊂ G, where T is a maximal torus and B
a Borel subgroup. The group theoretical data X•, X

•, X+
• , X•

• ,W are defined as usual.
Recall the Cartan decomposition:

Proposition 6.6.

G(F ) =
⊔

µ∈X•(T )+

G(O)tµG(O).

Proof. The proof in full generality can be found e.g. in [BT72, Proposition 4.4.3]. Let’s
look at a simpler one for G = GLn. Let M0 ⊂ Fn be the standard lattice with basis (ei).
Now every g ∈ GLn(F ), identified with its matrix with respect to ei, defines a translated
lattice g(M0) ⊂ Fn and we can find some N ∈ Z such that tNg(M0) ⊂ M0. By the
theory of finitely generated lattices over a DVR, we can now find a basis e′1 . . . e

′
n of M0

and integers r0 ≥ · · · ≥ rn such that

tr1e′1, . . . , t
rne′n

forms a basis of tNg(M0), and hence

tr1−Ne′1, . . . , t
rn−Ne′n

forms a basis of g(M0). Let B be the matrix of g with respect to the basis e′1 . . . , e
′
n of

M0. Since (ei) and (e′i) are both O-bases of M0, there is some S ∈ GLn(O) such that
g = SBS−1. Similarly, g(e1), . . . , g(en) and tr1−Ne′1, . . . , t

rn−Ne′n are both O-bases of
g(M0), so there exists some C ∈ GLn(O) such that B = diag(tr1−N , . . . , trn−N ) · C, so

g = S diag(tr1−N , . . . , trn−N )CS−1 ∈ G(O)tµG(O).

Corollary 6.7.

G(O)\G(F )/G(O) = X•(T )
+.

Note that while the Cartan decomposition depends on both the choice of a uniformizer
t ∈ F and an embedding T ↪→ G, Corollary 6.7 depends on neither (if one views X•(T )

+

as a quotient of X•(T ) instead of a subgroup).

We now want to dissect GrG into simpler geometric objects (actual varieties). This
will be done by bounding the so-called relative position — roughly speaking, how far our
torsor E0 is from the trivial one.



Construction 6.8. Let E1, E2 be two G-torsors over D = Dk and let β : E1|D∗ ∼= E2|D∗

be an isomorphism. Since k is an algebraically closed field, the Ei are in fact trivial, so one
can choose trivializations Φi : Ei → E0 and obtain an automorphism of the trivial G-torsor
Φ2βΦ

−1
1 ∈ Aut(E0|D∗). This is an element of G(F ), and changing the trivializations Φi

amounts to left- and right multiplication by elements of G(O), so we get a well-defined
element

Inv(β) ∈ G(O)\G(F )/G(O) ∼= X•(T )
+,

called the relative posistion of β.

Even if we replace k by a not necessarily algebraically closed k-algebra K, we can still
define Inv(β) by base changing the Ei to an algebraic closure K; the resulting Inv(β) will
be independent of the choice of K.

Finally, replace K by any k-algebra R. Then we can still define the relative position of
β at any x ∈ Spec(R) by base changing the Ei to Dk(x), where k(x) is the residue field at
x.

Proposition 6.9. [Zhu16, Proposition 2.1.4] Let X = Spec(R) and µ ∈ X•(T )
+.

Consider a morphism β : E1 → E2 between two G-torsors E1, E2. Then the set of points

X≤µ := {x ∈ X| Invx(β) ≤ µ}

is Zariski-closed in X.

Definition 6.10. Let |Gr≤µ | ⊂ |GrG | be the closed subset of points E , β with Inv(β) ≤ µ,
endowed with the reduced subscheme structure and call it the Schubert variety (of µ).
Similarly, the open subscheme

Grµ = Gr≤µ \ ∪λ<µ Grλ

will be called a Schubert cell

Proposition 6.11. 1. Grred = ∪µGr≤µ

2. Grµ forms a single L+G-orbit inside GrG and is quasi-projective and smooth of
dimension (2ρ, µ).

3. Gr≤µ is the Zariski closure of Grµ. In particular, it is a projective (non-smooth)
variety.

Proof. For the first statement, note that we have an obvious map ∪µGr≤µ → Grred,
which is an isomorphism on topological spaces since every field-valued point has relative
position bounded by some µ. Since Gr≤µ is defined as having the reduced subscheme
structure of GrG, this map is in fact an isomorphism. For (ii) and (iii), see [Zhu16,
Proposition 2.1.5].

Corollary 6.12. |HkG | = X•(T )
+, where the right hand side is equipped with the

topology induced by the dominance order.



Proof. A point in |HkG |, represented by some field valued point (E1, E2, β), is uniquely
determined by Inv(β), so

|HkG | = G(O)\G(F )/G(O) = X•(T )
+

as sets. But now, the left side is homeomorphic to |GrG |, on which the closed subsets
are described by Proposition 6.11: They are exactly the Gr≤µ, which correspond to the
closed subsets in the dominance order on the right side.
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