
TALK 5: HYPERBOLIC LOCALIZATION

ARNAUD MAYEUX

We present some results of [Ri16] about Gm-actions on algebraic spaces and Braden Theorem.

1. Introduction

Let X be an algebraic variety over C and let C� act algebraically on it. Let

X0 � tx P X|λ.x � x @λ P C�u
X� � tx P X| lim

λÑ0
λ.x exists u

X� � tx P X| lim
|λ|Ñ�8

λ.x exists u.

It is obvious that X0 � X� and X0 � X�. We have a map X� Ñ X0 given by x ÞÑ lim
λÑ0

λ.x.

Similarly, x ÞÑ lim
|λ|Ñ�8

λ.x gives a map X� Ñ X0. The sets X� and X� are algebraic and are called

attractor and repeller of the action on X. For example, if X � C with C�-action λ.x � λx, we get
X0 � X� � t0u and X� � X.

Let S be an arbitrary scheme. Given an algebraic action of Gm,S on an algebraic space X{S
(satisfying some conditions), we are going to introduce algebraic spaces X0, X�, X� in a purely
algebraic way. The algebraic spaces X0, X� and X� will come with morphisms X0 Ñ X�, X0 Ñ
X�, X� Ñ X, X� Ñ X, X� Ñ X0 andX� Ñ X0. In the case S � SpecC, these objects agree with
the topological ones given before. In the context of algebraic spaces with Gm-actions, we are going
to state a general version of a Theorem of Braden [Br02], following Richarz [Ri16] who produced
the most general version (cf also [DG13]). This Theorem is widely used in geometric representations
theory. From now on Braden Theorem means the Richarz extended version.

2. Algebraic spaces

Braden Theorem is stated in the context of algebraic spaces. Let us recall StacksProject’s [StP]
definition of this generalization of schemes. Let S be a scheme. Let pSch{Sqfppf be the big fppf-site.

Definition 2.1. Let Y,X : pSch{Sqopfppf Ñ Sets be functors. Let Y
a
Ñ X be a transformation of

functors.

(1) We say that a is representable if for every U P ObppSch{Sqfppfq and any ξ P XpUq the fiber
product hU �X Y is representable by an object Vξ in pSch{Sqfppf (the transformation hU Ñ

X is defined by pT Ñ Uq{S ÞÑ imXpUqÑXpT qpξq ). The projection hVξ
Ñ hU �X Y Ñ hU

comes from a unique morphism of schemes Vξ
aξ
Ñ U , using Yoneda.

(2) Let P be a property of morphisms of schemes which is preserved under base change and is

fppf local on the base. In this case we say that a representable transformation Y
a
Ñ X has

property P if for every U P ObppSch{Sqfppfq and any ξ P XpUq the resulting morphism of
schemes Vξ Ñ U has property P .

In p1q, assume Y
a
Ñ X is representable and X is (representable by) a scheme, then Y is (repre-

sentable by) a scheme: take U � X and ξ � IdX .

Definition 2.2. An algebraic space X over S is a sheaf on the big fppf-site

X : pSch{Sqopfppf Ñ Set
1



with representable diagonal and which admits a surjective étale map from a scheme. A morphism
X Ñ Y of algebraic spaces {S is a transformation of functors from X to Y .

Example 2.3. Given a scheme T P ObpSch{Sqfppfq, the representable functor hT is an algebraic
space.

If X is an algebraic space over S and if T Ñ S is a morphism we denote by XT the base change
to T .

We have a natural notion of an action of an algebraic group on an algebraic space. In particular,
an action of the multiplicative group Gm,S on an algebraic spaceX{S is a morphism Gm,S�SX Ñ X
satisfying the usual axioms of algebraic actions. In this situation, we say that X is a Gm-space over
S. Given a morphism T Ñ S and a Gm-space X over S, we get a Gm-space XT by base change,
since Gm,T � Gm,S �S T .

3. Attractors and repellers

Let X and Y be two algebraic spaces over S, HomSpY,Xq is the functor

pSch{Sqfppf Ñ Set

T ÞÑ HomT pYT , XT q.

It is a sheaf. When X and Y are both Gm-spaces over S, we consider Gm-equivariant morphisms:

HomGm

S pY,Xq : T ÞÑ

$'''&
'''%
f P HomT pYT , XT q

���������

Gm,T �T YT Gm,T �T XT

YT XT

commutes

,///.
///-

.

Then HomGm

S pY,Xq is a subsheaf of HomSpY,Xq on pSch{Sqfppf . We now define some spaces with
Gm-action.

Definition 3.1. (1) Let S
 be the Gm-space where the space is S and Gm acts trivially.
(2) Let pA1

Sq
� be the Gm-space where the underlying space is A1

S and Gm acts by multiplication:
i.e. for any S-scheme T and λ P GmpT q, x P A1pT q, the action is given by λ.x � λx.

(3) Let pA1
Sq

� be the Gm-space where the underlying space is A1
S and Gm acts by division: i.e.

for any S-scheme T and λ P GmpT q, x P A1pT q, the action is given by λ.x � x
λ .

Now let X be a fixed Gm-space over S.

Definition 3.2. [Ri16, Definition 1.3] Put

X0 � HomGm

S pS
, Xq Fixed points

X� � HomGm

S ppA1
Sq

�, Xq Attractor

X� � HomGm

S ppA1
Sq

�, Xq Repeller.

Remark 3.3. We identify
X � HomGm

S pGm, Xq

via: for all T {S we send a map GmpT q
f
Ñ XpT q to fp1q P XpT q.

Remark 3.4. Repellers are attractors for opposite actions of Gm. So the repeller notion is inter-
esting only when considering both X� and X�, this will be the case for Braden Theorem.

Remark 3.5. To our knowledge, the definition of attractors as functors using equivariant morphisms
and pioneer studies appeared first in the works of Hesselink [He80, §4] and Jurciewick [Ju85, §1.2.10].
Drinfeld [Dr13] introduced attractors in the context of algebraic spaces.

Definition 3.6. We have natural maps.
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(1) The structural Gm-morphism pA1
Sq

� Ñ S
 induces a morphism X0 i�
Ñ X�.

(2) The structural Gm-morphism pA1
Sq

� Ñ S
 induces a morphism X0 i�
Ñ X�.

(3) The Gm-morphism S
 Ñ pA1
Sq

� corresponding to 0 induces a morphism X� q�

Ñ X0.

(4) The Gm-morphism S
 Ñ pA1
Sq

� corresponding to 0 induces a morphism X� q�

Ñ X0.

(5) The natural Gm-morphism Gm Ñ pA1
Sq

� induces a morphism X� p�

Ñ X.

(6) The natural Gm-morphism Gm Ñ pA1
Sq

� induces a morphism X� p�

Ñ X.

Definition 3.7. [Dr13] [Ri16, Definition 1.6] A Gm-action on an algebraic space X{S is called étale
locally linearizable if there exists a Gm-equivariant covering family tUi Ñ Xu, where Ui are S-affine
schemes with Gm-action and the maps Ui Ñ X are étale.

Definition 3.8. A Gm-action on an algebraic space X{S is called Zariski locally linearizable if there
exists a Gm-equivariant covering family tUi Ñ Xu, where Ui are S-affine schemes with Gm-action
and the maps Ui Ñ X are open immersions.

Remark 3.9. Assume that S is quasi-separated. By [AHR21, §1.1], we know that any Gm-action
on a quasi-separated algebraic space X{S locally of finite presentation is étale locally linearizable.

Theorem 3.10. [Ri16, Theorem 1.8 i) ii)] Let X be an algebraic space over S with an étale locally
linearizable Gm-action. Fix a covering family tUi Ñ Xu.

(1) The subfunctor X0 is representable by a closed subspace, and the induced familly tU0
i Ñ X0u

is S-affine, étale and covering.
(2) The subfunctor X� is representable by an algebraic space, and the induced family tU�

i Ñ
X�u is S-affine, étale and covering.

Proposition 3.11. [Ri16, Corollary 1.12] Under the assumptions of Theorem 3.10, the map X� Ñ
X0 is affine, has geometrically connected fibers and induces a bijection on the set of connected
components π0p|X

�|q � π0p|X
0|q of the underlying topological spaces.

Proposition 3.12. [Ri16, Theorem 1.8 iii)] If X{S is locally of finite presentation (resp. quasi-
compact; resp. quasi-separated; resp. separated; resp. smooth; resp. is a scheme), so are X0 and
X�.

Remark 3.13. (1) (Around the proof of Theorem 3.10) The first step is to prove that if X is S-
affine, thenX� andX0 are representable by S-affine schemes. In fact one can write explicitly
the quasi-coherent OX -algebras of X� and X0. We note that the connected assumption
on S in [Ri16, § 1.3. The affine case.] is unnecessary (cf [SGA3, Exp I Prop 4.7.3.1]).
It turns out that these affine considerations work for any action of a diagonalizable group
scheme DpMqS on an S-affine scheme (cf [Ma22]). To explain the next steps of Richarz’s
proof, let us fix an algebraic space X over S with an étale locally linearizable Gm-action.
Fix a covering family tUi Ñ Xu. Richarz shows that U0

i � X0 �X Ui [Ri16, Lemma 1.10]
and U�

i � X� �X0 U0
i [Ri16, Lemma 1.11]. By the affine case, U�

i and U0
i are S-affine

schemes. In this way Richarz obtains étale atlas of the form tU�
i Ñ X�u and tU0

i Ñ X0u
and obtains that X� and X0 are representable using [StP, TAG 03I2] (cf [Ri16] for details).
Propositions 3.11 and 3.12 are proved by Richarz using similar or direct methods.

(2) After [Dr13] and [Ri16], several generalizations and related works were realized. The works
[JS18] and [JS20] study actions of reductive groups on varieties and produce a Bialynicki-
Birula decomposition in this context. The work [AHR21, Corollary 14.10] gives a powerful
representability result on functors of equivariant morphisms in the context of stacks. The
work [HP19] gives also general representability results (cf [HP19, Introduction and Theorem
5.1.1]). The work [AHR20, §5.4, §5.5] studies Gm-actions on Deligne-Mumford stacks over
fields.
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Definition 3.14. Let X{S be an algebraic space with a Gm-action. The diagram

X0

X� �X X� X� X0

X� X

X0

j

i�

i�

1p�

1p�

q�

p�

q�

p�

is called the hyperbolic localization diagram and is denoted HyplocpXq.

Proposition 3.15. [Ri16, 1.16,1.17]

(1) The map X0 j
Ñ X� �X X� is an open and closed immersion, moreover if X is S-affine

then it is an isomorphism.
(2) Let S1 Ñ S be a morphism. Then XS1 is a Gm-space and HyplocpXS1q � HyplocpXq�S S1.

(3) The map X0 i�
Ñ X� is a closed immersion.

(4) If X{S is separated, X� p�

Ñ X is a monomorphism.

Example 3.16. (1) Let Gm act on Gm by multiplication, then X0 � H � X� � X�.
(2) Let Gm act on A1 by multiplication, then X0 � t0u. We have X� � A1 and X� � t0u.

Example 3.17. Let k be a field and S � Specpkq. Let Gm act on An for some n. Then we get an
action of Gm on X � PpAnq. The action of Gm on X is Zariski locally linearizable. Moreover the
restriction of the mapX� Ñ X on each component ofX� is locally closed (cf [DG13, Theorem 1.6.8]
and references given there for a more general statement). We now give an example. Let Gm act on

A3 via λ.px, y, zq � pλx, λy, zq. Then X0 � tr0, 0, 1su
² �P1

trx, y, 0su and X� �
�A2

trx, y, 1su
² �P1

trx, y, 0su.

4. Braden Theorem

Let X{S be an algebraic space. Let Λ � Z{nZ with n ¡ 1 invertible on S. Let DpX,Λq be the
unbounded derived category of pXét,Λq-modules, where Xét denotes the étale topos associated with
X (cf Talk 2). Let f : Y Ñ X be a morphism of S-spaces, assume it is locally of finite type.

Let

f� : DpX,Λq Ñ DpY,Λq

f� : DpY,Λq Ñ DpX,Λq

bX : DpX,Λq �DpX,Λq Ñ DpX,Λq

HomX : DpX,Λqop �DpX,Λq Ñ DpX,Λq

f ! : DpX,Λq Ñ DpY,Λq

f! : DpY,Λq Ñ DpX,Λq

be the six operations (cf Talk 2). The map q� : X� Ñ X0 induces a map

DpX�,Λq
pq�q!
Ñ DpX0,Λq.

The map p� : X� Ñ X induces a map

DpX,Λq
pp�q�

Ñ DpX�, Xq.
4



By composition we get a map DpX,Λq
L�

X{S
:�pq�q!�pp

�q�

ÝÑ DpX0,Λq. The map q� : X� Ñ X0 induces
a map

DpX�,Λq
pq�q�
Ñ DpX0,Λq.

The map p� : X� Ñ X induces a map

DpX,Λq
pp�q!

Ñ DpX�, Xq.

By composition we get a map DpX,Λq
L�

X{S
:�pq�q��pp

�q!

ÝÑ DpX0,Λq. Braden found a transformation
of functors L�X{S Ñ L�X{S . Let us explain this. By adjunction we have a transformation

Id Ñ pp�q�pp
�q�.

Composing with the functor pi�q�pp�q! we get a transformation

pi�q�pp�q! Ñ pi�q�pp�q!pp�q�pp
�q�.

By base change pp�q!pp�q� � p1p�q�p
1p�q! so we get a transformation

pi�q�pp�q! Ñ pi�q�p1p�q�p
1p�q!pp�q�.

Since j is an open and closed immersion, pj!, j�q are adjoint so we get a transformation

pi�q�pp�q! Ñ pi�q�p1p�q�j�j
!p1p�q!pp�q�.

Because of p1p�q � j � i�, p1p�q � j � i� and pi�q�pi�q� � Id, we get a transformation

pi�q�pp�q! Ñ pi�q!pp�q�.

The unit transformation Id Ñ pi�q�pi
�q� induces a transformation pq�q� Ñ pq�q�pi

�q�pi
�q� �

pi�q�, we thus get a transformation

pq�q�pp
�q! Ñ pi�q!pp�q�.

Analogously we have a transformation pi�q! Ñ pq�q!, we thus get a transformation

L�X{S � pq�q�pp
�q! Ñ L�X{S � pq�q!pp

�q�.

Definition 4.1. The arrow L�X{S Ñ L�X{S introduced above is called Braden transformation.

Let X{S be a Gm-space. Let a : Gm �S X Ñ X be the map associated to the action of Gm on
X. Let p : Gm �S X Ñ X be the projection. Let A P DpX,Λq be a complex.

Definition 4.2. The complex A is Gm-equivariant if there exists an isomorphism a�A � p�A in
DpGm �S X,Λq.

Definition 4.3. Let DpX,ΛqGm-mon be the full category of DpX,Λq strongly generated by Gm-
equivariant complexes. The objects of DpX,ΛqGm-mon are called Gm-monodromic complexes.

Let X{S be an algebraic space locally of finite presentation with an étale locally linearizable
Gm-action. Let n ¡ 1 invertible on S and Λ � Z{nZ. Let D�pX,Λq be the full subcategory of
DpX,Λq of bounded below complexes. The following is called Braden Theorem.

Theorem 4.4. [DG13] [Ri16, Theorem B]

(1) For A P D�pX,ΛqGm-mon, the arrow

L�X{SA Ñ L�X{SA

of DpX0,Λq associated to Braden transformation is an isomorphism.
(2) For any morphism of schemes f : S1 Ñ S, the isomorphism in p1q is compatible with base

change along f� and f�. If f is locally of finite type, it is also compatible with f! and f !.

We refer to Talk 3 for the definition of being ULA.
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Proposition 4.5. Let X{S be a separated scheme of finite presentation with a Gm-action. Let
A P DpX,Λq be a Gm-monodromic complex that is ULA. Then L�X{SpAqp� L�X{SpAqq is ULA

relatively to X0 Ñ S.

Proof. Using [HS21, Theorem 4.4 (iv)], we reduce to the case where S is a valuation ring with
algebraically closed fraction field. Then [HS21, Theorem 4.1 (iv)] shows that if j : Xη Ñ X is the
inclusion of the generic fiber, then we have an equivalence DpXη,Λqcons Ñ DULApX{S,Λq given by
j� and j�. Moreover we have A � j�j

�pAq. Using Theorem 4.4 (2), we have

L�X{SpAq � L�X{Sj�j
�pAq � j0�L

�
Xη

j�pAq

where j0 is the morphism X0
η Ñ X0. Since A is ULA, j�A is constructible. We have L�Xη

� pq�η q! �

pp�η q
�. Pullbacks always preserve constructibility (cf Talk 2), so pp�η q

� preserves constructibility.

The morphism q�η is separated and finitely presented, and so pq�η q! preserves constructibility (cf Talk

2). So L�Xη
j�pAq is constructible. Now j0�L

�
Xη

j�pAq is ULA. □
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