
TALK 3: UNIVERSALLY LOCALLY ACYCLIC SHEAVES

PATRICK BIEKER

In these notes we introduce universally locally acyclic sheaves following [HS21] (and [LZ20] and
[FS21]). In [LZ20] ULA-sheaves are characterised as dualisable objects in a certain symmetric
monoidal 2-category. We use this approach to rederive many useful properties of ULA-sheaves. As
an application, we use ULA-sheaves to study the nearby cycles functor. The nearby cycles functor
is used critically in [HS21] to show that their relative perverse t-structure has favourable properties.

These are notes for a talk from a workshop on the Geometric Satake equivalence in Clermont-
Ferrand in January 2022. We closely follow [HS21, Sections 3 and 4] while trying to provide more
details at various points.

Setup. We fix a prime ℓ. Let Λ be a finite ℓ-torsion ring (for example Λ � Z{ℓn)1. Further, we
assume that all schemes are qcqs, and live over Zr 1ℓ s. For simplicity, we moreover assume that

schemes have finite ℓ-cohomological dimension2. This assumption is satisfied for all schemes of finite
type over a finite field or an algebraically closed field3; this includes the situation relevant to the
proof of the geometric Satake equivalence.

Let us recall some of the facts from the previous talk, for precise references for the claims below
compare the notes of talk 2. We denote by DpXq � DpXét,Λq the derived category of sheaves of Λ-
modules on the étale site of X4. Furthermore, we denote by DconspXq � DpXq the full subcategory
of perfect-constructible complexes. Due to our finiteness assumption, DpXq is left-complete and
compactly generated with compact objects DconspXq. Recall moreover, that DpXq supports a six-
functor formalism. In other words, we have an adjoint pair of endofunctors �bL

Λ�, RHomΛp�,�q,
for any morphism of schemes f : X Ñ Y an adjunction

DpY q
f� // DpXq
Rf�

oo

and finally, when f is separated and of finite type we have an adjunction

DpXq
Rf! // DpY q
Rf !

oo .

These functors satisfy the usual properties, for example proper (respectively smooth) base change or
projection formulas. Moreover, bL

Λ, f
� and Rf! preserve perfect-constructible objects by the usual

finiteness results. However, their respective right adjoints may not preserve perfect-constructibles
in general.

1[HS21] also consider more general coefficients Λ, for example Λ � Zℓ or Λ � Qℓ using the notion of constructible

sheaves of [HRS21].
2This assumption is purely to simplify the presentation. In order to remove it, we would need to pass to the

left-completion of the derived category. All the results presented here remain true.
3More generally, by a result of Gabber all affine schemes X Ñ S of finite type over an affine scheme S all of

whose connected components are spectra of absolutely integrally closed valuation rings have finite ℓ-cohomological

dimension. This can be useful to reduce to the case of finite ℓ-cohomological dimension in general.
4For our purposes it suffices to consider DpXq as a triangulated category. For the descent results in [HS21] (which

we do not discuss in detail here) it is however necessary to view DpXq as 8-categories.
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1. The classical approach to universal local acyclicity

Roughly speaking, ULA sheaves relative to a map f : X Ñ S of schemes should be constructible
sheaves on X such that their cohomology on all geometric fibres are isomorphic. We follow the
presentation of [Sch20, Lecture 18].

For a scheme X and a geometric point x̄ of X we denote by Xx̄ the strict Henselisation of X at
x̄. We say that a geometric point x̄1 of X is a generisation of x̄ if x̄1 Ñ X factors through Xx̄.

Definition 1.1. Let f : X Ñ S be a separated map of finite presentation. We say a complex
A P DconspXq is f -locally acyclic (in the classical sense) if for all geometric points s̄Ñ S, geometric
points x̄Ñ X lying over s̄ and generisations t̄ of s̄

x̄ X

t̄ s̄ S

the natural map

Ax̄ � RΓpXx̄, Aq Ñ RΓpXx̄ �Ss̄ t̄, Aq

is an isomorphism.
Moreover, we say that that A is f -universally locally acyclic (in the classical sense) (or f -ULA)

if it is locally acyclic after any base change S1 Ñ S.

While in general being locally acyclic may not be stable under base change, by a theorem of
Gabber [LZ17, Corollary 6.6], when S is noetherian, A is locally acyclic if and only if A is universally
locally acyclic.

Remark 1.2. (i) By [Ill06, Corollary 3.5], A is universally locally acyclic if and only if after
any base change S1 Ñ S the natural map

Ax̄ Ñ RΓpXx̄ �Ss̄ St̄, Aq

is an isomorphism. This characterisation allows for a generalisation to the world of dia-
monds and is thus used in [FS21].

(ii) These conditions clearly also imply that after any base change along SpecV Ñ S for any
rank 1 valuation ring V with algebraically closed fraction field K and any geometric point
xÑ X mapping to the special point of SpecV , the map

A|x � RΓpXx, Aq Ñ RΓpXx �SpecV SpecK,Aq

is an isomorphism. We show in Theorem 4.4 below that this condition is also sufficient.

Remark 1.3. When S � X and f : X Ñ X is the identity, for a generisation ȳù x̄ of a geometric
point x̄Ñ X the map

Ax̄ � RΓpXx̄, Aq Ñ RΓpXȳ, Aq � Aȳ

is the specialisation map. As perfect-constructible complexes are locally constant if and only if
all specialisation maps are isomorphisms, compare [Sta, Tag 0GKC], it follows that a perfect-
constructible complex on X is idX -universally acyclic if and only if it is locally constant.

2. The symmetric monoidal 2-category of cohomological correspondences

We now present the approach of [LZ20] and [HS21] to define universally local acyclic sheaves,
characterising ULA sheaves as dualisable objects in a certain symmetric monoidal 2-category of
cohomological correspondences. [LZ20] and [HS21] consider slightly different categories, however
the resulting notion of ULA-sheaves agrees. We follow the approach of [HS21].

We start by recalling the definition and basic properties of dualisable obejcts.

https://stacks.math.columbia.edu/tag/0GKC
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Definition 2.1. Let pD,b,1q be a symmetric monoidal 2-category, where b denotes the tensor
product on D and 1 its tensor unit. An object X of D is called dualisable if there exists an object
X_) together with maps ε : X bX_ Ñ 1 and η : 1Ñ X bX_, called counit and unit, respectively,
such that the composites

X Ñ X bX_ bX Ñ X, X_ Ñ X_ bX bX_ Ñ X_

are isomorphic to the respective identities. The object X_ is called the dual of X. It is unique if it
exists, compare Remark 2.2 below, justifying the notation.

Remark 2.2 (c.f. [LZ20, Remark 1.3]). We collect some direct consequences. Let X be a dualisable
object in a symmetric monoidal 2-category pD,b,1q as defined above.

(i) The unit and counit of X show that � b X_ is both left and right adjoint to � b X.
Thus, internal Hom objects HomDpX,Y q exist for all objects Y of D and are given by
HomDpX,Y q � Y bX_. In particular, X_ � HomDpX,1q.

(ii) The dual X_ is dualisable with dual X. In particular, the biduality map X Ñ pX_q_ is
an isomorphism.

(iii) For another dualisable object Y of D also the tensor product XbY is dualisable with dual
X_ b Y _. Unit and counit are given by the product of the respective maps for X and Y .

Lemma 2.3 ([LZ20, Lemma 1.4]). Let pD,b,1q be a symmetric monoidal 2-category. Then X is
dualisable in D if and only if HomDpX,1q and HomDpX,Xq exist and the natural map

m : X bHomDpX,1q Ñ HomDpX,Xq

is an isomorphism.

The mapm is constructed as follows: For all objectsX of D we have a natural map εX : X_bX Ñ
1 given by the counit of the tensor-hom adjunction. The map m is then the adjoint of idX b εX .

Proof. One direction follows directly from the previous remark. Let us now assume that X b
HomDpX,1q Ñ HomDpX,Xq is an isomorphism. We set X_ � HomDpX,1q and define the unit
η : X_bX Ñ 1 as the evaluation, i.e. the adjoint map of the identity X_ Ñ X_ and the counit as

the composition 1Ñ HomDpX,Xq
m�1

ÝÝÝÑ X bX_, where the first map is the adjoint of the identity
X Ñ X. We can now check that the maps satisfy the unit-counit equations. □

We now present the 2-categories [HS21] use to define universally locally acyclic sheaves. For the
remainder of this section let us fix a base scheme S. Recall that by our standing assumption S is
qcqs and ℓ is invertible on S.

Definition 2.4. We define a symmetric monoidal 2-category CS as follows:


 Objects are schemes f : X Ñ S separated and of finite presentation over S.

 Morphisms are given by FunCS

pX,Y q :� DpX�SY q with composition given by convolution

DpX �S Y q �DpY �S Zq Ñ DpX �S Zq

pA,Bq ÞÑ A �B � RπXZ!pπ
�
XY AbL

Λ π�Y ZBq,

where πXY , πXZ , πY Z are the obvious projections defined on X �S Y �S Z, and identities
are given by

R∆X{S!Λ � R∆X{S�Λ,

where ∆X{S : X Ñ X �S X is the diagonal. As we assumed X{S to be separated and
finitely presented, its diagonal is a finitely presented closed immersion.


 The symmetric monoidal structure on CS is given on objects by X b Y � X �S Y , and
similarly on morphisms by exterior tensor products. The tensor unit is given by S.
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Note that as DpX �S Y q is symmetric in X and Y , CS is canonically isomorphic to its opposite
category Cop

S , where the direction of 1-morphisms (but not 2-morphisms) is reversed.
We check that this construction is well-defined. For associativity of the composition we see for

A P DpW �S Xq, B P DpX �S Y q and C P DpY �S Zq using proper base change and the projection
formula that

pA �Bq � C � RπWZ!pπ
�
WY pRπWY !pπ

�
WXAbL

Λ π�XY Bqq b
L
Λ π�Y ZCq

� RπWZ!pRπWYZ!pπ
�
WXY pπ

�
WXAbL

Λ π�XY Bqq b
L
Λ π�Y ZCq

� RπWZ!pRπWYZ!pπ
�
WXAbL

Λ π�XY Bq b
L
Λ π�Y ZCq

� RπWZ!pRπWYZ!pπ
�
WXAbL

Λ π�XY B bL
Λ π�Y ZCqq

� RπWZ!pπ
�
WXAbL

Λ π�XY B bL
Λ π�Y ZCq.

Here (and in the following), we use a slight abuse of notation and denote for example by πWZ the
projection to W �S Z from both W �S Y �S Z and W �S X �S Y �S Z. It is always clear from
context which projection exactly is meant.

Similarly, we see that A � pB � Cq � RπWZ!pπ
�
WXAbL

Λ π�XY B bL
Λ π�Y ZCq, showing associativity.

Moreover, in order to check that the identities defined above are indeed identities, we have to check
that for A P DpX �S Y q we have

pR∆X{S!Λq �A � RπXp1qY !pπ
�
Xp1qXp2qR∆X{S!ΛbL

Λ π�Xp2qY Aq � A,

where we denote by Xp1q (respectively Xp2q) the first (respectively second) factor of X�SX�S Y �
Xp1q �S Xp2q �S Y . For this, we note that using the adjunctions we get for any B P DpX �S Y q:

HompRπXp1qY !pπ
�
Xp1qXp2qR∆X{S!ΛbL

Λ π�Xp2qY Aq, Bq

� Hompπ�Xp1qXp2qR∆X{S!ΛbL
Λ π�Xp2qY A, π!

Xp1qY Bq

� HompRp∆X{S � idY q!π
�
XΛ,RHomΛpπ

�
Xp2qY A, π!

Xp1qY Bqq

� HompΛ, p∆X{S � idY q
!RHomΛpπ

�
Xp2qY A, π!

Xp1qY Bqq

� HompΛ,RHomΛpA,Bqq

� HompA,Bq.

In particular, the endofunctor RπXp1qY !pπ
�
Xp1qXp2qR∆X{S!Λb

L
Λπ

�
Xp2qY

�q on DpX�SY q is left adjoint
to the identity functor. Hence, we have a natural isomorphism

RπXp1qY !pπ
�
Xp1qXp2qR∆X{S!ΛbL

Λ π�Xp2qY Aq Ñ A.

Lemma 2.5. All objects of CS are self-dual in this sense (that is, all objects are dualisable and the
dual of an object X is X itself) with unit S Ñ X �S X and counit X �S X Ñ S both given by
R∆X{S!Λ P DpX �S Xq.

Proof. We have to check that the unit-counit equations are satisfied, in other words that the induced
map X Ñ X �X �X Ñ X is the identity on X. Plugging in the definitions we see that the map
is given by

pR∆X{S!Λb idX�Xq � pidX�X bR∆X{S!Λq

� Rπ15!pπ
�
1�4pπ

�
12R∆X{S!ΛbL

Λ π�34R∆X{S!Λq b
L
Λ π�2�5pπ

�
23R∆X{S!ΛbL

Λ π�45R∆X{S!Λqq

� Rπ15!pπ
�
12R∆X{S!ΛbL

Λ π�23R∆X{S!ΛbL
Λ π�34R∆X{S!ΛbL

Λ π�45R∆X{S!Λq

� idX � idX � idX � idX

� idX ,

where we denote by π� the projection to the corresponding factors of X �S X �S X �S X �S X. In
the second to last step we used the formula in the proof of associativity of convolution above. □

In particular, internal Hom’s exist in CS and are given by HomCS
pX,Y q � X �S Y .
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Definition 2.6. We also consider the lax co-slice 2-category C1S �Sz CS (or equivalently the colax
slice category). It is more explicitly given as follows:


 Objects of C1S are pairs pX,Aq, where f : X Ñ S is a separated map of finite presentation,
i.e. an object of CS , and A P DpXq � FunCS

pS,Xq a morphism from S to X in CS .

 Morphisms in C1S between objects pX,Aq and pY,Bq are given by a morphism C from X to
Y in CS together with a 2-morphism A � C Ñ B, i.e. by C P DpX �S Y q � FunCS

pX,Y q
together with a map

RπY !pπ
�
XAbL

Λ Cq Ñ B,

where πX , πY are the natural projections on X �S Y .

The symmetric mononoidal structure on CS induces a symmetric monoidal structure on C1S , which
is given by

pX,Aqb pY,Bq � pX �S Y,AbBq,

with tensor unit given by pS,Λq.

Lemma 2.7 ([LZ20, Lemma 2.8]). The symmetric monoidal structure on C1S is closed with internal
Hom’s given by

HomC1S
ppX,Aq, pY,Bqq � pX �S Y,RHomΛpπ

�
XA,Rπ!

Y Bqq.

Proof. We construct an equivalence of categories

FunC1S ppX,Aqb pY,Bq, pZ,Cqq Ñ FunC1S ppX,Aq,RHomΛpπ
�
Y B,Rπ!

ZCqq.

Recall that objects on the left hand side are given by

pD, g : pAbBq �D Ñ Cq

with D P DpX �S Y �S Zq while objects on the right hand side are given by

pD, g : A �D Ñ RHomΛpπ
�
Y B,Rπ!

ZCqq

with D P DpX �S Y �S Zq. The equivalence of categories is then given by

HomppAbBq �D,Cq � HompRπZ!pπ
�
XAbL

Λ π�Y B bL
Λ Dq, Cq

� Hompπ�XAbL
Λ π�Y B bL

Λ D,π!
ZCq

� Hompπ�XAbL
Λ D,RHomΛpπ

�
Y B, π!

ZCqq

p�q
� Hompπ�XAbL

Λ D,π!
Y ZRHomΛpπ

�
Y B, π!

ZCqq

� HompRπY Z!pπ
�
XAbL

Λ Dq,RHomΛpπ
�
Y B, π!

ZCqq

� HompA �D,RHomΛpπ
�
Y B, π!

ZCqq,

which is clearly functorial. For p�q note that the RHomΛp�q in the third line is an object of
DpX � Y � Zq (and the projections are maps πY : X � Y � Z Ñ Y , and similarly for Z), while in
the fourth line the RHomΛp�q is then an object of DpY �Zq (with the projections also only defined
on Y � Z). □

We can now give the definition of ULA-sheaves of [HS21]:

Definition 2.8. Let f : X Ñ S be a separated map of finite presentation and A P DpXq. Then A
is called f -universally locally acyclic if pX,Aq P C1S is dualisable.

We denote by DULApX{Sq � DpXq the subcategory of f -universally locally acyclic sheaves.

Remark 2.9. There are various (equivalent) variants of this definition of universally locally acyclic
sheaves.
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(i) We could also define the categories CS (and thus C1S) using only constructible complexes as
functor categories in CS . [HS21] call this setting (B), while the definition we presented above
is setting (A). The inclusion DconspXq � DpXq induces a symmetric monoidal functor on
the level of the categories C1S . Thus, as symmetric monoidal functors preserve dualisable
objects, any dualisable object is also dualisable in the full category C1S . That any dualisable
object in C1S is dualisable in the corresponding perfect-constructible category essentially
comes down to the fact that universally locally acyclic sheaves are automatically perfect-
constructible by Proposition 3.7. We show that the two notions of universally locally acyclic
sheaves agree in Remark 3.8 below. Note however, that in the perfect-constructible setting
the analogue of category C1S does not have internal Hom objects, in particular the internal
Hom objects of C1S may fail to be perfect-constructible in general.

(ii) In [FS21, Theorem IV.2.23], ULA sheaves are characterised as those sheaves A P DpXq
such that A considered as a map S Ñ X in CS is a left adjoint. Recall that in a 2-category
D a map f : X Ñ Y is a left adjoint of g : Y Ñ X if there are 2-morphisms α : idX Ñ gf
and β : fg Ñ idY such that the composites

f
fα
ÝÝÑ fgf

βg
ÝÑ f and g

αg
ÝÝÑ gfg

gβ
ÝÑ g

are the identities.
That this notion agrees with our definition is formal and shown in [HS21, Proposition

3.1].
(iii) In [LZ20], ULA-sheaves are defined as dualisable objects in a symmetric monoidal 2-

category of cohomological correspondences (in place of C1S). However, there is a natural
symmetric monoidal functor to C1S , and moreover, the internal Hom objects in both cate-
gories agree. In particular, by the characterisation of dualisable objects in Lemma 2.3, the
dualisable objects in both categories agree.

In the following, by ULA sheaves we always mean ULA-sheaves in the sense of Definition 2.8 and
refer to ULA-sheaves in the classical sense to perfect-constructible complexes satisfying Definition
1.1. We show in Theorem 4.4 below that the two notions of ULA-sheaves actually agree.

3. Properties of ULA sheaves

We can now collect properties of ULA-sheaves. Using the description of ULA-sheaves as certain
dualisable objects, we are able to show for example that they satisfy Verdier biduality and a Künneth-
type formula. The results in this section are essentially due to [LZ20]. We closely follow the
presentation of [HS21, Section 3]. In this section f : X Ñ S will always denote a separated map of
finite presentation. First, we give the following description of duals of ULA-sheaves.

Remark 3.1. Let A P DpXq be f -universally locally acyclic. Using the formula of Remark 2.2
together with the description of internal Hom’s in C1S from Lemma 2.7 we see that the dual of
pX,Aq in C1S is given by

pX,Aq_ � HomC1S
ppX,Aq, pS,Λqq � pX,DX{SpAqq,

where we denote by DX{SpAq � RHomΛpA, f !Λq the relative Verdier dual of A.

The following properties of ULA-sheaves follow directly from the general discussion of dualisable
objects above (compare Remark 2.2 and Lemma 2.3) together with the description of internal Hom’s
in C1S from Lemma 2.7 (and the above description of duals).

Proposition 3.2 ([HS21, Proposition 3.4 (ii)]). Let A P DpXq be f -universally locally acyclic.
Then DX{SpAq is f -universally locally acyclic and the biduality map

AÑ DX{SpDX{SpAqq

is an isomorphism.
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Lemma 3.3 ([HS21, Proposition 3.4 (iv)]). Let g : Y Ñ S be separated and of finite presentation.
Let A P DpXq be f -universally locally acyclic and B P DpY q. Then the natural maps

DX{SpAqbB � π�XDX{SpAq b
L
Λ π�Y B Ñ RHomΛpπ

�
XA,Rπ!

Y Bq

and
π�XAbL

Λ π�Y B Ñ RHomΛpπ
�
XDX{SpAq, Rπ!

Y Bq

are isomorphisms in DpX �S Y q.

Proposition 3.4 ([HS21, Proposition 3.3]). Let f : X Ñ S be a separated map of finite presentation
and A P DpXq. Then A is f -universally locally acyclic if and only if the map

π�1DX{SpAq b
L
Λ π�2AÑ RHomΛpπ

�
1A,Rπ!

2Aq

is an isomorphism in DpX �S Xq.

Note that this also directly implies that the idS-universally locally acyclic sheaves are exactly
the dualisable objects in DpSq, in other words the locally constant sheaves with perfect values by
[CD16, Remark 6.3.27].

We use these formulas to show the following permanence properties of universally locally acyclic
sheaves.

Proposition 3.5. Let A P DpXq be f -universally locally acyclic. Let g : Y Ñ S be a separated map
of finite presentation.

(i) [LZ20, Proposition 2.23] Let h : X Ñ Y be a proper map of S-schemes. Then Rh�A is
g-universally locally acyclic.

(ii) Let h : X Ñ Y be a smooth and separated map of S-schemes and let B P DpY q be g-
universally locally acyclic. Then h�B is f -universally locally acyclic.

(iii) Let j : S Ñ S1 be smooth. Then A is j � f -universally locally acyclic.
(iv) [HS21, Proposition 3.4 (i)] Let S1 Ñ S be any map of schemes, and f 1 : X 1 � X�S S

1 Ñ S1

the base change of f , and A1 P DpX 1q the pullback of A. Then A1 is f 1-universally locally
acyclic.

In particular, Verdier duality commutes with base change along S1 Ñ S in the sense that
h�DX{SpAq � DX1{S1pA1q, where we denote by h : X 1 Ñ X the projection.

(v) Let A P DpXq and B P DpY q be two universally locally acyclic sheaves. Then A b B P
DpX �S Y q is pf, gq-universally locally acyclic.

(vi) Let B P DpXq be a retract of A, that means there are maps B Ñ A and A Ñ B in DpXq
such that their composition B Ñ A Ñ B is the identity of B. Then B is f -universally
locally acyclic.

Proof. (i) We follow the proof of [LZ20, Proposition 2.23]. It clearly suffices to show that the
map

DY {SpRh�AqbB � π�Y DY {SpRh�Aq b
L
Λ π�ZB Ñ RHomΛpπ

�
Y Rh�A,Rπ!

ZBq

is an isomorphism for all g : Z Ñ S separated and of finite presentation and B P DpZq. As
A is f -universally locally acyclic, we see

π�XDX{SpAq b
L
Λ π�ZB Ñ RHomΛpπ

�
XA,Rπ!

ZBq

is an isomorphism by Lemma 3.3. Again, recall that by our convention πZ denotes either
of the projections X �S Z Ñ Z or Y �S Z Ñ Z depending on the context. We apply
Rph � idZq� and obtain on the one hand using the projection formula and proper base
change

Rph� idZq�pπ
�
XDX{SpAq b

L
Λ π�ZBq �

�
Rph� idZq�π

�
XDX{SpAq

�
bL

Λ π�ZB

�
�
π�XRh�DX{SpAq

�
bL

Λ π�ZB

� π�XDY {SpRh�Aq b
L
Λ π�ZB,
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and on the other hand

Rph� idZq�RHomΛpπ
�
XA,Rπ!

ZBq � RHomΛpRph� idZq�π
�
XA,Rπ!

ZBq

� RHomΛpπ
�
Y Rh�A,Rπ!

ZBq

again using a version of relative Poincaré duality and proper base change. This shows the
claim.

(ii) We proceed as in (i): As B is g-universally locally acyclic, we get from Lemma 3.3 that

π�Y DY {SpBq b
L
Λ π�ZC Ñ RHomΛpπ

�
Y B,Rπ!

ZCq

is an isomorphism for all g : Z Ñ S separated and of finite presentation and C P DpZq.
Working locally on Y , we may assume that h is smooth of constant relative dimension d.
In particular, Rh! � h�rds. This time, we apply ph� idZq

� to the isomorphism and obtain

π�Xh�DY {SpBq b
L
Λ π�ZC � π�XDX{SpRh!Bq bL

Λ π�ZC

� π�XDX{Sph
�Brdsq bL

Λ π�ZC

� pπ�XDX{Sph
�Bq bL

Λ π�ZCqr�ds,

and

ph� idZq
�RHomΛpπ

�
Y B,Rπ!

ZCq � Rph� idZq
!RHomΛpπ

�
Y B,Rπ!

ZCqr�ds

� RHomΛpph� idZq
�π�Y B,Rph� idZq

!Rπ!
ZCqr�ds

� RHomΛpπ
�
Y h

�B,Rπ!
ZCqr�ds.

Thus, the natural map

π�XDY {Sph
�Aq bL

Λ π�ZB Ñ RHomΛpπ
�
Y h

�A,Rπ!
ZBq

is an isomorphism. This shows the claim.
(iii) Working locally, we assume that j is smooth of constant relative dimension d. We denote

by Y � X �S1 S and by B � π̃�XA the pullback of A to Y , where π̃X : Y Ñ X is the
projection. In particular, π̃X is smooth of relative dimension d. Then X �S Y � X �S1 X
and the projections πi : X �S1 X Ñ X are identified with π1 � πX and π2 � π̃X � πX for
the projections πX , πY on X �S Y . By the second part of Lemma 3.3, we find

π�1DX{S1pAq bL
Λ π�2A � π�XDX{SpAqrds b

L
Λ π�Y B

�
ÝÑ RHomΛpπ

�
XA,Rπ!

Y Bqrds

� RHomΛpπ
�
1A,Rπ!

2Aq

is an isomorphism. Hence, A is j � f -universally locally acyclic.
(iv) We claim that for a map s : S1 Ñ S the pullback functor CS Ñ CS1 : X ÞÑ X �S S1 is

symmetric monoidal. In order to see this, we note that pX �S Y qS1 � XS1 �S1 YS1 , and on
functor categories for a pair of complexes A P DpXq and B P DpY q we have

s�X�SY pAbBq � s�X�SY pπ
�
XAbL

Λ πY �Bq � π�XS1
s�XAbL

Λ π�YS1
s�Y B � s�XAb s�Y B,

where we denote by sX�SY , sX , sY the respective base changes of s. This also shows that the
induced pullback functor C1S Ñ C1S1 is symmetric monoidal and hence preserves dualisable
objects.

More precisely, the pullback functor maps dual pairs to dual pairs. This shows the claim
for Verdier duals using Remark 3.1.

(v) This follows from Remark 2.2: By assumption pX,Aq and pY,Bq are dualisable in C1S , hence
also pX,Aqb pY,Bq � pX �S Y,AbBq is dualisable.

(vi) Since B is a retract of A, the natural map DX{SpBq b B Ñ RHomΛpπ
�
1B,Rπ!

2Bq is a

retract of DX{SpAq b A Ñ RHomΛpπ
�
1A,Rπ!

2Aq. But retracts of isomorphisms are again
isomorphisms.

□
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Lemma 3.6. Let g : X Ñ Y be a separated map of finite type between schemes of finite ℓ-cohomological
dimension. Then Rg! commutes with direct sums.

[LZ17, Lemma 2.13] show the result under the assumption that X and Y both are finite dimen-
sional Noetherian. In our setting it is a special case of a classical general fact: If a left adjoint
functor between compactly generated triangulated categories preserves compact objects, its right
adjoint commutes with direct sums, see [Nee96, Theorem 5.1] (or also [FS21, Lemma IV.2.20]).

Proof. As DpXq is compactly generated with compact objects given by DconspXq, it suffices to check
that for all A P DconspXq and Bi P DpXq the canonical map

HompA,Rg!p
à
i

Biqq � HompA,
à
i

Rg!Biq

is an isomorphism. But by compactness of A and the fact that Rg! preserves perfect-constructible
objects we have

Hom

�
A,Rg!p

à
i

Biq

�
� Hom

�
Rg!A,

à
i

Bi

�
�
à
i

Hom pRg!A,Biq

�
à
i

Hom
�
A,Rg!Bi

�
� Hom

�
A,
à
i

Rg!Bi

�
.

□

We can now show that ULA-sheaves in our sense are indeed already perfect-constructible.

Proposition 3.7 ([HS21, Proposition 3.4 (iii)]). Let A P DpXq be f -universally locally acyclic.
Then A is perfect-constructible.

Proof. By our assumption X has finite ℓ-cohomological dimension5 and thus perfect-constructibility
is equivalent to compactness in DpXq. We thus have to show that RHomDpXqpA,�q commutes with
direct sums. By Lemma 3.3 applied to pX,Bq for any B P DpXq we get that

π�1DX{SpAq b
L
Λ π�2B � RHomΛpπ

�
1A,Rπ!

2Bq.

Taking RΓ �R∆!
X{S , we find that

RHomDpXqpA,Bq � RΓpX,RHomΛpR∆�
X{Sπ

�
1A,R∆!

X{SRπ!
2Bqq

� RΓpX,R∆!
X{Spπ

�
1DX{SpAq b

L
Λ π�2Bqq.

Now the functor on the right commutes with all direct sums in B. For pullback and bL
Λ this is clear

as they are left-adjoints, for RΓ this is a standard result ([Sta, Tag 0F11]), and for R∆!
X{S this

follows from the previous Lemma 3.6. Thus, A is compact, hence perfect-constructible. □

Remark 3.8. Recall from Remark 2.9 that we could also define universally locally acyclic sheaves
using versions of the categories CS and C1S using only the categories of perfect-constructible complexes

as functor categories in CS . Let us denote by C̃S and C̃1S the corresponding perfect-constructible

versions. We already argued in Remark 2.9 that dualisable objects in C̃1S are also dualisable in C1S .
We are now in a position to show that dualisable objects of CS are already dualisable objects of

C̃1S . Let A P DpXq be f -universally locally acyclic. By Proposition 3.2 also its relative Verdier dual
DX{SpAq is f -universally locally acyclic. Following Proposition 3.7, both A and DX{SpAq are then

perfect-constructible and hence both pX,Aq and pX,DX{SpAqq are objects of C̃1S . We claim that

they are dual to each other also in C̃1S . We want to show that the unit and counit witnessing the

duality in C1S also are already maps pS,Λq Ñ pX,Aqb pX,DX{SpAqq in C̃1S . But both the unit and

counit are given by Ab DX{SpAq, which is perfect-constructible, hence a map in C̃1S .

5In general we can reduce to this case by arguing v-locally on S.
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This finishes the proof that the two notions of universally locally acyclic sheaves using C1S and

C̃1S , respectively, agree.

We will need the following calculation.

Lemma 3.9 ([HS21, proof of Proposition 3.4 (v)]). Let g : Y Ñ S be a quasi-compact and quasi-
separated map. Let A P DpXq be f -universally locally acyclic. Then the natural map

AbL
Λ f�Rg�ΛÑ RπX�A|X�SY

is an isomorphism.

Proof. We first consider the case that g : Y Ñ S is separated and of finite presentation. Applying
RπX� to the formula from Lemma 3.3 for B � Λ yields

RπX�pA|X�SY q � RπX�pπ
�
XAb Λq

� RπX�RHomΛpπ
�
XDX{SpAq, Rπ!

Y Λq

� RHomΛpDX{SpAq, RπX�Rπ!
Y Λq

� RHomΛpDX{SpAq, Rf !Rg�Λq.

Again applying Lemma 3.3 for pS,Rg�Λq, we obtain an isomorphism

AbL
Λ f�Rg�ΛÑ RHomΛpDX{SpAq, Rf !Rg�Λq.

Thus, the natural map

AbL
Λ f�Rg�ΛÑ RπX�A|X�SY

is an isomorphism.
We extend this isomorphism to all maps g : Y Ñ S (note that g is automatically qcqs as S, Y

are assumed to be qcqs) by writing Y � limiPI Yi for a directed system gi : Yi Ñ S of separated
S-schemes of finite presentation. □

As a next step we show that ULA-sheaves are ULA in the classical sense.

Proposition 3.10 ([HS21, Proposition 3.4 (v)]). Let A P DpXq be f -universally locally acyclic.
For any geometric point xÑ X with image sÑ S, and any generisation t of s, the maps

Ax � RΓpXx, Aq Ñ RΓpXx �Ss
St, Aq Ñ RΓpXx �Ss

t, Aq

are isomorphisms. In particular, A is f -universally locally acyclic in the classical sense.

Proof. The last sentence of the claim follows from the first as A is perfect-constructible by Propo-
sition 3.7 and as being ULA is stable under base change by Proposition 3.5 (i).

Let x̄ Ñ X be a a geometric point of X lying over s̄ Ñ S. To show the claim, we may base
change to Ss̄. For any generisation t̄ù s̄ the maps Y � St Ñ Ss or Y � t Ñ Ss are in particular
qcqs. We compute the stalks of at xÑ X over sÑ S and obtain

pAbL
Λ f�Rg�Λqx̄ � Ax̄ b

L
Λ pRg�Λqs̄ � Ax̄ b

L
Λ RΓpY,Λq � Ax̄

and

pRπX�A|X�Ss̄Y
qx̄ � RΓpXx̄ �Ss̄

Y,Aq

using the formulas for stalks at geometric points of tensor products and derived direct images (we
use the bounded below case in [Sta, Tag 03Q9] together with the left completeness of DpXq). □

We mention the following arc-descent properties of universal locally acyclic sheaves. Recall that
a sheaf F on qcqs R-schemes with values in some 8-category with small limits and filtered colimits
is called finitary if for every system tYiuiPI indexed over some cofiltered partially ordered set I with

affine transition maps, we have limÝÑiPI
FpYiq

�
ÝÑ FplimÐÝiPI

Yiq, compare for example [BM21, Definition

3.1].

https://stacks.math.columbia.edu/tag/03Q9
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Proposition 3.11 ([HS21, Proposition 3.7]). Consider the functor taking any S1 over S to the
8-category DULApX 1{S1q � DpX 1q of universally locally acyclic sheaves on X 1 � X �S S1 over S1.
This defines a finitary arc-sheaf of 8-categories.

In particular, if A P DpXq and S1 Ñ S is an arc-cover such that A|X1 is universally locally acyclic
over S1, then A is universally locally acyclic over S.

Proof. In our setting, by [BM21, Theorem 5.4, Theorem 5.13] the functor X ÞÑ DconspXq defines
a finitary arc-sheaf of 8-categories.6 It thus suffices to show that universal local acyclicity can
be checked arc-locally on the base in order to conclude that it defines an arc-sheaf as well. Let
therefore A P DpXq and let S1 Ñ S be an arc-cover such that A|X1 is universally locally acyclic over
S1. By Propositions 3.2 and 3.7 its relative Verdier dual DX1{S1pA|X1q is perfect-constructible over
X 1. Hence, by arc-descent for perfect-constructible sheaves, DX1{S1pA|X1q descends to a perfect-
constructible sheaf B over X. Note that it may not be a priori clear that B � DX{SpAq. In order
to check that pX,Bq is a dual of pX,Aq in C1S , we claim that a unit and counit map are given by
AbB P DconspX�S Xq. We may argue arc-locally to show that unit and counit satisfy the required
identities. But over X 1, pA b Bq|X1 � A|X1 b DX1{S1pAq satisfies these identities by assumption.
Hence, A is f -universally locally acyclic.

It remains to check that S1 ÞÑ DULApX 1{S1q is finitary. We again denote by C̃1S the perfect-

constructible version of C1S from Remark 3.8. Recall that the dualisable objects of C̃1S and C1S agree.

As the functor X ÞÑ DconspXq is finitary, the formation of C̃1S takes cofiltered limits of affine schemes
S to filtered colimits of symmetric monoidal 2-categories. Hence, the same is true for dualisable
objects. □

In fact, one can check universal local acyclicity after pullback to absolutely integrally closed,
rank 1 valuation rings (note that the rank of a valuation ring is its Krull dimension). Recall that a
valuation ring is absolutely integrally closed if and only if its fraction field is algebraically closed by
[Sta, Tag 0DCQ] and [Sta, Tag 00IC].

Corollary 3.12 ([HS21, Corollary 3.9]). Let A P DconspXq. Then A is f -universally locally acyclic
if and only if for all rank 1 valuation rings V with algebraically closed fraction field K and all maps
SpecV Ñ S, the restriction A|XV

P DpXV q to XV � X �S SpecV is universally locally acyclic over
V .

Proof. Note that the condition is clearly necessary by Proposition 3.5 (iv). The converse follows
from results for finitary arc-sheaves (compare [BM21]): We may first assume that all connected
components of S are spectra of valuation rings by [BM21, Proposition 3.30]. By finitaryness we may
hence assume that S is the spectrum of a finite rank valuation ring by [BM21, Lemma 2.22]. By
arc-descent we may then reduce to the case that S is the spectrum of a rank 1 valuation ring, but
in this case A is ULA by assumption. □

4. Nearby cycles

We use our study of ULA-sheaves to study nearby cycles over absolutely integrally closed valuation
rings. Nearby cycles will be used critically in the next talk to show that the relative perverse t-
structure has favourable properties. We consider the following setup: Let V be an absolutely
integrally closed valuation ring. We denote by η P SpecV its generic point and by s P SpecV its
special point. Nearby cycles are used to compare the cohomologies of the generic and special fibres
of schemes over S. For a scheme X over S we denote by j : Xη Ñ X the inclusion of the generic and
by i : Xs Ñ X the inclusion of the special fibre. The nearby cycles functor RΨ on étale sheaves is
then defined as first pushing forward along j and then taking the pullback along i. In other words,

RΨ :� i�Rj� : DpXηq Ñ DpXsq.

We use our study of universally locally acyclic sheaves to obtain results for the nearby cycles functor.
Classically, the nearby cycles functor was studied over henselian discrete valuation rings [Del77, Th.

6[HS21, Theorem 2.2] extends this result to more general coefficients.

https://stacks.math.columbia.edu/tag/0DCQ
https://stacks.math.columbia.edu/tag/00IC
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finitude]. We rederive many of the classical results in our (non-noetherian) setting, in which they
are essentially due to [LZ20, Section 3], while the fact that nearby cycles commute with Verdier
duality in this setting already was observed by [Fuj97, proof of Lemma 1.5.1]. As before, we closely
follow the presentation of [HS21, Section 4].

Theorem 4.1 ([HS21, Theorem 4.1, Corollary 4.2]). Let S � SpecV be an absolutely integrally
closed valuation ring V with fraction field K. Let X be a separated scheme of finite presentation
over S with generic fibre Xη. The restriction functor

j� : DULApX{Sq Ñ DconspXηq

is an equivalence, whose inverse is given by Rj� : DconspXηq Ñ DpXq, where j : Xη Ñ X is the
inclusion. In particular, both the functors Rj� : DconspXηq Ñ DpXq and RΨ: DconspXηq Ñ DpXsq

(i) preserve constructibility;
(ii) their formation commutes with any pullback along a map S1 � SpecV 1 Ñ SpecV where

V Ñ V 1 is a flat map in the case of Rj�, respectively a faithfully flat map in the case of
RΨ, of absolutely integrally closed valuation rings;

(iii) commute with (relative) Verdier duality;
(iv) and satisfy a Künneth-type formula: if Y is another scheme of finite presentation over S,

then the diagrams

DconspXηq �DconspYηq
b //

Rj��Rj�

��

DconsppX �S Y qηq

Rj�

��
DpXq �DpY q

b // DpX �S Y q

respectively

DconspXηq �DconspYηq
b //

RΨ��RΨ�

��

DconsppX �S Y qηq

RΨ�

��
DpXsq �DpYsq

b // DppX �S Y qsq

commute.

Proof. We start by deducing properties (i)-(iv) from the first assertion.

(i) For Rj� this is part of the first assertion (using that ULA-sheaves are in particular perfect-
constructible by Proposition 3.7), for RΨ we moreover use that i� preserves perfect-
constructible complexes.

(ii) We first note that flatness (respectively faithfull flatness) of the map V Ñ V 1 guarantees
that the induced map SpecV 1 Ñ SpecV maps the generic point η1 of SpecV 1 to the generic
point η of SpecV (respectively that moreover the special point s1 of SpecV 1 maps to the
special point s of SpecV ). We denote by j1 : Xη1 Ñ XV 1 the inclusion of the generic
fibre of the base change of X to SpecV 1, and by g : XSpecV 1 Ñ X the projection. By the
discussion above we also have an induced map gη : Xη1 Ñ Xη of the generic fibres, such
that j � gη � g � j1. We need to check that the natural map

pRj�Aq|XV 1 � g�pRj�Aq Ñ Rj1�pg
�
ηAq � Rj1�pA|Xη1

q

is an isomorphism. For this we recall that by the first part of the theorem we have natural
isomorphisms j�Rj�AÑ A and B Ñ Rj�j

�B. Hence, we have

pj1q�g�pRj�Aq � g�η j
�Rj�A � g�ηA,

using again that Rj�A is f -ULA and that Rj� and j� are quasi-inverse equivalences by
the first part of the theorem. We apply Rj1� to obtain the claim. For the respective result
on nearby cycles we note that the fact that V Ñ V 1 is faithfully flat gives rise to a map
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gs : Xs1 Ñ Xs of the special fibres. We denote by RΨ1 � pi1q� �Rj1� : DpXη1q Ñ DpXs1q the
nearby cycles functor over SpecV 1. This implies together with the above that

pRΨAq|X1
s
� g�s1i

�Rj�A � pi1q�g�Rj�A � pi1q�Rj1�gηA � RΨ1pA|Xη1
q.

(iii) We recall that relative Verdier duality preserves universally locally acyclic sheaves by Propo-
sition 3.2 and that Verdier duality for universally locally acyclic sheaves commutes with
arbitrary base change by Proposition 3.5 (iv). We thus obtain for A P DconspXηq that

j�DX{SpRj�Aq � DXη{ηpj
�Rj�Aq � DXη{ηpAq,

giving the claim for Rj� after applying Rj�. For nearby cycles it then follows that

DXs{sRΨA � i�DX{SpRj�Aq � i�Rj�DXη{ηA � RΨpDXη{ηpAqq.

(iv) This follows from preservation of universal local acyclicity under exterior tensor products
by Proposition 3.5 (v). Namely, in a similar fashion as before we see that

j�X�SY pRjX�AbRjY �Bq � j�X�SY pπ
�
XRjX�AbL

Λ π�Y RjY �Bq

� πXηAbL
Λ πYηB � AbB

and

RΨXAbRΨY B � i�X�SY pRjX�AbRjY �Bq

� i�X�SY RjX�SY pAbBq � RΨX�SY pAbBq.

Now we prove the first part of the Theorem:
Fully faithfulness of j� : DULApX{Sq Ñ DconspXηq: We show that for any A P DULApX{Sq, the

natural map A Ñ Rj�j
�A is an isomorphism. In order to see that the map is an isomorphism, we

apply Lemma 3.9 to Y � SpecK Ñ SpecV and get an isomorphism A bL
Λ f�Rj�Λ

�
ÝÑ Rj�j

�A. It
thus suffices to show that Rj�Λ � Λ. We compute the stalks of Rj� at a geometric point s P S
using again [Sta, Tag 03Q9] and obtain

pRj�Λqs � RΓpη �S Ss,Λq � RΓpη,Λq � Λ.

Hence, RΓpη �S Ss,Λq is locally constant and thus indeed constant as V is absolutely integrally
closed. Thus, AÑ Rj�j

�A is an isomorphism and j� is fully faithful.
It remains to show that

j� : DULApX{Sq ãÑ DconspXηq

is essentially surjective: Indeed, we have just seen that the inverse functor is necessarily given by
Rj�. It thus suffices to check that Rj�A is f -universally locally acyclic for all A P DconspXηq. We
adapt Deligne’s proof of the constructibility of nearby cycles, [Del77, Th. finitude, Théorème 3.2].
We will argue by induction on the (relative) dimension d of X. We start by proving the following
reduction steps.

Step 1: Let g : X Ñ Y be a quasi-finite map of S-schemes. We show that if the claim holds for Y ,
it also holds for X. By Zariski’s Main Theorem (compare [Sta, Tag 05K0]) we can factor g � i � h,
where h : X Ñ Z is a quasi-compact open immersion and i : Z Ñ Y is finite.

X Z

Y

h

g

i

It thus suffices to show the reduction in the case that g is a quasi-compact open immersion and in
the case that g is finite.

We first consider the case that g is an open immersion: We consider the cartesian square of open
immersions:

https://stacks.math.columbia.edu/tag/03Q9
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Xη Yη

X Z

gη

j jY

g

Let us assume that we know the assertion for f 1 : Y Ñ S. Let A P DconspXηq. Then using that g
is an open immersion (and hence g�Rg! � id is an isomorphism by [BS13, Lemma 6.1.12]), we find
also using smooth base change

Rj�A � Rj�g
�
ηRgη,!A � g�RjY �Rgη,!A

is the pullback along a smooth map of the f 1-universally locally acyclic sheaf RjY �Rgη,!A. (Note
that Rgη,!A P DpYηq is again constructible). Hence, it is f -universally locally acyclic by Proposition
3.5 (ii).

It remains to show the claim for finite maps g. We use the criterion of Proposition 3.4 and show
that the map

π�1DX{SpRj�Aq b
L
Λ π�2Rj�AÑ RHomΛpπ

�
1Rj�A,Rπ!

2Rj�Aq

is an isomorphism in DpX�SXq. For this we note that by the arguments of the proof of Proposition
3.5 (i) the pushforward along g of the map yields the corresponding map for Rg�Rj�A � Rj�Rgη�A
in DpY q. As pushforward along g is conservative (see Lemma 4.2 below), this shows the claim.

Step 2: We show that the theorem implies the similar statement for valuation rings V whose
fraction field K is not necessarily algebraically closed, but such that the absolute Galois group is
pro-p where p is the residue characteristic of V (if positive). We choose an algebraic closure K̄ of
K and choose a valuation ring V̄ that dominates V in K̄. Then V̄ clearly satisfies the hypothesis
of the Theorem. Note that any finite extension K 1 of K inside K̄ has p-power degree. Namely we
can factor K 1{K in a separable and a purely inseparable part. The normal closure of any separable
extension has p-power degree by the assumption on the absolute Galois group of K. If the purely
inseparable extension is non-trivial (this can only happen if charpKq � p), it of course also has
p-power degree. We can write V̄ as the colimit of its finitely presented sub-V -algebras V Ñ V 1.
Note that in particular any such V 1 is an integral domain, hence V -torsion free and thus flat over V .
This implies that V Ñ V 1 is finite free of p-power degree (as the extension of corresponding fraction
fields has p-power degree).

More precisely, we show that if we have that for all B P DconspXK̄q we have that Rj̄�B is
universally locally acyclic over V̄ , we also get that for all A P DconspXηq its pushforward Rj�A is
universally locally acyclic over V . We denote by g : XV̄ Ñ X, respectively gη : XK̄ Ñ XK � Xη,
the projections.

XK̄ XV̄

XK X

j̄

gη g

j

Let A P DconspXηq. By our assumption and smooth base change we see that Rj̄�g
�
ηA � g�Rj�A is

universally locally acyclic over V̄ . As the sheaf of ULA-sheaves is finitary by Proposition 3.11, we
get that g�Rj�A arises as the base change of some ULA-sheaf over some finite extension V 1 of V .
In particular, Rj�A is universally locally acyclic sheaf after base change to some finite extension V 1

of V of p-power degree.
Let us denote g1 : XV 1 Ñ X, by construction this map is finite. As pushforward along proper

maps preserves universally locally acyclic sheaves, Rg1�Rj̄�pg
1
ηq
�A � Rj�Rg1η�pg

1
ηq
�A is universally

locally acyclic over V . By the topological invariance of the étale site, we may assume that the field
extension K Ñ K 1 is finite étale. In this case we see that Rgη,� is both left and right adjoint to g�η .
Moreover, the natural map

AÑ Rgη,�g
�
ηAÑ A
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is given by multiplication by the degree rK 1 : Ks, which by construction is a power of p. As our
coefficients are ℓ-torsion, this means that the map is an isomorphism. Thus, Rj�A is a retract of
the f -universally locally acyclic sheaf Rg1η�pg

1
ηq
�A. Using Proposition 3.5 (vi), we obtain that Rj�A

is itself f -universally locally acyclic as well.
Step 3: We consider the case that f : X Ñ S has relative dimension 0, in other words, the case

that f is quasi-finite. This is the base case for our induction. By step 1, it suffices to show the claim
for f � idS : S Ñ S. For this, we first note that a perfect-constructible complex A P DconspSpecpKqq
is automatically dualisable in DpKq, hence the natural map

DK{KpAq bAÑ RHomΛpA,Aq

is an isomorphism in DpSpecpKqq. We take the shriek pushforward along j : SpecpKq Ñ SpecpV q
and obtain, using that the natural map j�Rj�AÑ A is an isomorphism and the projection formula,
that

Rj!pDK{KpAq bAq � Rj!DK{KpAq bRj�A � DV {V pRj�Aq bRj�A

and

Rj!pRHomΛpA,Aqq � RHomΛpRj�A,Rj�Aq.

Hence, Rj�A is idV -universally locally acyclic.
Step 4: Let now f have relative dimension at most d for some d ¡ 0. The question is in particular

étale-local on X, so it suffices to construct for each point of X an étale neighbourhood where Rj�A
is universally locally acyclic. Let x be a point of X. If the relative dimension of f at x is d1   d,
there exists an open neighbourhood of x where f has relative dimension at most d1. Hence, Rj�A
is f -universally locally acyclic on this open neighbourhood of x by induction hypothesis.

Let us now assume that the relative dimension of f at x is d. By Zariski’s Main Theorem [Sta,
Tag 00QE] there is an open affine neighbourhood X 1 � X of x such that X 1 Ñ S factors over
X 1 Ñ Ad

S Ñ S, where X 1 Ñ Ad
S is quasi-finite. Hence, it suffices to show the claim for X � Ad

S , or
after choosing an open immersion Ad

S Ñ Pd
S for X � Pd

S by Step 1. We now analyse the situation
for X � Ad

S by considering projections to A1
S .

We denote by η1 � Specpkptqq the generic point of the special fibre of A1
S � SpecpV rtsq. We fix

a geometric point η̄1 lying over η1 and denote by W the strict henselisation of A1 at η̄1. We note
that W is a valuation ring: its valuation is induced by the valuation on the fraction field Kptq of
A1

V which associates to a polynomial the minimal valuations in K of its coefficients. Note that the
associated valuation ring is the local ring of A1

V at η1 and the value group of Kptq is the value group
of K. In particular, the value group of W agrees with the value group of V and is hence divisible (as
V is absolutely integrally closed). Moreover, W has a separably closed residue field. By standard
results from Galois theory for valuation rings, any separable algebraic extension of the fraction field
L of W is wildly ramified. In particular, this implies that L is algebraically closed if the residue
characteristic of W is 0, respectively that the absolute Galois group of the fraction field of L is pro-p
when the residue field of W has characteristic p ¡ 0.

Let now U be any open neighbourhood of the generic point in the special fibre of A1
S and let

Z � A1
SzU denote its complement. Then the fibre Zs of Z over any point s P S is finite, namely

it is the complement of a non-empty open subset of A1 over a field. In particular, Z is quasi-finite
over S.

For i � 1, . . . , d let us denote by πi : Ad
S Ñ A1

S the projection to the i-th component. Let us fix

some index i for now. As πi,W : Ad
S �A1

S
SpecpW q � Ad�1

W Ñ SpecW has relative dimension d � 1,

we see that RjW�pA|Ad�1
η̃
q is universally locally acyclic over SpecpW q by the inductive hypothesis

together with step 2, where η̃ is the generic point of SpecpW q and jW : Ad�1
η̃ Ñ Ad�1

W is the inclusion

of the generic fibre over SpecpW q. By smooth base change we see that RjW�pA|Ad�1
η̃

q � pRj�Aq|Ad�1
W

.

As the category of ULA-sheaves defines a finitary sheaf by Proposition 3.11, there is some étale map
Ui Ñ A1

S such that Rj�A|Ad�1
Ui

is universally locally acyclic over Ui. But Ui Ñ S is smooth, so it

follows that Rj�A|XUi
is universally locally acyclic over S by Proposition 3.5 (iii).



16 PATRICK BIEKER

Note that the image of Ui in A1
S is open and its complement Zi � A1

SzUi is quasi-finite over S

by the argument above. As schemes over S we have of course Ad�1
Ui

� Ui � Ad�1
S with Ui sitting

in the i-th component. Now the union of all such étale maps Ad�1
Ui

Ñ Ad
S for all indices i covers

an open subset of X, whose complement is given by Z1 �S . . . �S Zd, which is quasi-finite over S.
As universal local acyclicity can in particular be checked étale-locally, we have shown that Rj�A is
universally locally acyclic on Ad

SzpZ1 �S . . .�S Zdq.
Step 5: We show the claim for X � Pd

S by adapting the argument of [HS21, Lemma 4.3]. Let
now A P DpPd

ηq. By Proposition 3.4 we have to show that the natural map

(4.1) π�1DX{SpRj�Aq b
L
Λ π�2Rj�AÑ RHomΛpπ

�
1Rj�A,Rπ!

2Rj�Aq

is an isomorphism.
We use the standard covering of Pd

S by copies of Ad
S and find for each copy of Ad

S by the previous
step an open subscheme U Ñ Ad

S on which Rj�A is universally locally acyclic over S. The comple-
ment Z of the union of these open subschemes in Pd

S is still quasi-finite over S by the previous step
(Z is now even finite over S as Z is proper over S in this setting).

We first show that the map (4.1) is an isomorphism when restricted to pPd
SzZq �S Pd

S and Pd
S �S

pPd
SzZq: Its restriction to pPd

SzZq �S Pd
S is given by (using the compatibility of pullback with bL

Λ

and RHomΛ)

π�1DpPd
SzZq{S

pRj�A|Pd
SzZ

q bL
Λ π�2Rj�AÑ RHomΛpπ

�
1Rj�A|Pd

SzZ
, Rπ!

2Rj�Aq,

which is an isomorphism by Lemma 3.3 using that Rj�A|Pd
SzZ

is universally locally acyclic. In a

similar fashion, we see that the restriction to Pd
S �S pPd

SzZq is given by

π�1DPd
S{S

pRj�Aq b
L
Λ π�2Rj�A|Pd

SzZ
Ñ RHomΛpπ

�
1Rj�A,Rπ!

2Rj�A|Pd
SzZ

q,

which is again an isomorphism by Lemma 3.3 and Proposition 3.2. In particular, the cone C of the
map (4.1) is supported on Z �S Z.

Moreover, as f : Pd
S Ñ S is proper, the pushforward of (4.1) to S gives by the proof of Proposition

3.5 (i) the corresponding equation for Rf�Rj�A. But Rf�Rj�A is idS-universally locally acyclic
by the remark at the end of step 2, hence the pushforward of (4.1) to S is an isomorphism. In
particular, Rpf �S fq�C vanishes. As C is supported on Z � Z, we see that

Rpf �S fq�C � Rpf �S fq�Rpi�S iq�pi�S iq�C � Rpg �S gq�pi�S iq�C,

where i : Z Ñ Pd
S is the inclusion and g : Z Ñ S is the structure map. As g is quasi-finite, Rpg�S gq�

is conservative by Lemma 4.2 below, hence C vanishes and (4.1) is an isomorphism. This shows the
claim and finishes the proof of Theorem 4.1. □

We used that pushforward along quasi-finite maps is conservative, which we prove now.

Lemma 4.2. Let f : X Ñ S be a quasi-finite map. Then Rf� : DpXq Ñ DpSq is conservative.

Proof. By Zariski’s Main Theorem we may factor f as an open immersion followed by a finite map.
Note that for open immersions f the pushforward is fully faithful, hence conservative. It thus suffices
to consider the case that f is finite.

Let s̄Ñ S be a geometric point. Then Ss̄ is a strictly henselian local ring. Thus, Xs̄ :� X�S Ss̄,
which is finite over Ss̄, is the spectrum of a finite product of strictly henselian local rings finite over
Ss̄. Hence,

pRf�Aqs̄ � RΓpXs̄, Aq �
à
x̄

RΓpXx̄, Aq �
à
x̄

Ax̄,

where the sum ranges over all geometric points x̄ that lie over s̄. Thus, a map A Ñ B in DpXq is
an isomorphism at all geometric points x̄Ñ X if and only if the induced map Rf�AÑ Rf�B is an
isomorphism at all geometric points s̄Ñ S. Thus, Rf� is conservative. □

As a corollary, perfect-constructible sheaves over schemes over a field are automatically ULA.
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Corollary 4.3. Let K be a field, and f : X Ñ S � SpecpKq a separated map of finite presentation.
Then the inclusion DULApX{Sq Ñ DconspXq is an equivalence.

Proof. When K is algebraically closed, this is the previous theorem for V � K. For general K we
have that for an algebraic closure Kalg of K the map SpecpKalgq Ñ SpecpKq is an arc-cover. As
universal local acyclicity can be checked arc-locally on the base, the assertion follows for general
fields K. □

We can thus reformulate the first part of Theorem 4.1 in the following way. As when the base
S � SpecpKq is a field, all perfect-constructible complexes are exactly the universally locally acyclic
sheaves, the assertion of the theorem is that restriction to the generic fibre induces an equivalence

j� : DULApX{Sq Ñ DULApXη{ηq

between ULA-sheaves over X and ULA-sheaves over the generic fibre.
Using these results, we see that our definition of universal local acyclicity agrees with the usual

definition. More precisely:

Theorem 4.4. Let f : X Ñ S be a separated map of finite presentation between qcqs schemes and
let A P DconspXq be a perfect-constructible complex. The following conditions are equivalent:

(i) A is f -universally acyclic. In other words, the pair pX,Aq defines a dualisable object in the
symmetric monoidal 2-category C1S.

(ii) The following condition holds after any base change in S. For any geometric point xÑ X
mapping to a geometric point sÑ S, and a generization tÑ S of s, the map

A|x � RΓpXx, Aq Ñ RΓpXx �Ss
St, Aq

is an isomorphism.
(iii) The following condition holds after any base change in S. For any geometric point xÑ X

mapping to a geometric point sÑ S, and a generization tÑ S of s, the map

A|x � RΓpXx, Aq Ñ RΓpXx �Ss
t, Aq

is an isomorphism.
(iv) After base change along SpecV Ñ S for any rank 1 valuation ring V with algebraically

closed fraction field K and any geometric point x Ñ X mapping to the special point of
SpecV , the map

A|x � RΓpXx, Aq Ñ RΓpXx �SpecV SpecK,Aq

is an isomorphism.

Proof. By Proposition 3.10, (i) implies (ii) and (iii), and each of them has (iv) as a special case.
Thus, it remains to prove that (iv) implies (i). By Corollary 3.12, we can assume that S � SpecV is
the spectrum of an absolutely integrally closed valuation ring of rank 1. Then Theorem 4.1 shows
that being f -universally locally acyclic is equivalent to the map AÑ Rj�j

�A being an isomorphism.
By formal properties of adjunctions, it is clearly an isomorphism in the generic fibre, so one has to
check that it is an isomorphism in the special fibre. We may check stalkwise that the map is an
isomorphsim. But the maps on the stalks are exactly the maps in condition (iv), hence isomorphisms
by assumption. □
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