TALK 1: DEFINITION OF THE DUAL GROUP AND THE SATAKE
ISOMORPHISM

EMILIEN ZABETH

1. INTRODUCTION AND MOTIVATION

Let G be a split reductive group over O, the ring of integers of a non-archimedean local field F,
and let T' < G be a split maximal torus. The spherical Hecke algebra H¢ associated with G is by
definition the set of compactly supported Z-valued functions G(F) — Z, which are invariant under
left and right multiplications by elements of G(O). This set is equiped with a natural convolution
product, making it a ring (which is actually commutative). Denote by X, (T) := Hom(Gm,0,T) the
group of cocharacters, and recall that the group ring Z[ X, (T)] is equiped with a canonical action of
the Weyl group W of G. The goal of these notes will be to explain the construction of the following
isomorphism, due to Satake ([Sat63, Chapter 2]).

Theorem 1.1. Let q be the cardinality of the residue field of O. There exists a Z[q*/?]-algebra
isomorphim
He @z ZIq™?] = Z[XA(T)]" @2 Z[¢*?).

This is the isomorphism that the Geometric Satake equivalence (or a version of it) will categorify.
Namely, taking characters induces an isomorphism between the Grothendieck ring K (Rep(é’@))
and the ring Z[ X, (T)]" (where Rep(G¢) denotes the monoidal abelian category consisting of finite
dimensional algebraic representations of the Langlands dual group Gc over C), and one would
want to find a monoidal abelian category A with an isomorphism of rings Ko(A) ®z Z[¢t"/?] ~
He ®7 Z[g+1/?] and a monoidal equivalence of categories A > Rep(éc) that recovers the Satake
isomorphism when passing to Grothendieck rings and tensoring with Z[¢*'/?] over Z.

The question of finding the right category A that does this will not be discussed here, but one
can find the necessary explanations in [Zhul6, §5.6].

Another motivation for the study of H¢ is its relation with smooth unramified representation of
G(F) over C. Recall that a smooth representation V of G(F') over C is a C-vector space together with
a group morphism 7 : G(F) — GL(V') such that each vector v has an open stabilizer in G(F'); we call
V unramified if the subspace VE(©) of vectors fixed by G(O) is non-zero. Tt is well known that the
association V +— V&(©) induces a functor between smooth representation of G(F) and left H o ®zC-
modules (for any v € VE(©O) | the action of f € Hg ®; C is given by f-v = deg(F)/G(O) flg)m(g)v).
Moreover, this functor induces a bijection

{Irreducible smooth unramified G(F)-rep.}/ ~— {Irreducible Hg ®z C-modules}/ ~ .

The Satake isomorphism allows to give a simple description of the right-hand side above as the set
of C-algebra morphisms C[X(T)]" — C (the ring C[X4(T)]" is commutative, so an irreducible
representation has dimension one). These considerations are used for instance in [CT79, §4], and
we will not come back to these in the sequel.

In the next few pages, we will first focus on the definition of the Langlands dual group, and then
we will pass to the construction of the classical Satake isomorphism.

2. DEFINITION OF THE DUAL GROUP

The goal of this section is to explain the definition of the Langlands dual group of a split reductive
group scheme. Here we follow mainly [Jan03, II.1] and [Gill3]. For the next few general definitions,
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we work over a unitary commutative ring R. For all z € Spec(R), we denote by k(z) the residue
field of Spec(R) at x, and by k(z) an algebraic closure. If G is an R-group scheme, the notation G,
(resp. Gz) will denote the group scheme G x g k(z) (resp. G x g k(x)), called the fiber of G at x

(resp. the geometric fiber of G at z).

Definition 2.1. A group scheme G over R is called reductive if it satisfies the following conditions:
(1) G is affine and smooth over R;
(2) For every = € Spec(R), the geometric fiber Gz is a (connected') reductive x(z)-algebraic
group.

In the sequel, we will denote by Gg the R’-group scheme corresponding to G xr R’ for any
R— R.

Example 2.2. Let M be an R-module, and define the R-group scheme GLj; via its R-points by
the formula A — Auta(M ®g A), (where Auts(N) denotes the group of A-linear automorphism
of an A-module N). When M ~ R" for some n > 1, GL)s is represented by the affine scheme
Spec(R[T; j]1<ij<n|det(T;;)71]). We put GL,, g := GLg» and GL,, := GL,,z. Then GL, p is
reductive, just as the torus G}, p := [[;_; GL1 g

Definition 2.3. Let T be an R-group scheme. We say that T is a torus if every x € Spec(R) has an
open neighborhood U such that there exists an fpqc morphism U’ — U for which Ty is isomorphic
to (GI,)us over U’ for some n. If T' is isomorphic to (G}}) g, then we say that T' is split.

Definition 2.4. Let G be an R-group scheme, T a torus over R and T' — G a closed immersion.
We say that T is a maximal torus if T3 is a maximal torus of Gz (in the usual sens), for every
x € Spec(R).

In order to simplify the statements, we assume from now on that R is a connected ring. We recall
a few results concerning the structure of split reductive groups over R. Let Gz be a reductive group
over Z equiped with split maximal torus Tz ~ G}},. We call Gz a split reductive group over Z.

Remark 2.5. One has to be carefull with the definition of a split reductive group over an arbitrary
ring (or scheme), cf. [Gill3, Definition 13.3.6]. However by Remark 13.3.7 of loc.cit., a group scheme
G over a unique factorization domain R is a split reductive group for the general definition iff it has
a split maximal torus (this is because the Picard group of a UFD is trivial).

We consider the R-reductive group G := Gz x Spec(R), which admits T := Ty, x Spec(R) as a split
maximal torus. We will now explain how to attach a root datum to G. We denote by Lie(G) the
Lie algebra of GG, which is a free R-module of finite rank. The action of G on itself by conjugation
allows us to define the adjoint representation of G, i.e. a morphism of group schemes

Ad . G - GLLie(G)'
The restriction of this action yields a linear action of T on Lie(G), and thus a decomposition
Lie(G) = Lie(T) & P Lie(GQ)a,
aeX*(T), a#0

where Lie(G), := {z € Lie(Q) | Ad(t)(z®1) = 2 ® a(t) YVt € T(A), V R-algebra A}, and Lie(G)o =
Lie(T). We denote by ® < X*(T) := Hom(7T, Gy, r) the roots relative to T', i.e. the set of
characters a € X*(T) such that Lie(G), # 0. For each root o € X*(T), there exists a root
morphism x, : G, r — G satisfying

trg(a)t™ = z4(a(t)a)
for every R-algebra A and all ¢t € T(A), a € A, and such that the tangent map dz, induces an iso-

morphism of R-modules Lie(G,, g) ~ Lie(G)y. Such a root morphism is unique up to multiplication
by an invertible element R*, acting on G, g.

We follow the convention that a reductive group over an algebraically closed field is connected.
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There is also a morphism ¢, : SLa g — G sending the maximal diagonal torus of SLy r to T" and
such that, for all a € A,

fa (é ‘f) —za(a)  and g (i ‘1)> — 2_a(a).

0¥ (@) i= pa (8 a01>

defines an element a¥ € Hom(Gy g, T) =: X (T), called the coroot corresponding to o. One can
easily see that this definition does not depend on the choice of our root morphisms. We write
v :={aV, ae ®} c X,(T), and the application o — «" is a bijection from ® to ®V.

The sets X, (T) and X*(T') carry a structure of abelian group, for which we will denote the
group law additively. As T = G}, p and R is connected, it follows that X (7") and X*(T') are
isomorphic to Z™ as Z-modules ([G1113 Lemma 3.4.3]). For all (A\,«) € X*(T) x X,(T), there
exists a unique integer {\, &) corresponding to the morphism A o @ € End(G,,, z) under the isomor-
phism End(Gy,, g) ~ Z. Thus, the application (-, ) is bilinear on X, (T) x X*( ) and induces an
isomorphism X, (T) ~ HomZ(X*(T)7 7).

One can then show that the quadruple R(G,T) := (P, PV, X*(T), X4 (T)) defines a reduced root
datum (cf. [SGA, Exposé XXI] for a complete exposition on root data). Moreover, all of the
preceding construction applies by extension of scalars: we have Lie(G) = Lie(Gz) ®z R, X« (T) ~
X(Tz), X*(T) ~ X*(1z) and (R,RY,X*(T),X«(T)) is the root datum associated with Gz. In
particular, the root datum of G does not depend on the connected ring R.

Thus the formula

Example 2.6. We now recall what the root datum of G := GL,, is. We let T be the split maximal
torus consisting of diagonal matrices. One can then easily check the following classical results:

X*(T) ~7Z" X*(T) ~ 7"
{61 617 <14, < n} QY ~ {en e]a <1i,j < n}a

where the isomorphism X*(T') ~ Z" (resp. X4 (T) ~ Z™) sends an element of the canonical basis e;
onto the character

diag(z1," -+, 2i, 0 20) = %
(resp. onto the cocharacter z — diag(1,---, =z ,---,1)).
place 7

We can now state the following unicity theorem, followed by Chevalley’s existence theorem (cf.
[Gil13, Theorems 19.4.1,19.4.2]).

Theorem 2.7. Let (G,T) and (G',T') be two split reductive groups over R equipped with split
mazimal tori. Then (G,T) and (G',T") are isomorphic iff their root data R(G,T) and R(G',T")
are isomorphic.

Theorem 2.8. Let R = (®,PV, X*, X,) be a reduced root datum. Then there exists a split Z-
reductive group Gy, equipped with a split mazimal torus Ty, such that R(Gz,Tz) ~ R.

The split reductive group Gy is called the Chevalley’s group associated with R. It is defined only
up to isomorphim.

We can finally state the definition of the Langlands dual group. Recall that if R = (®,®v, X* X,.)
is a reduced root datum, then so is RY = (®V, P, X, X*). We call R the dual root datum of R.

Definition 2.9. Let (G,T) be a split reductive group over R with split maximal torus, and let
R(G,T)" be the dual root datum of R(G,T). Let Gz be the Chevalley’s group associated with
R(G,T)V. For any ring A, the split reductive group Gy, x A is called the Langlands dual group of
G over A (it is defined up to isomorphism).

Example 2.10. We give a few examples of Langlands dual groups:
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G GLn,R SLn,R SO2n+1,R SOQn,R
Gz |GL, |PGL, | Spo, SOsn

We end this section with a few more definitions that will be useful in the sequel. Let G be a split
reductive group over R with split maximal torus 7', and pick a Borel subgroup B containing T'. We
define the positive roots @ as the set of roots o € ® which appear in the T-weights of Lie(B), and
set @Y := {a¥, o€ &, }. The set &, defines a positive root system ®, < ®. Finally, the set of
dominant cocharacters is

X, (T)* = (e X,(T) | Yae ., (\a) >0}
and, for any pair of cocharacters A, € Xy (T), we will write g < XN if A — p € Zzo - PY.

Example 2.11. We take back the example 2.6. Let B — G be the Borel subgroup of upper
triangular matrices. We have

O, ={e;—ej, 1<i<j<nt Xe(D)F~{A€Z" | A\ > > Ao},
For two cocharacters = (o1, , ), A = (A1, -+ , Ap), we have p < X iff
4+ <M Mo F N Vi<nand g4 pp = A4+ 4+ A

3. THE SPHERICAL HECKE ALGEBRA

From now on, F' will be a non-archimedean local field with ring of integers O and residue field k of
cardinality ¢. Recall that this means that F' is the completion of a global field for a non-trivial and
non-archimedean valuation, endowed with an absolute value ||, and that O = {x € F | [2| < 1} isa
DVR, with maximal ideal m. We pick a generator w of m (called a uniformizer of F'). Every non-zero
element z € F can be written uniquely as x = w"u for some n € Z,u € O* = {x € F | |z| = 1}, and
this defines a valuation v : F' — Z U with v(z) = n, v(0) = co. We then have |a| = ¢~(®) for every
a € F. If F is of characteristic zero, then it is a finite extension of @Q,, and O its ring of integers
(typically F' = Q,, O = Z,, so ¢ = p). Otherwise, we must have F' = F,((w)) and O = F,[[w]].

We let G be a split reductive group over O, with a (split) maximal torus 7" and Borel subgroup
B containing T'. Any cocharacter A € X4 (T) := Hom(Gy, 0,T) induces a morphism F* — T'(F'),
and we will denote by A(w) € T(F') the image of w under this morphism. When G = GL,, o, we see
that A(ww) = diag(w™, -+ , ™) for an element A = (A1,---,\,) € Z". We denote by G the dual
group of G over C, with a dual maximal torus Tc@.

In these notes, we will mainly be interested in the group G(F'), which we will endow with a
topology making it a locally compact (even locally profinite) topological group. A basis of compact
open neighborhoods of the identity are the subgroups {K, },>0 defined by

K, =ker(G(O) - G(O/w"0)),
where the considered map is induced by the canonical projection (see [Ct79, §1.1]). The locally
compact group G(F) is endowed with a unique Haar measure p giving G(O) volume 1 (since G is

reductive, one can also show that G(F') is unimodular, i.e. that u is both left and right invariant).
The spherical Hecke algebra is by definition the ring

He = C(GON\G(F)/G(0))

of locally constant compactly supported functions f : G(F') — Z which are left and right invariant
under multiplication by elements of G(O). Multiplication is given by convolution:

frg(z):= J f(z)g(z™t2)da.
G(F)

Notice that, since f is compactly supported and G(O)-invariant, one can write

f=>1f@)ls,600)
=1
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for some elements x; € G(F), so the integral of f is just the finite sum ! , f(2;). In particular we
have
fragz)= >, [f@)gla'z)
2eG(F)/G(0)
for all f,g € Hg. The following result will be crucial.

Proposition 3.1. We have the Cartan decomposition

GF)= || GOXN=)GO).
Ae Xy (T)+

In the case of GL,, the Cartan decomposition is a consequence of the Gaussian elimination
process, which implies (using the fact that O is a DVR with only prime ideal (w)) that any element
g € GL,(F) can be transformed into an element A(w) by using elementary operations encoded by
elements of GL,(O) (cf. [Ser07, Theorem 6.2.1]). The unicity of such a A(w) follows from the fact
that, for every k < n, the gcd of minors of order k of the matrix ¢ coincides with the ged of minors
of order k of the matrix A(z), which is equal to w1+ + .

We put ¢y := lgo(=)co) for A € Xy (T)", this is the characteristic function of the subset
G(O)Nw)G(0) of G(F). As a consequence of the Cartan decomposition, we get the following

Corollary 3.2. The family of functions {cx}xex, )+ generates Ha as a Z-module.

Moreover, if we write an element f € H¢g as f = >}, axcy, we see that

(3.1) ax = f(A(@)).
We can right away give the following beautiful and easy result (which will not be used in the sequel),
known as “Gelfand’s Lemma”.

Proposition 3.3. The ring H is commutative.

Proof. The proof relies on the existence of an automorphism ¢ : G(F) — G(F) such that ¢ o ¢ = id
and ((z) € G(0)z~*G(O) for all z € G(F). When G = GL,,, one can take ¢ to be the transpose of
the inverse. N

For any f € C.(G(F)), we set f(x) = f(u(x)) and f(z) = f(z~'). If f € Hg, then we see that
f= f Since the measure p o is left invariant, this implies the existence of a scalar ¢ > 0 such that

L(F) Flz)da = ¢ L(F) F(x)dz.

Since (2 = id, we get that ¢ = 1. We then see that f* g = f x g for every f, g € C.(G(F)).
On the other hand the unimodularity of G(F') also implies that SG(F) flx)dx = SG(F) fa)dz,

and an easy computation shows that m =g* fN For f,g € Hq, the previous results put together
finally yield

Fxg=TFxg=F+g=g+f=9g+].
and thus fxg=gx* f. O

<l

The case when G = T will be of particular interest for us. First, note that we have an exact

sequence
0—T(0) —TF)— X.(T)—0.
The arrow T(O) — T(F) is just the inclusion, and T'(F) — X, (T) is the map sending ¢ to the
cocharacter v(t) satisfying
(8),x) = v(x(t))

for all x € X*(T). This sequence is split, since the map A — A(w) provides a splitting for ~.

Since T is commutative, we have an obvious isomorphism

T(ONT(F)/T(0) =~ T(F)/T(0).
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Thus we get

*C,(2) = ex(z)e,(z712)de
ex % 0u(2) fT(F) A(@)eu(a2)d

= J Lizer(=)T(0), 21 zep(w)T(0)} (T)dT
T(F)

= C)\+,u(z)7

(we use the fact that (u + A\)(w) = wp(w)A(w)) which means that we have an isomorphism of
commutative rings

Hr — Z[X* (T)]

C) — 6)‘.

4. THE SATAKE TRANSFORM

In this section, we study the Satake transform, which induces an isomorphism over Z[qﬂ/ 2]

between the spherical Hecke algebra and the Grothendieck ring of G.
We let N be the unipotent radical of B = T - N, and dn be the Haar measure on N(F) giving
N(O) volume 1. The modulus character of B is the function § : B(F) — R~ defined by

d(bnb=1) = §(b)dn,

for any b € B(F). Using this definition, one can check that 6(b) = |det(Ad(b)|pie(n))|- Moreover,
since 4 is obviously trivial on N(F'), we see that it defines a character § : T(F) — R~o. We can be
more explicit:

o(t) = [det(Ad(t)|Lie(ve) )|

= [2p(%)]

_ q—2p(t)

forallteT.
We can now define the Satake transform
Ho — Hr®zZq'?,q7'?
- S(f),

where S(f)(t) := t — §(t)'/? SN(F) f(tn)dn for all t € T(F) (it is easy to check that S(f)(tk) =
S(f)(¢) for all k € T(O)). One can check from the construction that this map is a morphism of
rings. The presence of the character ¢ (t)l/ 2 appearing in this definition might seem artificial at first.
In fact, it allows S(f) to be invariant under the Weyl group W, which is definitely not obvious from
this construction... For the next theorem, recall that by construction of the Langlands dual group
we have an identification X, (T') = X*(7T"), and thus an isomorphism of rings Hp — X*(T') thanks
to (4.1).

(4.1)

J_rl/z]

Theorem 4.1. The Satake transform induces an isomorphism of Z[q -algebras

~

He ® Z[g?) = Z[X* (1)) @2 Z[gV?] ~ Ko(Rep(G)) @z Z[g*"/?]

Recall that the second isomorphism in the theorem is due to the well known following fact (cf.
[Mil17, Theorem 22.38]).

Proposition 4.2. Let (H,K) be a split reductive group over a field with split mazimal torus, and
denote by W the associated Weyl group. For any V € Rep(H), define the character map

ch(V):= > dim(Vi)e € Z[X*(K)],
AeX*(K)
where Vy :={veV | t-v = A{t)v}. Then the character induces an isomorphism of rings

Ko(Rep(H)) ~ Z[X*(K)]".
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The proof that S(f) is indeed invariant under W involves orbital integrals. In fact, any coset
T(F)/T(O) contains a regular element v (i.e. such that {y(v),x) # 0 for every x € X*(T)), and
one can rewrite the Satake transform as

S(f)w) = [DW)["*0,(f),
where O,(f) is the orbital integral of f at v, and D(:) is a function on G(F') which is invariant
under conjugation by W. Since v — O, (f) is also invariant by conjugation under W, this shows
the invariance of S(f) under W (cf. [C*79, Theorem 4.1]).

We will now explain why S gives a bijection. For any A € X, (T)*, we will denote by V() €
Rep(é) the simple highest weight representation of highest weight A\. The idea is to show that, when
expressed in the basis {c}rex, (r)+ and {ch(V()))}rex, 1)+, ordered with <, the Satake morphism
takes the form of an upper triangular matrix, with invertible elements on the diagonal. This is the
motivation for the following statement (also recall (3.1)).

Proposition 4.3. For every A\, u € X (T)*", we have
(4.2) Slea)(u(@)) #0=p < A
(4.3) S(ex)(Mw)) € Z[g"?, ¢ /],

Sketch of the proof. We first sketch the proof of (4.2) in the case where F' = F,((w)) (cf. [Zhulé,
Lemma 5.3.7 and §5] for the justifications). By definition we have

S(ex) (ulw)) = g~@» fN(F) ex(u(w)n)dn.

Thus, if the left-hand side of this equation is non-zero we must have
w(@)N(F) n GO)A@)G(0) # &,

which is equivalent to

(4.4) N(F)u(w) n G(O)Aw)G(0) # &.

We claim that (4.4) implies that g < A. This can be shown using algebro-geometric arguments
related to the affine Grassmannian Grg, which is an ind-projective Fy-ind-scheme whose F4-points
coincide with G(F')/G(0O), and where the notions of closures and limits of a G,-action make sense.
In fact one shows that

S i= N(F)u(w)G(0)/G(0) = {a € G(F)/G(O) | lim,_o2p" (s)x = () mod G(O)},

where the limit appearing above is the translation on F,-points of the fact that the ind-scheme
associated with S, is the attractor space of Grg for the Gy-action induced by 2p¥ (see §4 of Talk
8). So now set ? Grg, ) := G(O)A\(w)G(0)/G(0) and assume that there exists x € S, " Grg, . Since
2pY(s) € G(F;) = G(O) for all s € Fx, we see that 2p" (s)x € Grg x. This implies that

p(w) = lims02p" (s)z € Grg,a-

But one can show that Grg,x = ||,<) Gra,u, and so p < A

Let us prove® (4.3) in the case where G = GL,., for some 7 > 1. For every n € N(F), we have
that cx(A(@)n) # 0 iff n € A(w) " LG(O)A(w)G(O), so n — cx(A(w)n) is the characteristic function
of the set X1 := N(F) n Mw@) 'G(O)\(w)G(O). Using the fact that X; is a disjoint union of left
N (O)-cosets, we have

vol(X1) = #(N(F) n A@) "' G(O)A(@)G(0))/N(0)
= #(N(F) n N@) ' G(0)Mw))/N(0)
= VOI(XQ),

2It turns out that G(O)A\(w)G(0)/G(0), resp. N(F)u(w)/G(0O), is the set of Fg-points of a locally-closed sub-
variety, resp. of an ind-sub-variety, of the affine Grassmannian.
3This part of the proof is inspired from [Rev16, §1.4].
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where X5 := N(F) n AM(w@) 'G(O)\(w) is stable by multiplication on the right with elements of
N(O) (indeed, since A is dominant, N(O) is stable under conjugation by A(w), which implies that
AM@)"1G(O)A(w) is stable by multiplication on the right with elements of N(O)), and the second
equality follows after injecting X1 /G(O) into G(F)/G(O) = B(F)G(0)/G(O) ~ B(F)/B(O) (here
we use the Iwasawa decomposition G(F) = B(F)G(0O)). We see that

Xy = {(ni;) € N(F) | v(nij) = A — A V1 <i<j<r}
Thus we get
S(ex)Mw@)) = ¢ Pvol(Xy) = ¢~ P gRusicisr Qi Xi) — (Lo g [ F1/2]%

O

Remark 4.4. Since N(F)u(w) n G(O)A\(w)G(O) is stable under left multiplication by elements
of N(O), it must have a non-zero dn-volume whenever it is non-empty. Therefore the implication
(4.2) is actually an equivalence.

Knowing that the elements {ch(V (1))} ex, () generate the Z-module Z[X,(T)]"" and that each
ch(V(p)) has highest weight 4, one can thus express the Satake transform in this basis:

S(ex) = ¢ eh(V(N) + Y anpuch(V(w),
H<A
for some elements a, ,, € Z[g¥1/?].
Remark 4.5. A natural question is to ask what element of Hg ®7 Z[¢+'/?] is mapped to ch(V()))

under S. The answer is naturally given by the Geometric Satake equivalence, cf. [Zhul6, Lemma
5.6.3].

5. THE EXAMPLE OF PGLs o

We now treat in detail the example of G = PGLs o, since the set G(F)/G(O) can be represented
by the vertices of a tree in this case, on which Schubert cells and varieties are visible!. We fix a
maximal torus 7" and a Borel B of GG consisting of the image of the diagonal matrices and upper
triangular matrices respectively under the canonical projection GLy o — PGL3 . We then have
G = SLa,c and X, (T) = X*(T) = Z-x, where T is the diagonal torus and y sends a diagonal element
diag(a,a™t) to a. So X, (T) is isomorphic to Z, and this isomorphism also yields an identification
Xy (T)+ = Zxo.

Let X, denote the set of vertices of the (¢+1)-regular tree (cf. Figure 1). This tree is a realization
of the Bruhat-Tits building for PGLy(F'), and the set X, is in bijection with G(F')/G(O), the F-
points of the affine Grassmannian (cf. [Gorl0, §2.8]). In particular, if we pick a vertex e € X
corresponding to the coset of the identity, we then have

Grg,, ~{re X, | dle,x) = p}

for any p € Zxo, where Grg , := G(O)u(w)G(0)/G(O) is the Schubert cell associated with p, and
where d(-, -) is the usual distance function on a tree. On the drawing below, the red dot is the vertex
e, and the green circled vertices represent Grg a.

41 thank Timo Richarz for sharing some of his notes with me, which I follow in this section.
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FI1GURE 1. Portion of the Bruhat-Tits tree, ¢ = 2.
For any x € X, and p € Zso, we let §, be the characteristic function of {z} on X, and put
dy, = Z Op-
weX,, dlea)=p

We then define H, < C.(Xg4,Z) as the Z-span of {d,,, u € Z=o}, and put the ring structure on it
induced by the formula

dy * 6y = Z Og-
zeXy, d(y,x)=p
One can check that we have the following equalities
dl*dl :d2+((]+1)(5e
dy * du = dqul + qdufla VM =2,
which easily imply that H, is commutative, with unit dy. The following proposition is also straight-
forward.

Proposition 5.1. We have an isomorphism of rings

H, — Hc
d)\ — C).

We can thus consider the isomorphism of rings
S : 1y ®z Z[q*?] S LXK (D)]Y @2 L[],

which is the composition of the Satake isomorphism with the isomorphism of the preceding propo-
sition. We can actually give an answer to the question raised by Remark 4.5 in this simple case of
PGLy 0. For any p € Z>, set

fui= > dy,

O0<v<p, v=p mod 2
and recall that V(i) € Rep(SLa,¢) denotes the simple highest weight representation of highest weight
1.
Proposition 5.2. For any u € Z=o, we have S(f,) = ¢"/>ch(V (1)).

Proof. On the one hand, one can check that we have
Jo=do
5.1
5:1) { Fix fu = st + afucs V> 1.
On the other hand, the characters of Weyl modules are well known for SLy ¢:

ch(V () = )y

—pu<v<p, v=p mod 2
9



so that the sequence (q*‘/zch(V(u)))M>O satisfies the same relation as (5.1), with dy replaced by 1,
and * replaced by the usual multiplication in Z[X,(T)] ®z Z[¢**/?]. This concludes the proof. [
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