
TALK 1: DEFINITION OF THE DUAL GROUP AND THE SATAKE

ISOMORPHISM

EMILIEN ZABETH

1. Introduction and Motivation

Let G be a split reductive group over O, the ring of integers of a non-archimedean local field F ,
and let T Ă G be a split maximal torus. The spherical Hecke algebra HG associated with G is by
definition the set of compactly supported Z-valued functions GpF q Ñ Z, which are invariant under
left and right multiplications by elements of GpOq. This set is equiped with a natural convolution
product, making it a ring (which is actually commutative). Denote by X˚pT q :“ HompGm,O, T q the
group of cocharacters, and recall that the group ring ZrX˚pT qs is equiped with a canonical action of
the Weyl group W of G. The goal of these notes will be to explain the construction of the following
isomorphism, due to Satake ([Sat63, Chapter 2]).

Theorem 1.1. Let q be the cardinality of the residue field of O. There exists a Zrq˘1{2s-algebra
isomorphim

HG bZ Zrq˘1{2s
„
ÝÑ ZrX˚pT qsW bZ Zrq˘1{2s.

This is the isomorphism that the Geometric Satake equivalence (or a version of it) will categorify.

Namely, taking characters induces an isomorphism between the Grothendieck ring K0pReppĜCqq

and the ring ZrX˚pT qsW (where ReppĜCq denotes the monoidal abelian category consisting of finite

dimensional algebraic representations of the Langlands dual group ĜC over C), and one would
want to find a monoidal abelian category A with an isomorphism of rings K0pAq bZ Zrq˘1{2s »

HG bZ Zrq˘1{2s and a monoidal equivalence of categories A „
ÝÑ ReppĜCq that recovers the Satake

isomorphism when passing to Grothendieck rings and tensoring with Zrq˘1{2s over Z.
The question of finding the right category A that does this will not be discussed here, but one

can find the necessary explanations in [Zhu16, §5.6].
Another motivation for the study of HG is its relation with smooth unramified representation of

GpF q over C. Recall that a smooth representation V of GpF q over C is a C-vector space together with
a group morphism π : GpF q Ñ GLpV q such that each vector v has an open stabilizer in GpF q; we call
V unramified if the subspace V GpOq of vectors fixed by GpOq is non-zero. It is well known that the
association V ÞÑ V GpOq induces a functor between smooth representation of GpF q and left HGbZC-
modules (for any v P V GpOq, the action of f P HGbZ C is given by f ¨ v “

ř

gPGpF q{GpOq fpgqπpgqv).

Moreover, this functor induces a bijection

tIrreducible smooth unramified GpF q-rep.u{ „ÝÑ tIrreducible HG bZ C-modulesu{ „ .

The Satake isomorphism allows to give a simple description of the right-hand side above as the set
of C-algebra morphisms CrX˚pT qsW Ñ C (the ring CrX˚pT qsW is commutative, so an irreducible
representation has dimension one). These considerations are used for instance in [C`79, §4], and
we will not come back to these in the sequel.

In the next few pages, we will first focus on the definition of the Langlands dual group, and then
we will pass to the construction of the classical Satake isomorphism.

2. Definition of the dual group

The goal of this section is to explain the definition of the Langlands dual group of a split reductive
group scheme. Here we follow mainly [Jan03, II.1] and [Gil13]. For the next few general definitions,
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we work over a unitary commutative ring R. For all x P SpecpRq, we denote by κpxq the residue

field of SpecpRq at x, and by κpxq an algebraic closure. If G is an R-group scheme, the notation Gx
(resp. Gx) will denote the group scheme G ˆR κpxq (resp. G ˆR κpxq), called the fiber of G at x
(resp. the geometric fiber of G at x).

Definition 2.1. A group scheme G over R is called reductive if it satisfies the following conditions:

(1) G is affine and smooth over R;

(2) For every x P SpecpRq, the geometric fiber Gx is a (connected1) reductive κpxq-algebraic
group.

In the sequel, we will denote by GR1 the R1-group scheme corresponding to G ˆR R1 for any
RÑ R1.

Example 2.2. Let M be an R-module, and define the R-group scheme GLM via its R-points by
the formula A ÞÑ AutApM bR Aq, (where AutApNq denotes the group of A-linear automorphism
of an A-module N). When M » Rn for some n ě 1, GLM is represented by the affine scheme
SpecpRrTi,js1ďi,jďnrdetpTi,jq

´1sq. We put GLn,R :“ GLRn and GLn :“ GLn,Z. Then GLn,R is
reductive, just as the torus Gnm,R :“

śn
k“1 GL1,R.

Definition 2.3. Let T be an R-group scheme. We say that T is a torus if every x P SpecpRq has an
open neighborhood U such that there exists an fpqc morphism U 1 Ñ U for which TU 1 is isomorphic
to pGnmqU 1 over U 1 for some n. If T is isomorphic to pGnmqR, then we say that T is split.

Definition 2.4. Let G be an R-group scheme, T a torus over R and T Ñ G a closed immersion.
We say that T is a maximal torus if Tx is a maximal torus of Gx (in the usual sens), for every
x P SpecpRq.

In order to simplify the statements, we assume from now on that R is a connected ring. We recall
a few results concerning the structure of split reductive groups over R. Let GZ be a reductive group
over Z equiped with split maximal torus TZ » Gnm. We call GZ a split reductive group over Z.

Remark 2.5. One has to be carefull with the definition of a split reductive group over an arbitrary
ring (or scheme), cf. [Gil13, Definition 13.3.6]. However by Remark 13.3.7 of loc.cit., a group scheme
G over a unique factorization domain R is a split reductive group for the general definition iff it has
a split maximal torus (this is because the Picard group of a UFD is trivial).

We consider the R-reductive group G :“ GZˆSpecpRq, which admits T :“ TZˆSpecpRq as a split
maximal torus. We will now explain how to attach a root datum to G. We denote by LiepGq the
Lie algebra of G, which is a free R-module of finite rank. The action of G on itself by conjugation
allows us to define the adjoint representation of G, i.e. a morphism of group schemes

Ad : GÑ GLLiepGq.

The restriction of this action yields a linear action of T on LiepGq, and thus a decomposition

LiepGq “ LiepT q ‘
à

αPX˚pT q, α‰0

LiepGqα,

where LiepGqα :“ tx P LiepGq | Adptqpxb 1q “ xb αptq @t P T pAq, @ R-algebra Au, and LiepGq0 “
LiepT q. We denote by Φ Ă X˚pT q :“ HompT,Gm,Rq the roots relative to T , i.e. the set of
characters α P X˚pT q such that LiepGqα ‰ 0. For each root α P X˚pT q, there exists a root
morphism xα : Ga,R Ñ G satisfying

txαpaqt
´1 “ xαpαptqaq

for every R-algebra A and all t P T pAq, a P A, and such that the tangent map dxα induces an iso-
morphism of R-modules LiepGa,Rq » LiepGqα. Such a root morphism is unique up to multiplication
by an invertible element Rˆ, acting on Ga,R.

1We follow the convention that a reductive group over an algebraically closed field is connected.
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There is also a morphism ϕα : SL2,R Ñ G sending the maximal diagonal torus of SL2,R to T and
such that, for all a P A,

ϕα

ˆ

1 a
0 1

˙

“ xαpaq and ϕα

ˆ

1 0
a 1

˙

“ x´αpaq.

Thus the formula

α_paq :“ ϕα

ˆ

a 0
0 a´1

˙

defines an element α_ P HompGm,R, T q “: X˚pT q, called the coroot corresponding to α. One can
easily see that this definition does not depend on the choice of our root morphisms. We write
Φ_ :“ tα_, α P Φu Ă X˚pT q, and the application α ÞÑ α_ is a bijection from Φ to Φ_.

The sets X˚pT q and X˚pT q carry a structure of abelian group, for which we will denote the
group law additively. As T “ Gnm,R and R is connected, it follows that X˚pT q and X˚pT q are

isomorphic to Zn as Z-modules ([Gil13, Lemma 3.4.3]). For all pλ, αq P X˚pT q ˆ X˚pT q, there
exists a unique integer xλ, αy corresponding to the morphism λ ˝ α P EndpGm,Rq under the isomor-
phism EndpGm,Rq » Z. Thus, the application x¨, ¨y is bilinear on X˚pT q ˆ X˚pT q and induces an
isomorphism X˚pT q » HomZpX

˚pT q,Zq.
One can then show that the quadruple RpG,T q :“ pΦ,Φ_, X˚pT q, X˚pT qq defines a reduced root

datum (cf. [SGA, Exposé XXI] for a complete exposition on root data). Moreover, all of the
preceding construction applies by extension of scalars: we have LiepGq “ LiepGZq bZ R, X˚pT q »
X˚pTZq, X

˚pT q » X˚pTZq and pR,R_, X˚pT q, X˚pT qq is the root datum associated with GZ. In
particular, the root datum of G does not depend on the connected ring R.

Example 2.6. We now recall what the root datum of G :“ GLn is. We let T be the split maximal
torus consisting of diagonal matrices. One can then easily check the following classical results:

X˚pT q » Zn X˚pT q » Zn

Φ » tei ´ ej , 1 ď i, j ď nu Φ_ » tei ´ ej , 1 ď i, j ď nu,

where the isomorphism X˚pT q » Zn (resp. X˚pT q » Zn) sends an element of the canonical basis ei
onto the character

diagpz1, ¨ ¨ ¨ , zi, ¨ ¨ ¨ , znq ÞÑ zi

(resp. onto the cocharacter z ÞÑ diagp1, ¨ ¨ ¨ , z
loomoon

place i

, ¨ ¨ ¨ , 1q).

We can now state the following unicity theorem, followed by Chevalley’s existence theorem (cf.
[Gil13, Theorems 19.4.1,19.4.2]).

Theorem 2.7. Let pG,T q and pG1, T 1q be two split reductive groups over R equipped with split
maximal tori. Then pG,T q and pG1, T 1q are isomorphic iff their root data RpG,T q and RpG1, T 1q
are isomorphic.

Theorem 2.8. Let R “ pΦ,Φ_, X˚, X˚q be a reduced root datum. Then there exists a split Z-
reductive group GZ equipped with a split maximal torus TZ such that RpGZ, TZq » R.

The split reductive group GZ is called the Chevalley’s group associated with R. It is defined only
up to isomorphim.

We can finally state the definition of the Langlands dual group. Recall that if R “ pΦ,Φ_, X˚, X˚q
is a reduced root datum, then so is R_ “ pΦ_,Φ, X˚, X˚q. We call R_ the dual root datum of R.

Definition 2.9. Let pG,T q be a split reductive group over R with split maximal torus, and let

RpG,T q_ be the dual root datum of RpG,T q. Let ĜZ be the Chevalley’s group associated with

RpG,T q_. For any ring A, the split reductive group ĜZ ˆ A is called the Langlands dual group of
G over A (it is defined up to isomorphism).

Example 2.10. We give a few examples of Langlands dual groups:
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G GLn,R SLn,R SO2n`1,R SO2n,R

ĜZ GLn PGLn Sp2n SO2n

We end this section with a few more definitions that will be useful in the sequel. Let G be a split
reductive group over R with split maximal torus T , and pick a Borel subgroup B containing T . We
define the positive roots Φ` as the set of roots α P Φ which appear in the T -weights of LiepBq, and
set Φ_` :“ tα_, α P Φ`u. The set Φ` defines a positive root system Φ` Ă Φ. Finally, the set of
dominant cocharacters is

X˚pT q
` :“ tλ P X˚pT q | @α P Φ`, xλ, αy ě 0u

and, for any pair of cocharacters λ, µ P X˚pT q, we will write µ ď λ if λ´ µ P Zě0 ¨ Φ
_
`.

Example 2.11. We take back the example 2.6. Let B Ă G be the Borel subgroup of upper
triangular matrices. We have

Φ` “ tei ´ ej , 1 ď i ă j ď nu X˚pT q
` » tλ P Zn | λ1 ě ¨ ¨ ¨ ě λnu,

For two cocharacters µ “ pµ1, ¨ ¨ ¨ , µnq, λ “ pλ1, ¨ ¨ ¨ , λnq, we have µ ď λ iff

µ1 ` ¨ ¨ ¨ ` µi ď λ1 ` ¨ ¨ ¨ ` λi @i ă n and µ1 ` ¨ ¨ ¨ ` µn “ λ1 ` ¨ ¨ ¨ ` λn.

3. The spherical Hecke algebra

From now on, F will be a non-archimedean local field with ring of integers O and residue field k of
cardinality q. Recall that this means that F is the completion of a global field for a non-trivial and
non-archimedean valuation, endowed with an absolute value | ¨ |, and that O “ tx P F | |x| ď 1u is a
DVR, with maximal ideal m. We pick a generator $ of m (called a uniformizer of F ). Every non-zero
element x P F can be written uniquely as x “ $nu for some n P Z, u P Oˆ “ tx P F | |x| “ 1u, and
this defines a valuation v : F Ñ ZY8 with vpxq “ n, vp0q “ 8. We then have |a| “ q´vpaq for every
a P F . If F is of characteristic zero, then it is a finite extension of Qp, and O its ring of integers
(typically F “ Qp, O “ Zp, so q “ p). Otherwise, we must have F “ Fqpp$qq and O “ Fqrr$ss.

We let G be a split reductive group over O, with a (split) maximal torus T and Borel subgroup
B containing T . Any cocharacter λ P X˚pT q :“ HompGm,O, T q induces a morphism Fˆ Ñ T pF q,
and we will denote by λp$q P T pF q the image of $ under this morphism. When G “ GLn,O, we see

that λp$q “ diagp$λ1 , ¨ ¨ ¨ , $λnq for an element λ “ pλ1, ¨ ¨ ¨ , λnq P Zn. We denote by Ĝ the dual

group of G over C, with a dual maximal torus T̂ Ă Ĝ.
In these notes, we will mainly be interested in the group GpF q, which we will endow with a

topology making it a locally compact (even locally profinite) topological group. A basis of compact
open neighborhoods of the identity are the subgroups tKnuně0 defined by

Kn “ kerpGpOq Ñ GpO{$nOqq,

where the considered map is induced by the canonical projection (see [C`79, §1.1]). The locally
compact group GpF q is endowed with a unique Haar measure µ giving GpOq volume 1 (since G is
reductive, one can also show that GpF q is unimodular, i.e. that µ is both left and right invariant).
The spherical Hecke algebra is by definition the ring

HG :“ CcpGpOqzGpF q{GpOqq

of locally constant compactly supported functions f : GpF q Ñ Z which are left and right invariant
under multiplication by elements of GpOq. Multiplication is given by convolution:

f ‹ gpzq :“

ż

GpF q

fpxqgpx´1zqdx.

Notice that, since f is compactly supported and GpOq-invariant, one can write

f “
n
ÿ

i“1

fpxiq1xiGpOq
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for some elements xi P GpF q, so the integral of f is just the finite sum
řn
i“1 fpxiq. In particular we

have

f ‹ gpzq “
ÿ

xPGpF q{GpOq

fpxqgpx´1zq

for all f, g P HG. The following result will be crucial.

Proposition 3.1. We have the Cartan decomposition

GpF q “
ğ

λPX˚pT q`

GpOqλp$qGpOq.

In the case of GLn, the Cartan decomposition is a consequence of the Gaussian elimination
process, which implies (using the fact that O is a DVR with only prime ideal p$q) that any element
g P GLnpF q can be transformed into an element λp$q by using elementary operations encoded by
elements of GLnpOq (cf. [Ser07, Theorem 6.2.1]). The unicity of such a λp$q follows from the fact
that, for every k ď n, the gcd of minors of order k of the matrix g coincides with the gcd of minors
of order k of the matrix λp$q, which is equal to $λ1`¨¨¨`λk .

We put cλ :“ 1GpOqλp$qGpOq for λ P X˚pT q
`, this is the characteristic function of the subset

GpOqλp$qGpOq of GpF q. As a consequence of the Cartan decomposition, we get the following

Corollary 3.2. The family of functions tcλuλPX˚pT q` generates HG as a Z-module.

Moreover, if we write an element f P HG as f “
ř

λ aλcλ, we see that

(3.1) aλ “ fpλp$qq.

We can right away give the following beautiful and easy result (which will not be used in the sequel),
known as “Gelfand’s Lemma”.

Proposition 3.3. The ring H is commutative.

Proof. The proof relies on the existence of an automorphism ι : GpF q Ñ GpF q such that ι ˝ ι “ id
and ιpxq P GpOqx´1GpOq for all x P GpF q. When G “ GLn, one can take ι to be the transpose of
the inverse.

For any f P CcpGpF qq, we set fpxq “ fpιpxqq and rfpxq “ fpx´1q. If f P HG, then we see that

f “ rf . Since the measure µ ˝ ι is left invariant, this implies the existence of a scalar c ą 0 such that
ż

GpF q

fpxqdx “ c

ż

GpF q

fpxqdx.

Since ι2 “ id, we get that c “ 1. We then see that f ‹ g “ f ‹ g for every f, g P CcpGpF qq.
On the other hand the unimodularity of GpF q also implies that

ş

GpF q
rfpxqdx “

ş

GpF q
fpxqdx,

and an easy computation shows that Ćf ‹ g “ rg ‹ rf . For f, g P HG, the previous results put together
finally yield

f ‹ g “ f ‹ g “ rf ‹ rg “ Ćg ‹ f “ g ‹ f,

and thus f ‹ g “ g ‹ f . �

The case when G “ T will be of particular interest for us. First, note that we have an exact
sequence

0 ÝÑ T pOq ÝÑ T pF q ÝÑ X˚pT q ÝÑ 0.

The arrow T pOq Ñ T pF q is just the inclusion, and T pF q Ñ X˚pT q is the map sending t to the
cocharacter γptq satisfying

xγptq, χy “ vpχptqq

for all χ P X˚pT q. This sequence is split, since the map λ ÞÑ λp$q provides a splitting for γ.
Since T is commutative, we have an obvious isomorphism

T pOqzT pF q{T pOq » T pF q{T pOq.
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Thus we get

cλ ‹ cµpzq “

ż

T pF q

cλpxqcµpx
´1zqdx

“

ż

T pF q

1txPλp$qT pOq, x´1zPµp$qT pOqupxqdx

“ cλ`µpzq,

(we use the fact that pµ ` λqp$q “ µp$qλp$q) which means that we have an isomorphism of
commutative rings

HT Ñ ZrX˚pT qs
cλ ÞÑ eλ.

4. The Satake Transform

In this section, we study the Satake transform, which induces an isomorphism over Zrq˘1{2s

between the spherical Hecke algebra and the Grothendieck ring of Ĝ.
We let N be the unipotent radical of B “ T ¨ N , and dn be the Haar measure on NpF q giving

NpOq volume 1. The modulus character of B is the function δ : BpF q Ñ Rą0 defined by

dpbnb´1q “ δpbqdn,

for any b P BpF q. Using this definition, one can check that δpbq “ |detpAdpbq|LiepNF qq|. Moreover,
since δ is obviously trivial on NpF q, we see that it defines a character δ : T pF q Ñ Rą0. We can be
more explicit:

δptq “ |detpAdptq|LiepNF qq|

“ |2ρptq|

“ q´2ρptq

for all t P T .
We can now define the Satake transform

(4.1)
HG Ñ HT bZ Zrq1{2, q´1{2s

f ÞÑ Spfq,

where Spfqptq :“ t ÞÑ δptq1{2
ş

NpF q
fptnqdn for all t P T pF q (it is easy to check that Spfqptkq “

Spfqptq for all k P T pOq). One can check from the construction that this map is a morphism of
rings. The presence of the character δptq1{2 appearing in this definition might seem artificial at first.
In fact, it allows Spfq to be invariant under the Weyl group W , which is definitely not obvious from
this construction... For the next theorem, recall that by construction of the Langlands dual group
we have an identification X˚pT q “ X˚pT̂ q, and thus an isomorphism of rings HT

„
ÝÑ X˚pT̂ q thanks

to (4.1).

Theorem 4.1. The Satake transform induces an isomorphism of Zrq˘1{2s-algebras

HG bZ Zrq˘1{2s
„
ÝÑ ZrX˚pT̂ qsW bZ Zrq˘1{2s » K0pReppĜqq bZ Zrq˘1{2s

Recall that the second isomorphism in the theorem is due to the well known following fact (cf.
[Mil17, Theorem 22.38]).

Proposition 4.2. Let pH,Kq be a split reductive group over a field with split maximal torus, and
denote by W the associated Weyl group. For any V P ReppHq, define the character map

chpV q :“
ÿ

λPX˚pKq

dimpVλqe
λ P ZrX˚pKqs,

where Vλ :“ tv P V | t ¨ v “ λptqvu. Then the character induces an isomorphism of rings

K0pReppHqq » ZrX˚pKqsW .
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The proof that Spfq is indeed invariant under W involves orbital integrals. In fact, any coset
T pF q{T pOq contains a regular element ν (i.e. such that xγpνq, χy ‰ 0 for every χ P X˚pT q), and
one can rewrite the Satake transform as

Spfqpνq “ |Dpνq|1{2Oνpfq,

where Oνpfq is the orbital integral of f at ν, and Dp¨q is a function on GpF q which is invariant
under conjugation by W . Since ν ÞÑ Oνpfq is also invariant by conjugation under W , this shows
the invariance of Spfq under W (cf. [C`79, Theorem 4.1]).

We will now explain why S gives a bijection. For any λ P X˚pT q
`, we will denote by V pλq P

ReppĜq the simple highest weight representation of highest weight λ. The idea is to show that, when
expressed in the basis tcλuλPX˚pT q` and tchpV pλqquλPX˚pT q` , ordered with ď, the Satake morphism
takes the form of an upper triangular matrix, with invertible elements on the diagonal. This is the
motivation for the following statement (also recall (3.1)).

Proposition 4.3. For every λ, µ P X˚pT q
`, we have

Spcλqpµp$qq ‰ 0 ñ µ ď λ(4.2)

Spcλqpλp$qq P Zrq1{2, q´1{2sˆ.(4.3)

Sketch of the proof. We first sketch the proof of (4.2) in the case where F “ Fqpp$qq (cf. [Zhu16,
Lemma 5.3.7 and §5] for the justifications). By definition we have

Spcλqpµpωqq “ q´xρ,µy
ż

NpF q

cλpµp$qnqdn.

Thus, if the left-hand side of this equation is non-zero we must have

µp$qNpF q XGpOqλp$qGpOq ‰ H,

which is equivalent to

(4.4) NpF qµp$q XGpOqλp$qGpOq ‰ H.

We claim that (4.4) implies that µ ď λ. This can be shown using algebro-geometric arguments
related to the affine Grassmannian GrG, which is an ind-projective Fq-ind-scheme whose Fq-points
coincide with GpF q{GpOq, and where the notions of closures and limits of a Gm-action make sense.
In fact one shows that

Sµ :“ NpF qµp$qGpOq{GpOq “ tx P GpF q{GpOq | limsÑ02ρ_psqx “ µp$q mod GpOqu,

where the limit appearing above is the translation on Fq-points of the fact that the ind-scheme
associated with Sµ is the attractor space of GrG for the Gm-action induced by 2ρ_ (see §4 of Talk
8). So now set 2 GrG,λ :“ GpOqλp$qGpOq{GpOq and assume that there exists x P SµXGrG,λ. Since
2ρ_psq P GpFqq Ă GpOq for all s P Fˆq , we see that 2ρ_psqx P GrG,λ. This implies that

µp$q “ limsÑ02ρ_psqx P GrG,λ.

But one can show that GrG,λ “
Ů

µďλ GrG,µ, and so µ ď λ.

Let us prove3 (4.3) in the case where G “ GLr, for some r ě 1. For every n P NpF q, we have
that cλpλp$qnq ‰ 0 iff n P λp$q´1GpOqλp$qGpOq, so n ÞÑ cλpλp$qnq is the characteristic function
of the set X1 :“ NpF q X λp$q´1GpOqλp$qGpOq. Using the fact that X1 is a disjoint union of left
NpOq-cosets, we have

volpX1q “ #pNpF q X λp$q´1GpOqλp$qGpOqq{NpOq

“ #pNpF q X λp$q´1GpOqλp$qq{NpOq

“ volpX2q,

2It turns out that GpOqλp$qGpOq{GpOq, resp. NpF qµp$q{GpOq, is the set of Fq-points of a locally-closed sub-

variety, resp. of an ind-sub-variety, of the affine Grassmannian.
3This part of the proof is inspired from [Rev16, §1.4].
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where X2 :“ NpF q X λp$q´1GpOqλp$q is stable by multiplication on the right with elements of
NpOq (indeed, since λ is dominant, NpOq is stable under conjugation by λp$q, which implies that
λp$q´1GpOqλp$q is stable by multiplication on the right with elements of NpOq), and the second
equality follows after injecting X1{GpOq into GpF q{GpOq “ BpF qGpOq{GpOq » BpF q{BpOq (here
we use the Iwasawa decomposition GpF q “ BpF qGpOq). We see that

X2 “ tpni,jq P NpF q | vpni,jq ě λj ´ λi @1 ď i ă j ď ru.

Thus we get

Spcλqpλp$qq “ q´xρ,µyvolpX2q “ q´xρ,µyq
ř

1ďiăjďrpλi´λjq “ qxρ,µy P Zrq˘1{2sˆ.

�

Remark 4.4. Since NpF qµp$q X GpOqλp$qGpOq is stable under left multiplication by elements
of NpOq, it must have a non-zero dn-volume whenever it is non-empty. Therefore the implication
(4.2) is actually an equivalence.

Knowing that the elements tchpV pµqquµPX˚pT q generate the Z-module ZrX˚pT qsW and that each
chpV pµqq has highest weight µ, one can thus express the Satake transform in this basis:

Spcλq “ qxρ,µychpV pλqq `
ÿ

µăλ

aλ,µchpV pµqq,

for some elements aλ,µ P Zrq˘1{2s.

Remark 4.5. A natural question is to ask what element of HGbZ Zrq˘1{2s is mapped to chpV pλqq
under S. The answer is naturally given by the Geometric Satake equivalence, cf. [Zhu16, Lemma
5.6.3].

5. The example of PGL2,O

We now treat in detail the example of G “ PGL2,O, since the set GpF q{GpOq can be represented
by the vertices of a tree in this case, on which Schubert cells and varieties are visible4. We fix a
maximal torus T and a Borel B of G consisting of the image of the diagonal matrices and upper
triangular matrices respectively under the canonical projection GL2,O Ñ PGL2,O. We then have

Ĝ “ SL2,C and X˚pT q “ X˚pT̂ q “ Z¨χ, where T̂ is the diagonal torus and χ sends a diagonal element
diagpα, α´1q to α. So X˚pT q is isomorphic to Z, and this isomorphism also yields an identification
X˚pT q

` “ Zě0.
Let Xq denote the set of vertices of the pq`1q-regular tree (cf. Figure 1). This tree is a realization

of the Bruhat-Tits building for PGL2pF q, and the set Xq is in bijection with GpF q{GpOq, the Fq-
points of the affine Grassmannian (cf. [Gör10, §2.8]). In particular, if we pick a vertex e P Xq

corresponding to the coset of the identity, we then have

GrG,µ » tx P Xq | dpe, xq “ µu

for any µ P Zě0, where GrG,µ :“ GpOqµp$qGpOq{GpOq is the Schubert cell associated with µ, and
where dp¨, ¨q is the usual distance function on a tree. On the drawing below, the red dot is the vertex
e, and the green circled vertices represent GrG,2.

4I thank Timo Richarz for sharing some of his notes with me, which I follow in this section.
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Figure 1. Portion of the Bruhat-Tits tree, q “ 2.

For any x P Xq and µ P Zě0, we let δx be the characteristic function of txu on Xq, and put

dµ :“
ÿ

xPXq, dpe,xq“µ

δx.

We then define Hq Ă CcpXq,Zq as the Z-span of tdµ, µ P Zě0u, and put the ring structure on it
induced by the formula

dµ ‹ δy :“
ÿ

xPXq, dpy,xq“µ

δx.

One can check that we have the following equalities
"

d1 ‹ d1 “ d2 ` pq ` 1qδe
d1 ‹ dµ “ dµ`1 ` qdµ´1, @µ ě 2,

which easily imply that Hq is commutative, with unit d0. The following proposition is also straight-
forward.

Proposition 5.1. We have an isomorphism of rings

Hq Ñ HG

dλ ÞÑ cλ.

We can thus consider the isomorphism of rings

S : Hq bZ Zrq˘1{2s
„
ÝÑ ZrX˚pT qsW bZ Zrq˘1{2s,

which is the composition of the Satake isomorphism with the isomorphism of the preceding propo-
sition. We can actually give an answer to the question raised by Remark 4.5 in this simple case of
PGL2,O. For any µ P Zě0, set

fµ :“
ÿ

0ďνďµ, ν“µ mod 2

dν ,

and recall that V pµq P ReppSL2,Cq denotes the simple highest weight representation of highest weight
µ.

Proposition 5.2. For any µ P Zě0, we have Spfµq “ qµ{2chpV pµqq.

Proof. On the one hand, one can check that we have

(5.1)

"

f0 “ d0
f1 ‹ fµ “ fµ`1 ` qfµ´1 @µ ě 1.

On the other hand, the characters of Weyl modules are well known for SL2,C:

chpV pµqq “
ÿ

´µďνďµ, ν“µ mod 2

eν ,

9



so that the sequence
`

qµ{2chpV pµqq
˘

µě0
satisfies the same relation as (5.1), with d0 replaced by 1,

and ‹ replaced by the usual multiplication in ZrX˚pT qs bZ Zrq˘1{2s. This concludes the proof. �
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